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Particle-laden turbulent flows, wherein a large number of small size particles are
dispersed in a fluid, are widely encountered in environmental and industrial ap-
plications. Understanding their underlying physics, making predictions without
performing expensive experiments, and ultimately optimizing the systems carrying
such flows, require accurate and robust modelling tools. The Euler-Lagrange (EL)
approach has received much attention in modeling such flows due to its simplicity,
affordability and partial accuracy. In this approach, the fluid phase is solved using
an Eulerian framework while particles are treated as Lagrangian point-particles
(PP) in the flow and tracked following the Newton’s second law of motion based
on the available closures for the fluid forces acting on the particles.

For two-way coupled flows, the effect of particles on the fluid phase is modelled
by applying the particle reaction force to the background flow through a momentum
source term. Using such a simplified point force model, however, could result in
inaccuracies in capturing the experimental observations or analytical solutions.
One source of inaccuracy is that, the fluid phase equations in this approach are
solved for the entire flow field including the volume occupied by the particles,
and the mass displacement of the particles is not taken into account. The other
source is that the accuracy of the fluid forces acting on the particles depends on the



‘undisturbed fluid velocity’, that is by definition, the velocity that is not influenced
by the presence of particles. However, in two-way coupled simulations, particles
disturb the fluid phase at their location, and such an ‘undisturbed’ fluid velocity is
no longer available. The alternative and common use of the disturbed fluid velocity
can produce erroneous predictions by as much as 100%.

In this dissertation, the spatio-temporal variations in the volume fraction of
the fluid phase are taken into account to capture the mass displacement effect of
particles. Large-eddy simulations (LES) coupled with PP approach performed for
a particle-laden jet under a range of volume loadings show that the mass displace-
ment effect tends to become important for particle volume loadings above 5%.
Concerning the second issue, a general scheme is developed to correct the PP ap-
proach in order to recover the undisturbed fluid velocity at the location of particles.
The model is accurate, cost-efficient and applicable for isotropic and anisotropic
grids with high aspect ratio typically encountered in the turbulent channel flow
simulations. The present scheme handles all types of particle-laden flows with
and without no-slip walls. Tests performed on a settling particle in parallel and
perpendicular motion to a no-slip wall shows the accuracy and robustness of the
model in reducing the errors in predicting the particle settling velocity.

The present EL-PP approach is applied to a particle-laden turbulent channel
flow to predict the interaction of particle and turbulence. It is observed that
the uncorrected PP approach, wherein the disturbed fluid velocity is employed
for the fluid force computations, fails in capturing the experimental observations.
However, when the PP approach is corrected with the newly developed correction
scheme, the recovery of the undisturbed fluid velocity at the location of particles
produces accurate fluid forces and captures most of the experimental observations.

Finally, the effect of deforming particles, such as liquid droplets in liquid at-
omization, is briefly investigated. Different deformation models are tested against
the experimental data to identify the best model for each breakup regime. It is
observed that ignoring such an effect produces significant underprediction on the
motion of droplets.
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Chapter 1 Introduction

Turbulent flows laden with solid particles, liquid droplets or gaseous bubbles are
common in both natural phenomena and man-made systems. Sediment trans-
port in river, liquid atomization in combustion process, contaminant transport in
industry, pollutant dispersion in the atmosphere, and drug delivery among oth-
ers are some examples of these flows. It is worth noting that further on in this
dissertation, the word ‘particle’ represents all types of the dispersed phases un-
less otherwise mentioned. Particles in such flows interact with the background
flow through the exchange of mass, momentum and energy that could affect the
characteristic or performance of these flows. In order to better understand their
underlying physics, make predictions without performing expensive experiments,
and ultimately optimize the current systems, accurate and affordable predictive
tools are required. In this dissertation, efforts are made to improve the predictive
capability and accuracy of the current approaches in modeling of these flows.

Studying the characteristics of particulate turbulent flows helps improve mod-
eling of these flows more accurately and practically. One of the interesting ob-
servations is the preferential concentration of particles. It is widely accepted that
even in isotropic turbulence, particles’ distribution is not uniform and heavier-
than-fluid particles tend to accumulate in regions of high strain rate with avoiding
intense vorticity regions. On the contrary, lighter-than-fluid particles accumulate
in vortical regions (Maxey (1987); Squires & Eaton (1990, 1991)), signifying the
importance of the density ratio between phases, ρp/ρf .

Turbulent modulation due to the presence of particles is another phenomenon
that depends on two parameters; (i) Stokes number, St=τp/τf , which is the ratio of
particle relaxation time (τp) and fluid time scale (τf ), and (ii) the volume loading of
particles, φp=Vp/(Vp+Vf ), where Vp and Vf represent the total volume of particles
and fluid, respectively. Elghobashi (1991, 1994, 2006) classified a map for such a
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modulation with identifying the type of interaction between both phases. They
showed that for volume loadings of φp≤10−6, particles do not affect the turbulence,
yet they are dispersed by the background flow, hence one-way coupled regime. For
larger volume loadings (10−6<φp<10−3), however, the momentum transfer from
particles to the flow is large enough that the background flow gets influenced and
the regime is called two-way coupled.

They showed that depending on the St number, turbulence of the background
flow could be attenuated or augmented. The former occurs for particles smaller
than the size of the most energetic eddies, as a fraction of energy of the eddies
is spent for dragging and carrying such small particles (Elghobashi, 2006). Con-
versely, for a given volume loading, increasing in the particle relaxation time or its
length scale increases particle Reynolds number (Rep=ρfdp|up−uf |/µf ), and for
Rep≥400 vortex shedding takes place behind the particles, hence turbulence aug-
mentation (Gore & Crowe, 1989). Increasing the loading of particles to φp>10−3,
results in the inter-particle collisions in addition to the inter-phase interaction,
which make the regime four-way coupled.

