

PROBLEM STATEMENT

Given an arbitrary image, segment all texture subimages.

- Texture = Spatial repetition of texture elements, i.e., texels
- Texels are not identical,

but only statistically similar to one another.

- Texel placement along the texture surface is not periodic, but only statistically uniform.
- Texels in the image are not homogeneous blobs or patches, but regions that may contain subregions.

RATIONALE

- Texels occupy image regions
- If the image contains texture
- ⇒ Many regions will have similar properties - color, shape, layout of subregions, - orientation, relative displacements
- ⇒ The pdf of region properties will have modes

 \Leftrightarrow

Texture detection and segmentation

Detection of modes of the pdf of region properties

OVERVIEW OF OUR APPROACH

input image

region pdf mode detection

TEXEL BASED TEXTURE SEGMENTATION

Sinisa Todorovic and Narendra Ahuja sinisa@eecs.oregonstate.edu, n-ahuja@uiuc.edu

CONTRIBUTIONS

- No assumptions about the pdf of texel properties
- Both appearance and placement of the texels are allowed to be stochastic and correlated
- New hierarchical, adaptive-bandwidth kernel to capture texel structural properties

MEANSHIFT FOR PDF MODE DETECTION

- 1) Define a feature space of region properties
- 2) Descriptor of each region = Data point in the feature space
- 3) Partition the feature space into bins by Voronoi tessellation
- 4) Run the meanshift with the new, hierarchical kernel
- 5) Regions under a pdf mode comprise the texture subimage

HIERARCHICAL, ADAPTIVE-BANDWIDTH KERNEL

x - sample point	b
N - number of points	n
M - number of bins	H
$B_j $ - volume of j-th bin	$\eta(j$

pdf estimate $\hat{f}_B(\boldsymbol{x}) = \frac{1}{N}$

Theorem:

 $K(\boldsymbol{x}_i - \boldsymbol{x}_j; \boldsymbol{H}_j) \triangleq$

 $K^{\mathrm{G}}(\boldsymbol{x}_{i}-\boldsymbol{x}_{j};\boldsymbol{H}_{j})$ matched subregions

min matching(i,j) $(k,l) \in \text{matching}(i,j)$

> The support of the National Science Foundation under grant NSF IIS 08-12188 is gratefully acknowledged.

texture detection and segmentation

- number of points in j-th bin
- kernel width in j-th bin
- neighboring bins of j-th bin

$$\sum_{j=1}^{M} n_j K(\boldsymbol{x} - \boldsymbol{b}_j; \boldsymbol{H}_j)$$

$$\frac{3|B_{i}|(\boldsymbol{b}_{i}-\boldsymbol{b}_{j})(\boldsymbol{b}_{i}-\boldsymbol{b}_{j})^{T}}{|B_{j}|+\sum_{i'\in\eta(j)}|B_{i'}|}$$

Gaussian kernel
$$K^{\mathrm{G}}(\boldsymbol{x}_{k}-\boldsymbol{x}_{l};\boldsymbol{H}_{l}),$$

$$\hat{\|} \\ (\boldsymbol{x}_k - \boldsymbol{x}_l)^T \boldsymbol{H}_l^{-1} (\boldsymbol{x}_k - \boldsymbol{x}_l).$$

input image

input image

[1] M. Donoser and H. Bischof. Using covariance matrices for unsupervised texture segmentation. In ICPR, 2008. [2] M. Galun, E. Sharon, R. Basri, and A. Brandt. Texture seg- mentation by multiscale aggregation of filter responses and shape elements. In ICCV, pages 716–723, 2003

Prague mosaics

0114	10011	140
our	resu	115

	[1]	Ours
Segm. accuracy	56.37%	59.13%
Over segm. error	11.93%	10.89%
Under segm. error	19.79%	18.79%

Berkeley segmentation dataset

