Dictionary-Free Categorization of Very Similar Objects via Stacked Evidence Trees

Gonzalo Martínez-Muñoz 1 Wei Zhang 1 Nadia Payet 1 Sinisa Todorovic 1 Natalia Larios 2 Asako Yamamuro 1 David Lytle 1 Andrew Moldenke 1

Project Home Page: http://web.engr.oregonstate.edu/~tgd/bugid/

Eric Mortensen³ Robert Paasch¹ Linda Shapiro² Thomas G. Dietterich¹

¹Oregon State University Corvallis, OR 97331 USA ²University of Washington Seattle, WA 98195 USA ³Lucidyne Technologies, Inc. Corvallis, OR 97333 USA

MOTIVATION

Can you distinguish between insects in the top and bottom rows?

Even trained human experts cannot readily categorize these images, but have to examine the insects themselves!

PROBLEM

How to categorize images showing very similar object categories?

OUR SOLUTION

Train a classifier directly on descriptors of image features, instead of building a visual dictionary and training on the dictionary words
Use class evidence accumulated from all descriptors, instead of voting class decisions made on individual descriptors

CHALLENGE

How to handle volumes of unquantized data? => Evidence trees

APPLICATION: BIOMONITORING

BIOMONITORING BY CATEGORIZING STONEFLIES

Sensitive and robust indicator of water-stream health and quality
Easy to collect specimens
Limitation: High degree of expertise required to classify specimens

STONEFLY9 DATASET

Small inter-class differences and large intra-class variations
No guarantee of fully frontal, dorsal views of insects
Insects may be only partially visible
Size, color, and texture change significantly with the insect's age
Insects appear in a wide range of poses

VISUAL DICTIONARIES GIVE MEDIOCRE RESULTS ON STONEFLY9

Dictionaries constructed using purely unsupervised methods
Information lost in quantizing keypoints to dictionary entries
Requires manual tuning of: number of clusters, quantization, etc.

FIRST STAGE (Random forest)

- 1. Random forest is trained directly on descriptors
- Training images are sampled from the training set with replacement
- Descriptors of features extracted from a training image are labeled with the class of that image
- Descriptors are "dropped" through each tree in the random forest
- In each leaf, a class histogram is stored

Evidence/class histograms

SECOND STAGE (Stacking)

- 2. Stacking dataset is created:
 - Leaf histograms are summed over all trees and descriptors
 The histograms of each descriptor are concatenated
- Boosting ensemble of decision trees classifies the concatenated vector

ADVANTAGES OVER VISUAL-DICTIONARY METHODS

1.No information loss, because no quantization

- 2.Evidence trees are grown discriminatively => no unsupervised steps 3.No manual parameter tuning
- 4.Low sensitivity to a wide range of values of input parameters

IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami Beach, FL, U.S.A. June, 2009

STONEFLY9

• Edge + {Kadir+Hessian Affine+PCBR} x {SIFT} → 4 random forests

- Stacking: Boosting of 200 decision trees
- Visual dictionary:
 - K-means 100 clusters per detector/descriptor and class

RESULTS

- · Mapping: nearest cluster center and accumulated into a histogram
- Final classifier: Boosted decision-tree classifier containing 200 trees

CONCLUSIONS

- We categorize highly articulated objects with large intra-category variations and small inter-category differences by using evidence random forests trained directly on descriptors
- We have provided a mathematical model of our approach
- Experiments on STONEFLY9 and PASCAL06 datasets demonstrate validity and generality of our approach.