

COLLEGE OF ENGINEERING

Regularizing Long Short Term Memory with 3D Human-Skeleton Sequences for Action Recognition

Behrooz Mahasseni and Sinisa Todorovic

Oregon State University

CVPR 2016

Challenges of Large Scale Action Recognition

- Large number of action classes
 - Large variations within a single class
 - Small differences between distinct classes

Examples of **different** actions in the Sports-1M dataset

Downhill mountain biking

Road bicycle racing

Track cycling

Challenges of Large Scale Action Recognition

Wide range of camera views & motions

Examples of the volleyball action in the Sports-1M dataset

Recent Work

- Features are learned for classification
- Scalable, and transferable between domains
- Fast inference

Karpathy et al., 2014 Ng et al., 2015

. . .

Recent Work

- Features are learned for classification
- Scalable, and transferable between domains
- Fast inference

Karpathy et al., 2014 Ng et al., 2015 Donahue, et al., 2014 Srivastava et al., 2015

...

Current Trends

Deeper Models

(e.g. Ng et al., 2015, Karpathy et al., 2014)

More Training Data

(e.g. Sports-1M, Activity Net)

Our Key Idea

Use another modality with complementary information about human actions

Our Choice of Additional Modality

- Abstraction helps to understand complex concepts
- Sketches help to create abstract concepts

CogSci Lit:

- [1] Do Children Need Concrete Instantiations to Learn an Abstract Concept? [2006]
- [2] Abstraction processes during concept learning: A structural view [1988]
- [3] From Perceptual Categories to Concepts: What Develops? [2010]

3D Human Skeleton Sequences

- View-invariant and noise free
- Lower dimensional input space

Sports-1M videos, Karpathy et al., 2014

HDM05

Limitations of 3D Skeleton Sequences

Poor Coverage of Action Classes

Most Skeleton Sequences represent Indoor Actions

Hard to Access at Test Time

Our Approach

- Multimodal learning
- Regularized 2D video model

Our Approach

- Multimodal learning
- Regularized 2D video model

Training Framework

Encoder LSTM (e-LSTM)

Regularized Learning

- Classification loss
- Similarity constraints
 - Class independent
 - Class aware

Training

- Problem: Constraint optimization
- Solution: Hybrid backpropagation through time

```
If no condition is violated : \Theta_t \leftarrow \Theta_{t-1} + \nabla Loss(\Theta)
If any condition is violated: \Theta_t \leftarrow \Theta_{t-1} + \sum \nabla Constraint(\Theta)
```

Constraints

Class independent

$$\frac{1}{n} \sum_{r_{s}} |r_{s} - r_{v}| \le \alpha$$

Class aware

Sum over different label instances

$$\frac{1}{n_1} \sum_{r_s} |r_s - r_v| - \frac{1}{n_2} \sum_{r_{s'}} |r_{s'} - r_v| \le 0$$

Sum over same label instances

Results

Dataset: Sport1M

Method	Hit@1	Hit@5
Single Frame	59.3	77.7
LSTM	71.3	89.9
[1]	60.9	80.2
[2]	72.1	90.6
[3]	61.1	85.2
R-LSTM	75.9	91.7

^[1] Karpathy et al. Large-scale video classification with convolutional neural networks. In CVPR, 2014

^[2] Ng et al. Beyond short snippets: Deep networks for video classification, arXiv2015

^[3] Tran et al. C3D: generic features for video analysis. CoRR 2014

Results

Datasets:UCF101, HMDB-51

Method	UCF101	HMDB-51
[1]	65.4	-
[2]	75.8	44.1
[3]	71.12	-
[4]	72.8	40.5
[5]	79.34	-
[6]	85.2	-
R-LSTM	86.9	55.3

^[1] Karpathy et al. Large-scale video classification with convolutional neural networks. CVPR, 2014

^[2] Srivastava et al. Unsupervised learning of video representations using lstms, arXiv2015

^[3] Donahue et al. Long-term recurrent convolutional networks for visual recognition and description, arXiv 2014

^[4] Simonyan et al. Two-stream convolutional networks for action recognition in videos NIPS 2014

^[5] Zha et al. Exploiting image-trained cnn architectures for unconstrained video classification, arXiv 2015

^[6] Tran et al. C3D: generic features for video analysis, CoRR, 2014

Insights

Actions that are directly about human motion

Actions	Accuracy Improvement	
Running	4.2%	
Badminton	1.8%	
Track cycling	2.3%	
Road bicycle racing	1.4%	
Down hill biking	0.9%	
bmx	0.8%	

Actions that are not about human motion

Actions	Accuracy Drop	
Wind Surfing	-1.2%	
Fishing	-1.0%	
Land Surfing	-0.9%	

Merit of adding 3D skeletons

Accuracy vs Amount of training data

Training setup	Hit@1	Hit@5
100% 2D training data	71.3	89.9
99.5% 2D training data	71.2	89.9
99.5% 2D training data + 3D sequence data	75.9	91.7

Summary

- 3D sequences → Dynamics of human actions
- e-LSTM → Feature space from 3D sequences
- R-LSTM → Regularized video model
- Hybrid backpropagation through time
- Improved accuracy on benchmark datasets

Network Details

DCNN + LSTM

- Modified GoogLeNet
- 2 Layer LSTM with 2048 and 1024 hidden units
- Representation Layer output with 512 units

e-LSTM

- Input units = 54 (18*3)
- 2 Layer LSTM with 1024and 512 hidden units