A variety of numerical methods has been developed up to date for modeling
the different regimes of particle-laden flows. Balachandar (2009); Balachandar
& Eaton (2010) classified a range of applicability of the different computational
schemes based on two parameters (i) the relative size of particle to the smallest flow
scale (dp/∆) and (ii) the volume loading of particles (φp). In ascending order of
cost and accuracy, these numerical schemes are (i) Euler-Euler, (ii) Euler-Lagrange,
and (iii) particle-resolved techniques. In the Euler-Euler approach (Crowe et al.,
1996), particles are simulated as a continuum using Eulerian framework that is
also used to solve the fluid phase. This method is suitable for flows with large
number of particles, however, its accuracy degrades for inertial particles. The next
level of accuracy is the Euler-Lagrange (EL) method that has the longest history in
the field (Maxey, 1987; Elghobashi, 1991; Squires & Eaton, 1991) and has received
much attention in simulating particle-laden flows due to its simplicity, affordability
and partial accuracy. This approach was initially introduced for modeling dilute
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particle-laden flows with relatively small size particles that have negligible effects
on the background flow. For such one-way coupled flows (Elghobashi, 1991), im-
posing the no-slip boundary condition on the surface of particles is not needed as
the perturbation generated at the particle scale is insignificant. The fluid phase
is solved using an Eulerian framework while particles are treated as Lagrangian
point-particles (PP) in the flow and tracked following the Newton’s second law of
motion based on the available closures for the fluid forces acting on them. Such
one-way coupled simulations are mostly used for particle tracking and clustering.
Nevertheless, owing to its affordability, this EL-PP approach has also been applied
to particulate flows with dense loading or those with relatively large size parti-
cles wherein the effect of particles on the background flow is inevitable (Squires
& Eaton, 1990; Elghobashi & Truesdell, 1993). For such two-way coupled flows,
the effect of particles on the carrier phase is modelled by applying the particle
reaction force to the background flow through a momentum source term. Using
such a simplified point force in modelling the inter-phase interactions, however,
could result in some inaccuracies in capturing the experimental observations (Se-
gura, 2004; Eaton, 2009; Pakseresht et al., 2017) or analytical solutions (Pan &
Banerjee, 1996) of particle-laden flows.

While the particle-resolved (PR) techniques provide the most accurate solution
for particle-laden flows, they are extremely expensive and impractical for realistic
flows involving thousand or millions of particles. Therefore, there is a pressing
need for developing affordable and accurate methods for modeling flows laden
with relatively large number of particles. Such a need has motivated research to
fill the gap between EL and PR techniques. The focus of this dissertation is to
fill such a gap and improve the predictive capability of the EL-PP approaches for
two-way coupled regimes wherein the lack of accuracy has widely been observed.
One source of inaccuracy is that the fluid phase equations in this approach are
solved for the entire flow field including the volume occupied by the particles,
and the volume/mass displacement of the particles is not accounted for. Several
works have shown the considerable effects of this displacement and argued that
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this effect should be included in addition to the point-particle force (Ferrante &
Elghobashi, 2004; Apte et al., 2008; Cihonski et al., 2013). The other one is that
the accuracy of this method in predicting the fluid forces on the particles can decay
when the two phases are two-way coupled, owing to the disturbance created by the
particles’ force on the background flow. Such a disturbance produces an error in
the fluid force computations since the closure models often rely on the slip velocity
computed based on the undisturbed fluid flow, which is not readily available in the
two-way coupled simulations.

In Chapter 2, the first issue that is the mass displacement effect of particles on
the EL-PP predictions is investigated. Large Eddy Simulations (LES) of a particle-
laden jet flow with a wide range of particle volume loadings and particle Stokes
numbers is studied. The standard PP approach, wherein the mass displacement
effect is ignored, is compared with the modified PP approach wherein such a dis-
placement effect is taken into account. It is shown that for inlet volume loadings
above 5%, the displacement effect alters both mean and r.m.s. velocities of the
background flow. This chapter is published in the International Journal of Mul-
tiphase Flow. In Chapter 3, the second issue is addressed and a general velocity
correction scheme is developed to recover the undisturbed fluid velocity at the loca-
tion of particles, in the presence or absence of no-slip walls, to capture the accurate
fluid forces acting on the particles. The model is accurate and cost-efficient, and
can handle isotropic and anisotropic grid resolutions that are typically encountered
in turbulent channel flows. The newly developed model reduces the errors asso-
ciated with the prediction of settling velocity of a particle to few percent. Both
parallel and perpendicular motions of a particle respective to a no-slip wall are
examined at various wall distances. This chapter is submitted to the Journal of
Computational Physics and is under review. In Chapter 4, formulations developed
in Chapters 2 and 3 are applied to a full-fledged particle-laden turbulent channel
flow. It is shown that the standard uncorrected PP approach fails in capturing
the effect of particles on the flow. In other words, predictions of turbulent channel
flow with and without particles are almost identical in the uncorrected approach.
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However, the corrected PP scheme is able to capture the effects of particles on
the flow, in consistent with the experimental observations. This chapter is under
preparation for submitting to the International Journal of Multiphase Flow. Chap-
ter 5, investigates the effect of deforming particles, e.g., liquid droplets in sprays
and liquid atomization processes. Different deformation models are investigated
for different breakup regimes with identifying the best model for each regime. It
is shown that ignoring such an effect could produce significant underprediction in
the dynamics of droplets. This chapter was presented and published in the pro-
ceeding of ILASS-Americas, 30th Annual Conference on Liquid Atomization and
Spray Systems, Tempe, AZ, May 2019. Finally, conclusions of this dissertation
and suggestions for the future works are given in Chapter 6.
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Abstract

Large-eddy simulations (LES) of a particle-laden jet under a range of volume load-
ings are performed using a modified point-particle Euler-Lagrange (EL) approach
to evaluate the effect of the volume/mass displaced by the subgrid particles on the
flow. The spatio-temporal variations in the volume fraction of the carrier phase are
taken into account giving rise to a zero-Mach number, variable density formulation
with source terms in both momentum and continuity equations. The influence of
volume loading as well as particle relaxation time on these volumetric displacement
effects are investigated by performing numerical tests at different inlet volume load-
ings (0.047%-37.6%) and Stokes numbers (0.038-11.6). It is shown that for volume
loadings above 5%, the volumetric displacement effects tend to become important.
For the cases studied, these effects increase the mean and r.m.s. velocities of the
carrier phase due to the continuity source term; however, they decrease further
downstream due to dispersion of particles and spreading of the jet. It is observed
that reducing the particle Stokes number increases the volumetric displacement
effects due to their quick response time to the changes in the background flow,
lower dispersion and smaller reaction forces.

