From Contours to 3D Object Detection and Pose Estimation

Nadia Payet and Sinisa Todorovic

Problem Statement

Given a single image:

- I. Detect an object of interest
- 2. Delineate its boundaries
- 3. Estimate its continuous 3D pose

Prior Work

Generative models e.g., aspect graphs

Discriminative models e.g., structured prediction

Main characteristics of recent work:

- Local image features
- Sophisticated models
- 3D pose = Interpolation of viewpoint classes

Recent work, typically

Bags of Boundaries = BoBs

If an object occurs,

it must be in the spotlight of many BoBs jointly supporting the occurrence hypothesis

Bags of Boundaries = BoBs

Zhu et al. 08, Zhang et al. 11

Bags of Boundaries vs. Bags-of-Words

BoBs	BoWs
Histogram of hidden features that must be inferred	Histogram of observable features

input

contour extraction

Zhu et al. ICCV07

input

contour extraction

> grid of BoBs

input

contour extraction

> grid of BoBs

object model

input

contour extraction

> grid of BoBs

estimate of 3D pose

Wednesday, November 30, 11

input

selected boundaries

grid warping

estimate of 3D pose

input

output

Object Model = Shape Templates

2D probabilistic maps of shape for a set of viewpoints

Learning

Example Shape Templates

AUTOCAD dataset

Liebelt & Schmid 08-10

Representation of the Shape Template

Regular grid of shape-context descriptors + Affine projection matrix T

Inference = Matching of BoBs

Inference = Matching of BoBs

Inference = Matching of BoBs

under an arbitrary affine projection

Example Problem: Object Recognition

Given a set of edges in the image detect and localize all object instances and estimate their 3D pose

 $\operatorname{tr}\left\{C^{T}(X)F\right\} + \alpha ||TQF^{T} - P||$ min X, F, T

$+\beta || (TQF^T - P) - (TQF^T - P)W^T ||$

s.t. $X \in [0, 1]^N$

$+\beta ||(TQF^T - P) - (TQF^T - P)W^T||$

s.t. $F \ge 0; F^T \mathbf{1}_N = \mathbf{1}_M; F \mathbf{1}_M \le \mathbf{1}_N$

$+\beta ||(TQF^T - P) - (TQF^T - P)W^T||$

s.t. $F \ge 0; F^T \mathbf{1}_N = \mathbf{1}_M; F \mathbf{1}_M \le \mathbf{1}_N$

Results: Object Detection

PASCALVOC 2006 car dataset

Car show dataset

Results: Viewpoint Classification

3D Object dataset: Cars

Results: 3D Pose Estimation

Correct detection, localization, and pose estimation

Results: 3D Pose Estimation

Correct detection, localization, and pose estimation

Conclusion

- Recent work:
 - Pre-selected local features
 - Sophisticated object models and algorithms
- Our approach:
 - Mid-level features allow for:
 - Abstracting low-level features
 - Synergistic bottom-up/top-down interaction
 - Simple models and algorithms