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Problem Statement

Given a single image:

1. Detect an object of interest

2. Delineate its boundaries

3. Estimate its continuous 3D pose  
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Prior Work

Hoiem et al. 07
Su et al. ICCV 09
Ozuysal et al. 09

Liebelt & Schmid 08-10
Gu & Ren 10

Koendrik & Doorn 79
Kushal et al. 04

Saverese & Fei-Fei 07-09
Arie & Basri 09
Hu & Zhu 10

Generative models
e.g., aspect graphs

Discriminative models
e.g., structured prediction

Main characteristics of recent work:

• Local image features

• Sophisticated models

• 3D pose = Interpolation of viewpoint classes
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Bags of Boundaries = BoBs

If an object occurs, 

it must be in the spotlight of many BoBs 

jointly supporting the occurrence hypothesis
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Bags of Boundaries = BoBs

Zhu et al. 08, Zhang et al. 11

⇥
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Bags of Boundaries vs. Bags-of-Words

BoBs BoWs

Histogram of

hidden features

that must be inferred

Histogram of

observable features
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Approach

input
contour 

extraction
Zhu et al. ICCV07
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Object Model = Shape Templates

2D probabilistic maps of shape
for a set of viewpoints

17Wednesday, November 30, 11



Learning

view 1 view 2 view 3 ... view n

image 1

image m

...

Table top dataset
Sun et al. 10
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Example Shape Templates

AUTOCAD dataset
Liebelt & Schmid 08-10
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Representation of the Shape Template

Regular grid of shape-context descriptors
+

Affine projection matrix  T
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Inference = Matching of BoBs
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Inference = Matching of BoBs

template 1 template 2 ... template n
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Inference = Matching of BoBs

under an arbitrary affine projection
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Example Problem: Object Recognition

Payet & Todorovic ICCV11

Given a set of edges in the image

detect and localize all object instances 

and estimate their 3D pose
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Results: Object Detection

PASCAL VOC 2006 
car dataset

Car show dataset
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Results: Viewpoint Classification

3D#Object#dataset:#Cars##
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Results: 3D Pose Estimation

Correct detection, localization, and pose estimation
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Results: 3D Pose Estimation

Correct detection, localization, and pose estimation
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Conclusion

• Recent work: 

• Pre-selected local features

• Sophisticated object models and algorithms

• Our approach:

• Mid-level features allow for:

•  Abstracting low-level features

• Synergistic bottom-up/top-down interaction

• Simple models and algorithms
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