2.1 Introduction

Liquid spray atomization plays an important role in analyzing the combustion
process in many propulsion related applications. A standard modeling approach
for liquid fuel atomization is to use a two step process involving primary followed
by secondary atomization as shown in Fig. 2.1. During primary atomization the
liquid exhibits relatively few complex coherent structures that undergo breakup
initiated by a multitude of physical mechanisms. The secondary atomization region
is characterized by a vast number of droplets that interact with the surrounding
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Figure 2.1: Different regimes in a liquid atomization process modified based on
Herrmann (2010b).

fluid transferring mass, momentum, and energy and can be characterized by three
different regimes as shown in Fig. 2.1. In the dense regime, the local liquid volume
fraction, θp, (subscript ‘p’ refers to the dispersed phase) is on the order of one with
liquid droplets undergoing secondary breakup. In the intermediate regime, droplets
continue to undergo further disintegration; however, θp is now smaller than unity.
Finally, in the dilute regime, atomization is rare, θp is small, the droplets evaporate,
and the fuel vapor mixes with the surrounding hot gases (Herrmann, 2010b). In
the dense and intermediate regimes, not only are droplet deformation, collision,
and coalescence important, but significant droplet-loading and local variations in
θp are crucial and should be considered to capture the spray evolution correctly.

In the traditional approaches for spray modeling, the dynamics of the liquid/gas
interface are not resolved. Instead the spray dynamics is modeled using an EL
point-particle/parcel approach where liquid droplets are assumed subgrid and their
motion is captured by laws for drag, lift, added mass, and pressure forces due to the
gas phase. Their effect on the carrier phase is then modeled through two-way cou-
pling of mass, momentum, and energy exchange with the Eulerian equations of the
gaseous phase (Dukowicz, 1980). Liquid blobs with the size of the injector diam-
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eter are introduced into the combustion chamber that undergo atomization based
on either deterministic breakup models such as Taylor analogy breakup (TAB)
(O’Rourke & Amsden, 1987) and wave models (Reitz, 1987) or stochastic breakup
models (Apte et al., 2003). Alternative approaches for modeling atomization in-
clude the Σ− Y model (Vallet & Borghi, 1999; Vallet et al., 2001) that considers
atomization as a turbulent mixing process, the Eulerian-Lagrangian Spray Atom-
ization (ELSA) approach which couples the Eulerian mixing description of primary
atomization for both phases to an EL formulation for the secondary atomization
(Blokkeel et al., 2003; Lebas et al., 2005; Ning et al., 2009). These models were
originated in the context of Reynolds-Averaged Navier-Stokes equations (RANS)
turbulence models; however, extensions to LES formulations have been recently
proposed by Chesnel et al. (2011b,a).

In EL point-particle approach, the volume fraction and size of the dispersed
phase is assumed small compared to the computational cell, so that point-particle
assumption (Maxey & Riley, 1983; Maxey, 1987; Squires & Eaton, 1991) is practical
and feasible. This approach, however, is not strictly applicable to regions with high
volume fraction of the dispersed phase such as near the nozzle injector where the
dispersed phase could displace a remarkable portion of the carrier phase. This
results in spatio-temporal variations in local volume fraction of the carrier phase.

Recently, hybrid approaches of direct numerical simulation (DNS) for the pri-
mary atomization along with LES coupled with point-particle/parcel approach for
the secondary atomization have been developed by Herrmann (2010b,a, 2011).
They have shown quite success in predicting atomization even in complex aircraft
engine injectors, yet they are still computationally expensive. On the other hand,
the spatio-temporal variations in volume fraction of the carrier phase are still ne-
glected in dense regime of EL secondary atomization. Accounting for these effects
was originally proposed by Dukowicz (1980) in the context of spray simulations
and modified later by Joseph et al. (1990). In this formulation, the carrier and dis-
persed phases are coupled volumetrically by two mechanisms: (i) displacement of
the carrier phase by the volume occupied by particles, and (ii) momentum exchange
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between the phases through a reaction force. However, the volume displacement
effects are typically ignored in most EL dense spray simulations because of the
complexity of the numerical algorithm embedded in this formulation.

