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Problem: Large-scale action recognition

Key Idea: Additionally train with 3D
human-skeleton sequences

» Instead of typical strategies:

— Making representations more sophisticated (e.g. deeper)

— Increasing supervision (e.g. more videos in training)
» 3D data is not available at test time

» Poor coverage of actions in 3D sequences
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Regularized LSTM (R-LSTM)
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Regularizing Long Short Term Memory with 3D Human-Skeleton Sequences
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Actions Acc Change
Running 3.7
Badminton 1.5
Track cycling 2.2
Road cycling 1.3
Down hill biking 0.7
BMX 04
Wind Surfing -1.2
Fishing -1.0
Land Surfing -0.9
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» Hybrid backpropagation through time

Method Hit@1 Hit@5
CNN 59.3 [7.7
LSTM 71.3 89.9
Karpathy et al. 14 | 60.9 80.2
Ng etal. 15 721 90.6
Tran etal. ‘15 61.1 85.2
R-LSTM 75.9 91.7
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Accuracy in [%] on UCF101 & HMDB-51
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Method UCF- HMDB-
101 51
Karpathy et al. 14 | 65.4 -
Srivastavaetal. ‘15| 75.8 44 1
Donahueetal. 14 | 71.12 -
Simonyanetal. 14 | 72.8 40.5
Zhaetal. 15 79.34 -
Tran etal. ‘15 85.2 -
R-LSTM 86.9 55.3




