

Problem

Localizing functional objects in surveillance videos

Functional objects can satisfy human needs:

- hunger: food truck,
- thirst: vending machine,
- rest: bench,
- cleanliness: trash bin.

Functional objects hard to detect = "Dark matter" Dark matter" attracts people to satisfy the needs People have intents to approach "dark matter"

"Dark matter" is at the ends of people's trajectories

Challenges:

- Tracking people in surveillance videos is noisy.
- Not all end points of the trajectories observed.

Approach

Assumptions:

- Scene layout consists of:
- Dark-matter locations,
- Walkable areas,

ONON-walkable areas + obstacles = Constraint map.

• People:

- Familiar with the scene layout,
- •Move only to one goal "dark matter" at a time,
- \circ Take the shortest path to the goal avoiding obstacles.

Allows a global estimation of the trajectories' end points

Given a video with partially observed trajectories of many people, use a Data-Driven MCMC to infer:

- □ Human mind = Intent to approach a particular "dark matter",
- □ Constraint map of the scene,
- "Dark energy" = Vector field that attracts/repels people
- □ End points of the trajectories = "Dark matter" locations.

Contribution

Agent-based Lagrangian Mechanics cast within a Bayesian framework

Inferring "Dark Matter" and "Dark Energy" from Videos Dan Xie¹, Sinisa Todorovic² and Song-Chun Zhu¹ ¹ University of California, Los Angeles, ² Oregon State University

Constraint	Map:	$P(C) \propto \mathrm{ex}$	$\exp[\beta \sum_{\mathbf{x} \in \Lambda, \mathbf{x}' \in I}]$	$\partial_{\mathbf{x} \cap \Lambda} c(\mathbf{x}) c(\mathbf{x})$:')] 	Huma
		Ising				
	Dark	Matter	Locations	$P(S C) \propto \frac{r}{d}$	$\frac{p^N}{N!}e^{-1}$	$-\eta \prod_{j=1}^{N}$
				l	Pois	son
	Traie	ectory:	$P(\Gamma \cup C S r$	$(-1) - P(\Gamma)$	$ \vec{F} $	$\cdots (\mathbf{x})) \propto$