Several works have depicted the importance of accounting for the volume/mass
displaced by the dispersed phase in EL approaches. Patankar & Joseph (2001a) uti-
lized this scheme for sedimentation column of dense particles, while Snider (2001)
used similar formulation for some canonical test cases on laminar dense particle-
laden flows. Ferrante & Elghobashi (2004, 2005) observed that taking into account
for the volumetric displacement effects results in accurately capturing the drag
reduction in a microbubble-laden turbulent boundary layer over a flat plate. The
local negative velocity divergence, ∇·uf<0, created by bubble concentration was
found to be the physical mechanism behind this reduction. In contrast, Vreman
et al. (2004) showed insignificant difference in the prediction of this approach for a
particle-laden channel flow with average loading of 1.3% compared to the standard
two-way coupling EL method where these effects are neglected. Deen et al. (2004,
2007), Darmana et al. (2006) applied this formulation in the context of gas-liquid
two-phase flows as mentioned in a comprehensive review by Van der Hoef et al.
(2008). Apte et al. (2008) illustrated a large difference in the prediction of particle
dispersion in fluidization process using this approach compared to the standard
Euler-Lagrange approach. They showed that the fluid displaced by the particles
plays an important role in predicting the correct behavior of particle motion. How-
ever, most of the cases studied were for low density ratio of the dispersed phase
and the carrier flow on the order of 1 to 10. In line with previous works, Finn et al.
(2011) and Cihonski et al. (2013) showed that under some conditions, the entrain-
ment of eight small bubbles, 1100 µm or less in diameter, results in significant
levels of vortex distortion matching the corresponding experimental observations
when the volumetric displacement effects of the bubbles are taken into account.
Neglecting these effects, however, did not result in any vortex distortion. Shams
et al. (2011) and Capecelatro & Desjardins (2013) presented EL strategies for sim-
ulating turbulent flows in complex geometries using this formulation. Fox (2014)
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provided a rigorous derivation of a Reynolds-average turbulence model for colli-
sional fluid-particle flows showing that new turbulence production terms arise due
to correlations between the particle-phase volume fraction and fluid-phase velocity
fluctuations. Capecelatro et al. (2014) employed this formulation in the context of
granular flows where a strong correlation between the local volume fraction and the
granular temperature was shown in the results of fully developed cluster-induced
turbulence. Finn et al. (2016) applied this formulation for simulation of natu-
ral sand dynamics in the wave bottom boundary layer wherein overall excellent
agreement between simulation and experiments was achieved.

Recently, a new point-particle approach, pairwise interaction extended point-
particle (PIEP), that accounts for the influence of neighboring particles in EL
approaches was introduced by Akiki et al. (2017a,b). Perturbation induced by
each neighbor is considered separately, then the effects of all neighbors are lin-
early superposed to obtain the total perturbation. They observed the new model
predicts much closer to the particle-resolved DNS results than the classical point-
particle approach. This could be a complementary approach for current EL formu-
lations upon its availability and implementation in the current packages. However,
whether this approach is able to capture the volumetric displacement effects leaves
an open question for further investigations.

In this work, LES coupled with point-particle approach modified with spatio-
temporal variations in the volume fraction of the carrier phase is used for studying
the volumetric displacement effects of this phase on the characteristics of dense
sprays. To isolate this specific effect; breakup, coalescence, evaporation and de-
formation in shape and size of the dispersed phase are masked by performing
simulations of solid particle-laden turbulent round jet flow. Results of this formu-
lation are compared with those of standard EL point-particle approach where these
effects are neglected. To quantify the effects of volume displacement from dilute to
dense regimes, a range of particle volume loadings are considered by keeping other
parameters constant. In addition, the influence of Stokes number on the volume
displacement effects are investigated.
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The studied cases (A-F) are shown in Fig. 2.2, a classification map by El-
ghobashi (1991) on the particle-turbulence interactions. This map is based on
the Stokes number, St=τp/τf , and the average volume fraction of particles, θp.
Stokes number is defined as the ratio of particle response time for Stokes flow,
τp=ρpd

2
p/18µf , and turnover time of large eddy, τf=l/u. As explained in El-

ghobashi (1991, 1994, 2006) and illustrated in Fig. 2.2, the one-way coupling
region is identified for flows where the motion of particles is affected by turbu-
lence; however, due to very low values of θp (≤10−6) they have negligible effects
on turbulence. In the two-way coupling regime, the volume loading of particles is
large enough, 10−6<θp≤10−3, to affect the turbulence structure through the mo-
mentum exchange between fluid and particle phases. In the four-way coupling,
because of the high loading of particles, θp>10−3, the inter-particle collision oc-
curs in addition to the two-way coupling interaction of turbulence and particles.
However, collisions should also be included if the overall volume fraction is smaller
than 10−3 as in some particular flows there are regions in which, due to preferen-
tial concentration, the local volume fraction is larger than 0.001 (Vreman (2007),
Kuerten & Vreman (2015)). In addition, it is possible that the mass loading which
has the effect of both density ratio and volume loading plays an important role
instead of volume loading alone in identifying the different couplings.

As Fig. 2.2 depicts, case A lies in the close proximity to the two-way coupling
region while the rest, B-F, lie in the dense suspension region where inter-particle
collisions as well as two-way coupling between phases become important. In the
physics of dense suspensions the displacement effects are inherently embedded in
the two-way coupling between phases; therefore, any accurate experimental mea-
surement or particle-resolved DNS result would essentially capture the volume
displacement effects in this region. However, in the modeling of two-way cou-
pling mechanism in the dense regions using an EL point-particle approach, where
neither the interface between phases is directly resolved by first principles nor ac-
curate boundary conditions are applied on the surface of particles, the volume
displacement effects are not necessarily captured. Accordingly, we hypothesize



13

Oneway
coupling

Twoway
coupling

Fourway
coupling

 Volumetric
displacement 
     effects

A B C D

Dilute suspension Dense suspension

E

F

10
8

10
6

10
4

10
2

10
0

10
4

10
2

10
0

10
2

10
4

p
/

f

p

Figure 2.2: Classification map on particle-turbulence interactions by Elghobashi
(1991).

that in the dense regimes (e.g. B-F) the standard momentum exchange force typ-
ically employed in common EL point-particle approaches might be insufficient to
accurately capture the physics of these regimes and necessitates accounting for the
volume displacements. In line with work of Shams et al. (2011); Finn et al. (2011);
Cihonski et al. (2013), throughout the paper if volume displacement of the car-
rier phase is accounted for, the particle-turbulence interaction coupling is named
volumetric coupling while the standard coupling is used if this effect is excluded.

The rest of paper is arranged as follows. Section 2.2 describes the mathematical
formulation of EL point-particle approach modified with spatio-temporal variations
in the volume fraction of the carrier phase. Source terms that appear in both
momentum and continuity equations due to volume displacement of the carrier
phase are described. Section 2.3 compares results of the standard EL point-particle
approach with those of volumetric coupling on the prediction of particle-laden
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turbulent round jet. With this comparison, the volumetric displacement effects of
the carrier phase are identified at different particle loadings and Stokes numbers.
Section 2.4 concludes the paper with final remarks and summary of the work.

