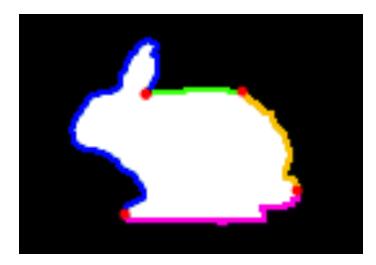
Matching Hierarchies of Deformable Shapes

Nadia Payet and Sinisa Todorovic School of EECS Oregon State University

GbR 2009 - Venice, Italy

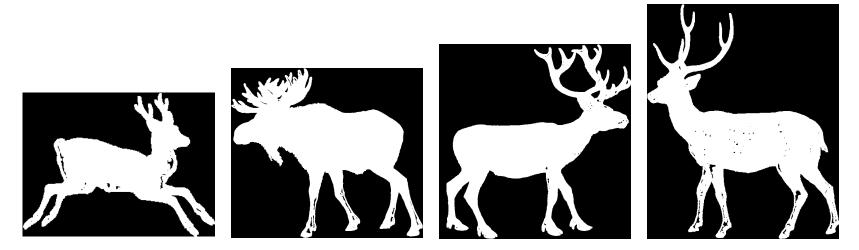
Goal

- Identify similar parts of deformable shapes
- Part = shape segment between two consecutive salient points
- Similar
 - Color, length, orientation
 - Neighbors
 - Subparts



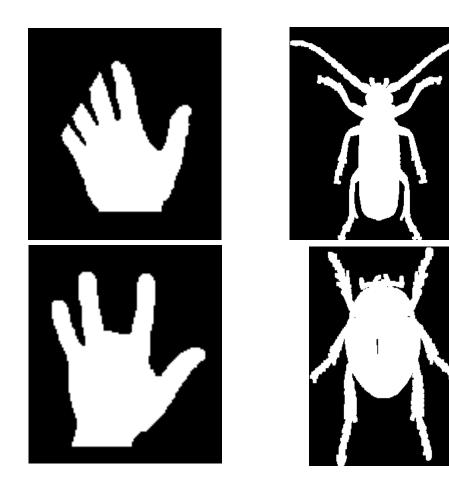
Goal

- Identify similar parts of deformable shapes
- Similar deformable shapes = Shapes of objects in the same class whose parts are subject to various transformations



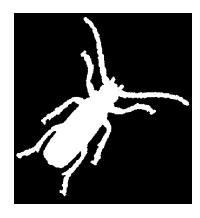
Example - Transformations

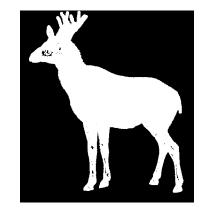
Some parts may be missing, or in excess

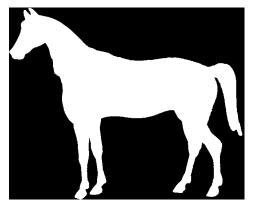


Challenges - Perception

Objects in different classes may have similar parts







Prior Work - Shape representation

- Arc trees [Günther et al. CVGIP 90]
 - Not invariant to part transformations
- Curvature scale-space [Mokhtarian et al. PAMI 92]
 - Requires image blurring and subsampling => info loss
- Markov-tree [Fan et al. ICCV 05]
 - Must specify the number, size and scale of parts
- Part-based signatures [Ling et al. PAMI 07]
 - Correct estimation of shape landmark points is critical
- Binary trees [Felzenszwalb et al. CVPR 07]
 - Fixed branching factor for all shapes

Prior Work – Shape Matching

- Edit distance [Bunke et al. PRL 83, Sebastian et al. PAMI 04]
 Computationally expensive on large graphs
- Spectral [Siddiqi et al. IJCV 99, Shokoufandeh et al. PAMI 05]
 Gives a match score, but not which parts got matched
- EM learning [Tu et al. ECCV 04]
 - No optimal solution, heuristic assumptions
- Max-clique of association graph [Pelillo et al. PAMI 99]
 Appealing

Our Approach

- Accounting for shape parts is essential

 Part representation => hierarchical graph
 Identify similar parts => graph matching
- But how to formulate matching that

 is invariant to transformations, and
 gives perceptually valid solutions
- We use many to many matching

Problem statement

Given 2 shapes

Find all parts that have similar

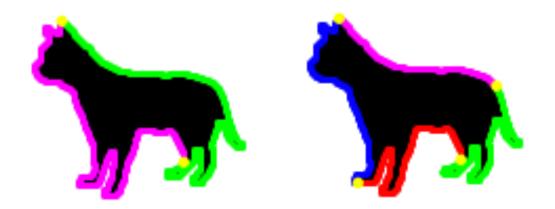
- Photometric properties (color)
- Geometric properties (length, orientation)
- Their neighbors relationships are similar
- Their subparts are similar

So that the matches maximally cover the two shapes

What are shape parts?

