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Problem: Learning CNN Parameters

Iterative updates:

2

Current parameters Parameter update

Backpropagate gradients of 

the loss function to estimate 

Loss on the output

Learning a CNN:
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Problem: Learning CNN Parameters

Iterative updates:
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Current parameters Parameter update

Standard approach: 
Given the loss function , estimate            using:

• Stochastic Gradient Descent (SGD)

• Other heuristics, e.g., learning rate, momentum.



Problem: Learning CNN Parameters

Iterative updates:
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Current parameters Parameter update

Our goal: 
• Improve the convergence rate 

• Eliminate hand-tuning of heuristics parameters



Little Theoretical Understanding 
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• The loss function is highly non-convex 

• Why does SGD even converge?

• SGD ⟺ Regular gradient descent on a convolved 

smoothed loss function.  [Kleinberg 2018, Chaudhari & Soatto 2018]

• Convolution kernel size grows with    
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Prior Work: 
Heuristics for Faster Convergence

• RMSProp: Current magnitude of gradients   
[Tieleman & Hinton 2012]

• ADAM: Magnitude of  current and past gradients 
[Kingma & Ba 2014]
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Learning rate is adaptively adjusted based on: 



Prior work: Learning the Gradients

• Learning an update policy: 

Updates           are estimated via reinforcement learning 
[Li & Malik 2016]
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• Learning gradient descent: 

Updates            are estimated from a history of the 

gradients using an LSTM 
[Schmidhuber 1993; Thrun & Pratt 2012; Andrychowicz et. al. 2016]



Our Motivation 1: Recent Findings

• Loss function has numerous “plateau” regions 

with near-zero gradient values.                  
[Dauphin et al. 2014; Choromanska et al. 2015; Kawaguchi 2016] 

• ⇒ We need second-order optimization
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Our Motivation 2: Recent Findings

• A zero-gradient point is more likely to be a 

saddle point than a local minimum.                      
[Dauphin et al. 2014; Choromanska et al. 2015; Kawaguchi 2016] 
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Our Motivation 2: Recent Findings

• ⇒ SGD has slow convergence due to frequent 

“passes” through the “plateau” regions

• ⇒ We need second-order optimization
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Our Goal

Iterative updates:

11

Current parameters Parameter update

Estimate             based on the gradient + Hessian

Challenge: Computing the Hessian !



Prior work: Second-order Optimization

Approximate the Hessian to compute the updates      

⇒ Helps navigate faster through the ``plateaus”

[Buntine 1994; Martens 2010; Chapelle & Erhan 2011; Dauphin 2014; 

Choromanska 2015; Kawaguchi 2016, Henriques 2018]
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Our Approach: Second-order Updates
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Hessian gradientLearning rate



Our Key Idea
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Hessian gradientLearning rate
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Update
vector



Our Key Idea
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LSTM 
hidden state

Gradients Second
derivatives

LSTM
hidden state

Estimate the update vector using LSTM



Our Approach
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Input to LSTM: Current gradient and second derivatives 

Output of LSTM: Update vector



Joint Learning of CNN and LSTM
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• Both LSTM and CNN are learned via 
back-propagation through time (BPTT).

• Details are presented in the paper.



Details

• Learn a separate LSTM for each layer of CNN

• Separate LSTMs for convolutional and fully 
connected layers

• Each LSTM has two hidden layers with 20 
hidden units in each layer
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Our approach

19

Updated parameters Current  parameters
Gradients

Hessian

Learning step:



Results
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Datasets
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• MNIST [LeCun et al. 1998]: 
– 28x28 images of the 10 handwritten digits
– 60,000 training images and 10,000 test images

• CIFAR-10 [Krizhevsky & Hinton 2009]:
– 32x32 color images of 10 classes
– 50,000 training images and 10,000 test images

• ImageNet [Deng et al. 2009]: 
– Color images of 1000 object classes 
– 1.2 million training images and 10,000 test images 



Baselines
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• SGD : a vanilla SGD to update parameters.

• RMSprop [Tieleman & Hinton, 2012]:                                        
Estimate the learning rate using current gradients. 

• ADAM [Kingma & Ba, 2014]:                                                     
Estimate the learning rate using current & past gradients.

• LSTM [Andrychowicz et. al., 2016]:                                                    
LSTM estimates the update  !" from gradients only.

• Second order updates (SOU):
Using the diagonal Hessian.



Comparison with baselines on MNIST
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Faster convergence of our SLSTM on MNIST



Comparison with baselines on MNIST
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Faster decrease of test error of our SLSTM on MNIST
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Comparison with baselines on CIFAR

Faster convergence of our SLSTM on CIFAR
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Comparison with baselines on CIFAR

Faster decrease of test error of our SLSTM on CIFAR
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Comparison with baselines on ImageNet

Faster convergence of our SLSTM on ImageNet



Transfer learning
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We learn LSTM with a smaller network 
and then use it to train a bigger network.

• Small network 1 convolutional layer and 1 fully connected layer
• Bigger network 3 convolutional layer and 2 fully connected layer



Conclusion

• A new meta-learning for CNNs using gradients 
and Hessian.

• We get faster convergence wrt heuristic 
optimizations on the benchmark datasets

• Learning LSTM on a small network has been 
successfully transferred to a learn bigger network 
with more layers
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