2.2 Mathematical description

An EL approach is used wherein the carrier phase is captured through solving
the momentum and continuity equations in an Eulerian LES framework whereas
motion of solid particles is modeled in a Lagrangian framework with closure models
for forces. As in the point-particle approach (Maxey, 1987; Elghobashi, 1991;
Squires & Eaton, 1991), the dispersed phase particles are assumed subgrid and
their motion is captured by tracking their centroids using Newton’s laws. However,
unlike point-particle approach, wherein the particles are assumed as point sources,
the volume of each particle is taken into account thus modifying the interaction
between the two phases primarily by two mechanisms: (i) the displacement of the
carrier phase by the volume occupied by the particles and (ii) momentum exchange
through reaction force between the phases. Details of the governing equations are
given in the following sections.

2.2.1 Carrier phase formulation

The volume-averaged governing equations used for turbulent jet flow laden with
point-particles are given in Eq. 2.2.1 and 2.2.2 (Anderson & Jackson, 1967; Dukow-
icz, 1980; Joseph et al., 1990).

∂

∂t
(ρfθf ) +

∂

∂xj
(ρfθfuj) = 0 (2.2.1)
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∂

∂t
(ρfθfui) +

∂

∂xj
(ρfθfuiuj) =

− θf
∂P

∂xi
+

∂

∂xj

[
2µfθf

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
δij
∂uk
∂xk

)]
+ ρfθfgi + F t

i,p→f

(2.2.2)

where gi is the gravitational acceleration, µf , ρf , θf , and uf are dynamic viscosity,
density, volume fraction, and velocity of the carrier phase, respectively. Volume
fraction of the carrier phase in each computational cell is calculated as θf=1− θp,
where θp corresponds to the volume fraction of particles (Np) at the cell centroid,
xcv, and is computed as

θp(xcv) =

Np∑
p=1

ϑpGσ(xcv,xp) (2.2.3)

where xp and ϑp are the location and volume of each particle in the cell, respec-
tively. The function Gσ is used to interpolate Lagrangian quantities at the Eulerian
field and is defined later in Eq. 2.2.18. The point-particle force, F t

i,p→f , includes
the equal and opposite reaction forces from the particle surface forces excluding
the pressure force (Van der Hoef et al., 2008; Cihonski et al., 2013). Note that the
pressure term in the momentum equation can be expanded as two separate terms
as (Cihonski et al., 2013)

−θf
∂P

∂xj
= − ∂P

∂xj
+ θp

∂P

∂xj
(2.2.4)

The second term, θp∂P/∂xj, is the pressure-gradient force, Fi,pr, which can be
considered as the reaction due to pressure-gradient force on the particles. This
term can be added to the particle reacting forces, thus Fi,p→f=F t

i,p→f+Fi,pr, and
then momentum equation is rewritten as
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Abbreviation Coupling type Fi,p→f
Volumetric

displacement effects

S1W Standard one-way coupling No No
V1W Volumetric one-way coupling No Yes
S2W Standard two-way coupling Yes No
V2W Volumetric two-way coupling Yes Yes

Table 2.1: Terminologies used for different couplings in EL formulations.

∂

∂t
(ρfθfui) +

∂

∂xj
(ρfθfuiuj) =

− ∂P

∂xi
+

∂

∂xj

[
2µfθf

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
δij
∂uk
∂xk

)]
+ ρfθfgi + Fi,p→f

(2.2.5)

Rewriting the momentum equation in this fashion is advantageous as this leads
to a constant coefficient Poisson equation for pressure as shown in Cihonski et al.
(2013); Shams et al. (2011). Since the zero-Mach number variable density equations
account for the volumetric displacement of the carrier phase as well as point-
particle forces, thus the inter-phase coupling is named volumetric two-way coupling
(V2W). Setting θf=1 in the above formulation, the standard two-way coupling
(S2W) is recalled in which the displacement effects are neglected. In addition,
volumetric one-way coupling (V1W) can simply be achieved by setting Fi,p→f=0

while the volumetric displacement is still maintained. In this case, the carrier phase
is not affected by the point-particle force; however, is altered by the volumetric
displacement. Note that setting Fi,p→f=0 and θf=1, the standard one-way coupling
(S1W) is obtained. Table 2.1 describes these inter-phase couplings. It should be
noted that throughout the paper the two-way terminology is used for the inter-
phase coupling in regimes with θp>10−6; however, accounting for the inter-particle
collisions is mentioned separately if required.

For LES, the equations above are spatially filtered using Favre (density-weighted)
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averaging (e.g., ρθu=ρθũ) where the filtering operation is denoted by an overbar
and density-weighted Favre averaging by a tilde (Moin & Apte, 2006). The gov-
erning equations for LES of particle-laden turbulent flow then become

∂

∂t

(
ρfθf

)
+

∂

∂xj

(
ρfθf ũj

)
= 0 (2.2.6)

∂

∂t

(
ρfθf ũi

)
+

∂

∂xj

(
ρfθf ũiũj

)
= −∂P̃

∂xi
+

∂

∂xj

(
2µfθf S̃ij

)
−
∂qr,volij

∂xj
+ρfθfgi +Fi,p→f

(2.2.7)
where,

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3
δij
∂ũk
∂xk

. (2.2.8)

Here, ρfθf is the filtered density modified by local volume fraction. ũi, P̃ and S̃ij
are the Favre-averaged velocity field, pressure and rate of strain respectively.