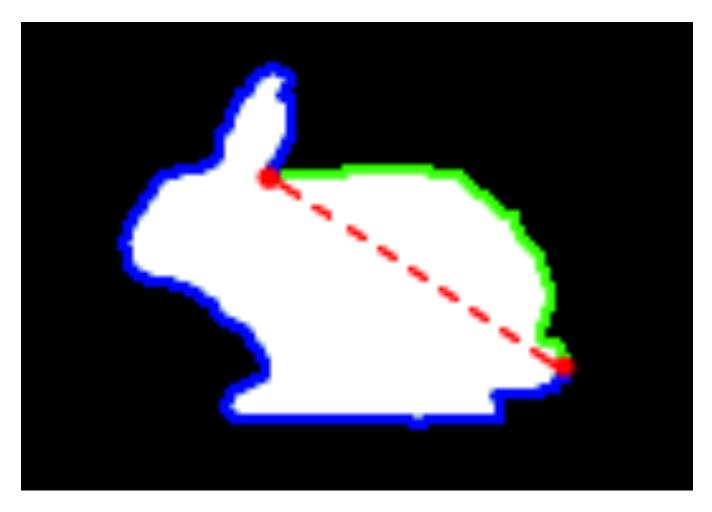
Shape parts

- Shape = Ordered sequence of salient points
- Salient points = Points with high [Teh,Chin PAMI 89]:
 - Curvature
 - Region of support
- Part = shape segment between 2 consecutive salient points
- Saliency is a matter of scale



Original shape

First level



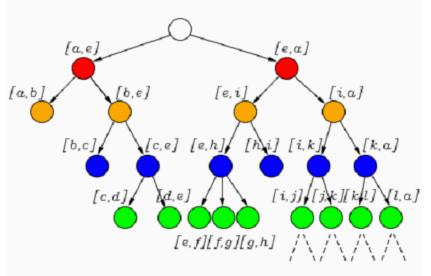
Error estimation

Second level

Error estimation

Third level

Final level



- Data-driven
 - number of nodes
 - hierarchical levels
 - branching factors
- Approximately 50 nodes per shape

Attributes Associated with Nodes

- Pixel-intensity contrast
- Relative length wrt parent
- Relative orientation wrt parent
- Error of straight line approximation
- Bookstein coordinates of middle point

Edges

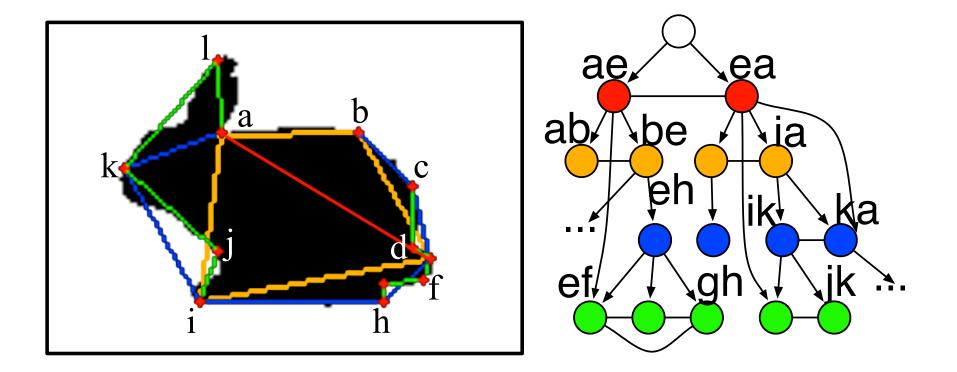
- Capture neighbor relationships
 - Two parts are neighbors if
 - Touch
 - Are siblings
- Capture scale relationships
 - Two parts are ascendant-descendant if
 - Part of

Attributes Associated with Edges

- Neighbor edge
 - Strength of neighbor relationship (distance)

- Ascendant/Descendant edge
 - Strength of part-of relationship (ratio of lengths)

Hierarchical Shape Representation



For clarity, we present only a few nodes and edges

Matching

- Given two graphs G=(V,E) and G'=(V',E')
- Minimize the cost

$$C = \beta \sum_{v \in V} c_1(v, f(v)) + (1 - \beta) \sum_{(v,u) \in E} c_2(v, f(v), u, f(u))$$

