

Combining Bottom-Up, Top-Down, and Smoothness Cues for Weakly Supervised Image Segmentation

Anirban Roy and Sinisa Todorovic

Problem: Weakly Supervised Segmentation Attention Maps Considering Smoothness

Goal: Pixel-wise prediction from image-level tags

Input Image

Fully supervised ground truth Expensive!

1. Car

2. Person

Weakly supervised ground truth Free!

Prediction

Key Idea: Attention Based Localization

*Attention maps can be used as approximate ground-truth

Our Framework

Combining top-down attention, bottom-up segmentation maps and smoothness cues for weakly supervised segmentation

Prior work: Top-down attention computation

Our Approach: Top-down attention computation using additional smoothness cues

 α_i : Bottom-up activation of i

 γ_i : Top-down attention to i

 $\delta_{ii'}$: Lateral influence on i

Rectified-Gaussian Formulation of Attention

Results on the PASCAL VOC 2012

Method	Pascal validation	Pascal test
w/o attention cues	30.5	31.6
w/o smoothness cues	51.3	52.1
Fully supervised	73.0	75.0
Our full approach	52.8	53.7

Comparison with the baseline approaches in terms of mIOU (%)

Method	Pascal validation	Pascal test
MIL+ILP [Pinheiro et al., 15]	36.6	35.8
EM [Papandreou et al., 15]	33.8	_
CCNN [Pathak et al., 15]	35.6	35.6
DSCM [Shimoda et al., 16]	44.1	45.1
F-B [Saleh et al., 16]	46.6	48.0
SEC [Kolesnikov et al., 16]	50.7	51.7
Ours	52.8	53.7

Comparison with the state-of-the-art approaches in terms of mIOU (%)

Acknowledgment: DARPA XAI and NSF RI1302700.