The additional term in the momentum equation containing qr,volij , represents
the subgrid-scale stress in the volumetric coupling formulation and is modeled
using the dynamic Smagorinsky (Germano et al., 1991; Moin et al., 1991). The
unclosed term in Eq. 2.2.7 is modeled using the gradient-diffusion hypothesis with
eddy-viscosity as

qr,volij = ρfθf (ũiũj − ũiuj) = 2µtS̃ij −
1

3
ρfθfq

2δij (2.2.9)

where 1
2
ρfθfq

2 is the subgrid kinetic energy and the eddy viscosity, µt, is calculated
as

µt = Cµρfθf∆
2|S̃| ; ∆ = V 1/3

cv ; |S̃| =
(
S̃ijS̃ij

)1/2

(2.2.10)

where Vcv is the volume of the cell and the model constant, Cµ, is evaluated dynam-
ically (Pierce & Moin, 1998). Note that in the volumetric coupling formulation the
subgrid effects of fluid displacement are also present in the subgrid model. For the
standard two-way coupling the subgrid-scale stress term, qr,2wij , is simply obtained
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by setting θf=1 in the Eq. 2.2.9-2.2.10.

2.2.2 Dispersed phase formulation

Similar to the point-particle approach (Maxey & Riley, 1983), particles (smaller
than the resolved fluid length scale) are tracked using the Newton’s second law of
motion as

d

dt
(xp) = up (2.2.11)

d

dt
(up) =

1

mp
(Fg + Fpr + Fd + Fl,Saff + Fam) (2.2.12)

where xp and up denote the respective position and velocity components of each
individual particle of mass mp. Equation 2.2.12 shows all possible forces includ-
ing gravitational body force, Fg, hydrostatic pressure-gradient force, Fpr, shear
induced lift force (Saffman, 1965), Fl,Saff , as well as added mass induced force
(Auton, 1983), Fam. In order to more accurately capture the particle-turbulence
interactions involved in dense regimes, the drag closure, Fd, by Tenneti et al. (2011)
is employed where the coefficient of drag, Cd(Rep, θp), accounts for the local volume
fraction of the dispersed phase as well as finite particle Reynolds number effects.
It has been observed that the Basset history force does not remarkably affect the
motion of particles in the presence of steady drag force (Maxey & Riley, 1983;
Bagchi & Balachandar, 2003); therefore, this force is excluded in this study. All
aforementioned forces are given as follows

Fg = (ρp − ρf )ϑpg ; g = −9.81m/s2 (2.2.13)

Fpr = −ϑp∇P f |p (2.2.14)
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Fl,Saff = mpCl
ρf
ρp

(
ũf |p − up

)
× (∇× ũf )|p ; Cl =

1.61× 6

πdp

√
µf
ρf
| (∇× ũf )|p |

(2.2.15)

Fam = mpCam
ρf
ρp

(
Dũf |p
Dt

− dup
dt

)
; Cam = 0.5 (2.2.16)

Fd = mp
Cd(Rep, θp)

τp

(
ũf |p − up

)
Cd (Rep, θp) = (1− θp)

(
Cd(Rep, 0)

(1− θp)3
+ A+B

)
,

A =
5.81θp

(1− θp)3 + 0.48
θ

1/3
p

(1− θp)4 ,

B = θ3
pRep

(
0.95 +

0.61θ3
p

(1− θp)2

)
,

Cd (Rep, 0) = 1 + 0.15Re0.687
p

(2.2.17)

where urel=ũf |p−up is the relative velocity between phases at the location of parti-
cle. In addition, τp=(ρpdp

2)/(18µfθf ) and Rep=ρfθf |p|urel|dp/µf are the respective
particle relaxation time and Reynolds number modified by its local volume fraction
(Finn et al., 2016). D/Dt and d/dt denote the time derivative following the fluid
(material derivative) and particle phases respectively (Maxey & Riley, 1983).

Fluid velocity employed in drag calculation is defined based on the undisturbed
field. However, in two-way coupled EL calculations, this velocity is disturbed by
drag force thus producing less accurate predictions. Horwitz & Mani (2016, 2018);
Esmaily & Horwitz (2018) among others developed schemes to obtain the undis-
turbed velocity field in two-way coupled computations. Better accuracy in several
cases has been observed using these schemes; however, extension of these correc-
tions to dense regimes such as cases in this work requires further investigations.

Note that the unfiltered carrier phase velocity is required for force calculations
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(Eq. 2.2.12); however, only the filtered field is computed in LES. Recently, Marchi-
oli (2017) developed a conceptual classification of EL modeling approaches to the
LES simulations of particle-laden flows as a function of two parameters. Accord-
ing to this classification, the subgrid particle Stokes number, StSGS, and the ratio
between LES filter and Kolmogorov length scale, ∆/η, are the relevant parame-
ters. StSGS is defined as the ratio of particle response time, τp, and cut-off time
scale, τ∆∼(∆2/ε)1/3, where ε is energy dissipation. When StSGS<<1, particles are
sensitive to the unresolved high-frequency fluctuations of subgrid turbulence and a
particle subgrid-scale (SGS) is required. In the opposite limit (StSGS>>1), parti-
cles become SGS-inertial with respect to subgrid eddies and no particle SGS model
is necessary. In the cases we studied here, the subgrid particle Stokes number is
28.33 for cases A-D (Tab. 2.2), and thus do not need a particle SGS model. For
case F, however, the subgrid particle Stokes number is small (0.093), and thus the
dynamics and preferential concentration of these particles will be affected by the
particle SGS model. Although this might be important, since the scope of this
work is comparing the standard and volumetric two-way coupling results, then the
particle SGS model was neglected in both couplings. However, any coupled ef-
fect between the volumetric displacement and particle SGS model requires further
investigation. It is worth mentioning that particles are indirectly affected by the
fluid phase SGS model which affects the filtered velocity field.