 $c_1 = \text{cost of matching nodes v and } v'=f(v)$ $c_2 = \text{cost of matching edges } (v,u) \text{ and } (v',u')$ $\beta = \text{weights the relative significance of } c_1 \text{ vs. } c_2$

Linearization and Relaxation

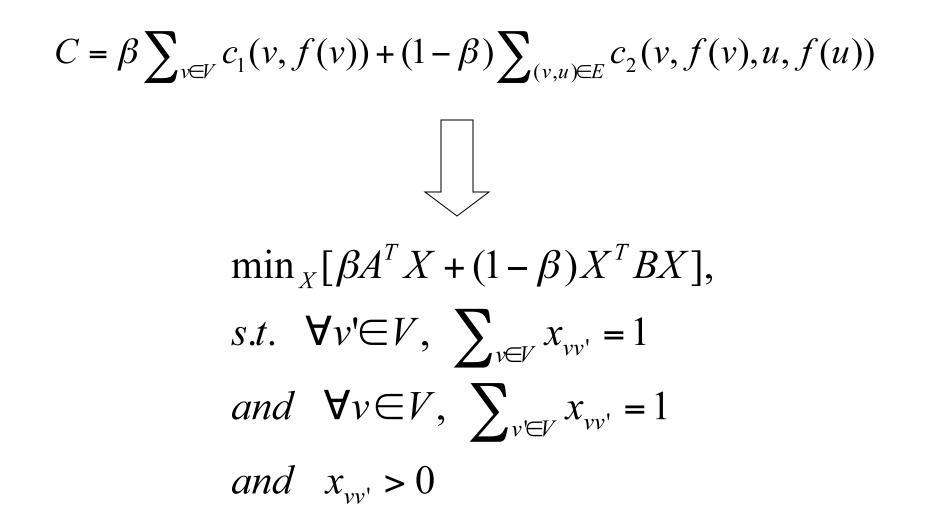
$$C = \beta \sum_{v \in V} c_1(v, f(v)) + (1 - \beta) \sum_{(v,u) \in E} c_2(v, f(v), u, f(u))$$

$$\Box$$
$$X = [010010010...]^{\mathrm{T}}, \quad x_{vv'} \in \{0, 1\} \text{ indicator}$$

Linearization and Relaxation

 $C = \beta \sum_{v \in V} c_1(v, f(v)) + (1 - \beta) \sum_{(v,u) \in E} c_2(v, f(v), u, f(u))$ $X = [010010010...]^{T}, \quad x_{vv'} \in \{0, 1\} \text{ indicator}$ $x_{vv'} \in [0, 1] \text{ real number}$

Linearization and Relaxation



Solving

$$\min_{X} [\beta A^{T} X + (1 - \beta) X^{T} B X]$$

• Build matrix $W = \beta \operatorname{diag}(A) + (1 - \beta)B$

• Reverse costs to similarities: S = 1 - W

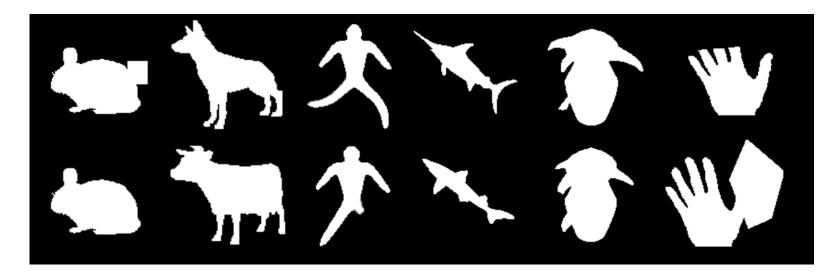
=>
$$\max_X X^T S X$$
 => Maximal clique
solution
s.t. $X \in \Delta$
simplex

Many-to-Many Matching

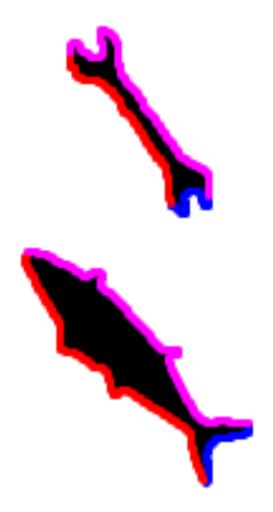
- One-to-many matching in one direction
- One-to-many matching in the other direction
- Take intersection of both matching

Results

- Brown dataset (99 images, 9 classes)
- MPEG-7 dataset (1400 images, 70 classes)
- Challenges: deformation, occlusion, missing parts



Qualitative Results – Different classes



Qualitative Results – Different classes

Retrieval Results

• MPEG-7 dataset (1400 images, 70 classes) Ŵ n h \mathbf{r} \checkmark Y Y

Thank you!