For interpolations between the Eulerian grid points and Lagrangian particle
locations, a Gaussian function is employed (Moin & Apte, 2006; Apte et al., 2008).
These interpolations are needed to compute fluid velocity at particle locations,
projecting particle reaction forces to the Eulerian grid, and computing the volume
fraction fields. The Gaussian interpolation scheme is given as

Gσ (xcv,xp) =
1(

σ
√

2π
)3 exp

[
−
∑3

i=1 (xcv,i − xp,i)2

2σ2

]
(2.2.18)

where bandwidth, σ, is proportional to the grid size containing the particle. The
interpolation stencil utilizes 6 neighboring grid cells in three-dimension as well as
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the cell in which particle is located. xcv,i and xp,i are the positions of these cells
and the particle of interest, respectively. Accordingly, depending on the location
of particle in the grid, its volume will be weighted and distributed over these cells
based on its distance from the cell centroid. For each particle, Gσ is normalized to
satisfy ∫

Vcv

Gσ (xcv,xp) dV = 1 (2.2.19)

where the integration is performed over the cell containing the particle and all
6 neighbors. The final step is necessary to enforce mass (or volume) as well as
force conservations. The Gaussian kernel provides quadrature spectral accuracy,
provided that the interpolation is being performed over a region much larger than
the bandwidth, otherwise the accuracy reduces to second order (Finn et al., 2011).

2.2.3 Collision modeling

Inter-particle collision plays a crucial role in dynamics of the dense flows in addition
to the inter-phase momentum two-way coupling forces. In order to model the colli-
sion in a physically realistic way, soft–sphere Discrete Element Model (DEM) based
on work of Cundall & Strack (1979) is employed here. Collision force, Fc,ij, gen-
erated by two particles undergoing collision is modeled by considering the overlap
between particle-particle as a linear-damper system with spring constant (stiffness
parameter), kc, and damping constant, ηc, as

Fc,ij =

−kcδijnij − ηcuij for:|∆xij| < 0.5 (dp,i + dp,j) + α

0 Otherwise
(2.2.20)

where,

δij = 0.5 (dp,i + dp,j)− |xp,i − xp,j|, (2.2.21)
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and ∆xij=xp,i−xp,j, uij=up,i−up,j and nij is the normal vector between two par-
ticles of i and j with position, diameter and velocity of xp, dp and up, respectively.
Also, α is the radius of influence adjusted linearly as a function of collision CFL
number in line with Capecelatro & Desjardins (2013). The damping parameter,
ηc, is computed as (Patankar & Joseph, 2001b)

ηc =
−2 ln (e)

√
mijkc√

π2 + ln2 (e)
, (2.2.22)

where restitution coefficient, e, is taken to be 0.65 in line with Finn et al. (2016)
and mij=mimj/(mi+mj) is the reduced mass of colliding particles.

The stiffness parameter is important for the collision modeling and in fact can
affect the clustering and dispersion of particles. For instance, increasing this pa-
rameter would increase the particle dispersion and consequently reduce the local
volume fraction and volumetric displacement effects. This parameter could be cal-
culated directly from the Young’s and shear modulus of a material (Tsuji et al.,
1992); however, this would result in small collision events and impractical EL simu-
lations for dense flows. In order to avoid this, lower values are commonly employed
in the presence of dominant drag (Finn et al., 2016). In the present configuration,
especially near the injector, the particle volume fraction would still remain ∼ O(1),
and thus collision parameters may not affect the present conclusions in that re-
gion. However, further downstream, indeed collision parameters can affect the
local clustering and should be investigated in the future. This work aims to iso-
late the volumetric displacement effects by comparing the results of volumetric
and standard two-way couplings; therefore, a small value for stiffness parameter in
both couplings would be appropriate as long as the overlapping between particles
is avoided.
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2.2.4 Quantification of volumetric displacement effects

In this part the volumetric displacement effects are quantified. Cihonski et al.
(2013) derived an expression for a momentum source term due to volumetric dis-
placement effects. This was performed by writing the original conservative form
of the volumetric coupling governing equations in a non-conservative form and ex-
pressing the additional terms as the volumetric displacement forces in comparison
with the standard two-way coupling formulation. Here, we recall their deriva-
tion on spatially filtered equations employed in LES. The momentum equation in
conservative form (Eq. 2.2.7) are expanded in a non-conservative form as

ũi

(
∂

∂t

(
ρfθf

)
+

∂

∂xj

(
ρfθf ũj

))
︸ ︷︷ ︸

I

+ ρfθf

(
∂ũi
∂t

+ ũj
∂ũi
∂xj

)

= −∂P̃
∂xi

+
∂

∂xj

(
2µfθf S̃ij

)
−
∂qr,volij

∂xj
+ ρfθfgi + Fi,p→f

(2.2.23)

Utilizing conservation of mass (Eq. 2.2.6), term (I) vanishes, and it gives

ρfθf

(
∂ũi
∂t

+ ũj
∂ũi
∂xj

)
= −∂P̃

∂xi
+

∂

∂xj

(
2µfθf S̃ij

)
−
∂qr,volij

∂xj
+ρfθfgi+Fi,p→f (2.2.24)

The above equation can be rewritten using the product rule for the advective
terms and rearranging to get

ρfθf

(
∂ũi
∂t

+
∂ũiũj
∂xj

)
= −∂P̃

∂xi
+

∂

∂xj

(
2µfθf S̃ij

)
−
∂qr,volij

∂xj
+ρfθfgi+Fi,p→f+ρfθf

(
ũi
∂ũj
∂xj

)
(2.2.25)

To find the forcing terms arising from the volumetric displacement effects, Eq.
2.2.25 is compared to the standard two-way coupling equations for an incompress-
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ible fluid with an additional momentum source term, Sv,mom, given as

ρf

(
∂ũi
∂t

+
∂ũiũj
∂xj

)
= −∂P̃

∂xi
+

∂

∂xj

(
2µf S̃ij

)
−
∂qr,2wij

∂xj
+ ρfgi + Fi,p→f + Sv,mom

(2.2.26)
Note that the advective terms in Eq. 2.2.26 and 2.2.25 are written in a conser-

vative form, mainly because, for incompressible flows, the numerical approach uses
this form for discrete approximations. The additional source term, Sv,mom, can be
obtained by subtracting Eq. 2.2.26 from Eq. 2.2.25 as

Sv,mom = ρfθp

(
∂ũi
∂t

+
∂ũiũj
∂xj

)
︸ ︷︷ ︸

(Sv,mom)1

− ∂

∂xj

(
2µfθpS̃ij

)
− ∂

∂xj

(
2cµρfθp∆

2|S̃|S̃ij −
2

3
ρfθpq

2δij

)
︸ ︷︷ ︸

(Sv,mom)2

− ρfθpg︸ ︷︷ ︸
(Sv,mom)3

+ ρfθf

(
ũi
∂ũj
∂xj

)
︸ ︷︷ ︸

(Sv,mom)4

(2.2.27)

The net source includes the volumetric displacement effects of carrier phase, due
to spatial and temporal volume fraction variations. The terms on the right-hand
side of Eq. 2.2.27 can be interpreted as follows

(Sv,mom)1 = unsteady and fluid inertial terms, (2.2.28a)

(Sv,mom)2 = stresses due to volume fraction variation, (2.2.28b)

(Sv,mom)3 = hydrostatic buoyancy term, (2.2.28c)

(Sv,mom)4 = local fluid divergence term. (2.2.28d)

Likewise, a continuity source term, Sv,cont, due to the volumetric displacement
effects can also be derived by expanding the volume-averaged continuity equation
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(Eq. 2.2.6) and rewriting it in a typical form of two-way coupled formulations as

∂ũj
∂xj

= Sv,cont (2.2.29)

where,

Sv,cont =
−1

ρfθf

(
∂

∂t

(
ρfθf

)
+ ũj

∂

∂xj

(
ρfθf

))
=
−1

ρfθf

D

Dt

(
ρfθf

)
(2.2.30)

This shows that the spatio-temporal variations in the volume fraction of carrier
phase generate a source term in the continuity equation as well which is called
velocity divergence effect in line with Ferrante & Elghobashi (2004, 2005). For
standard two-way coupled incompressible flows wherein θf=1, this source term
is zero. However, in the volumetric two-way coupled formulation, this non-zero
source term could potentially alter the flow field. These extra source terms, namely,
(i) volumetric displacement forces and (ii) velocity divergence effect constitute the
volumetric displacement effects of the carrier phase due to the presence and motion
of particles.

2.2.5 Numerical method

Details on the numerical method employed in this study can be found in Finn
et al. (2011); Shams et al. (2011), thus only a brief description is given here. The
variable density zero-Mach number equations presented above are solved using a
pressure-based, second-order, fractional time stepping scheme on a collocated grid
arrangement. In this scheme, the velocity, pressure and volume fraction of the
carrier phase are stored at the centroid of the control volumes. The Lagrangian
particle equations are advanced first using a simple forward Euler approximation
with subcycling within each flow time step (Shams et al., 2011) to accurately
account for the particle time scales relative to the fluid time scale. The volume
fraction for both phases are then computed at the cell centres knowing the particle
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locations. Given the volume fraction variations, the eddy viscosity, µt, is modified
based on these variations through ρfθf in order to account for their effects even
in the subgrid scales (Eq. 2.2.10). In addition, point-particle forces are calculated
and projected back to the cells in which particles are located. Knowing the volume
fraction of each cell as well as particle reaction forces, the cell-centred velocities,
ρfθf ũi, are advanced by solving the momentum equation as a predictor step. The
predicted velocities are interpolated to the faces and then projected to satisfy the
continuity constraint. Projection yields the pressure potential at the cell centres,
and its gradient is used to correct the cell and face-normal velocities.

2.3 Results

The numerical scheme employed in this study has been extensively applied to
and validated for different flows and applications (Shams et al., 2011; Finn et al.,
2011; Cihonski et al., 2013; Finn et al., 2016; Pakseresht & Apte, 2017; Pakseresht
et al., 2017; He et al., 2018; Pakseresht & Apte, 2018, 2019a). In addition, the
accuracy and robustness of the method is first investigated on a turbulent round
jet flow laden with a dilute regime of inertial solid particles injected at the jet inlet
([θp]inlet=0.047%) as illustrated in Fig. 2.3. Then, to investigate the volumetric
displacement effects of the carrier phase due to presence and motion of particles in
different suspensions, denser particulate jet cases with respective inlet solid volume
loading of 4.7% up to 37.6% are studied. Influence of Stokes number (particle
relaxation time) on the volumetric displacement effects is finally investigated in the
densest suspension ([θp]inlet=37.6%) with Stokes numbers of 11.6 down to 0.038.
The studied cases and the corresponding flow parameters are listed in Tab. 2.2.

2.3.1 Numerical simulation setup

As provided in Tab. 2.2, cases B-D are similar to case A except with higher inlet
volume loading in order to study and investigate the volumetric displacement ef-
fects at different loadings. Case C1 is similar to C; however, in the former neither
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Figure 2.3: Schematic of particle-laden turbulent jet. Shown are vorticity magni-
tude and particle distribution with exaggerating in particle size for sake of clarity.

momentum exchange point-particle force nor inter-particle collision is included in
order to isolate the effects of spatio-temporal variations in the carrier phase. Influ-
ence of Stokes number on the volumetric displacement effects is studied through
cases D to F wherein all flow parameters are identical to those in case D, yet
density ratio is varied to achieve different Stokes numbers. An experimental data
by Mostafa et al. (1989) is available for case A; however, to our best of knowl-
edge, for higher loadings no data exist. Thus, for cases B-F in order to investigate
the volumetric displacement effects, only numerical results preformed with and
without accounting for the spatio-temporal variations in the fluid volume fraction
(standard versus volumetric two-way coupling) are compared together.

Spherical particles of diameter 105 micron are injected at the nozzle exit based
on different volume loadings and different density ratios (or specific gravity, S.G.=ρp/ρf )
per each case. Reynolds number of clear jet denoted by Rej=ρfUjdj/µf=5712

is defined based on the clear jet bulk velocity, Uj=3.546m/s, nozzle diameter,
dj=0.0253m, and the carrier phase properties for air, ρf=1.178kg/m3 and µf =

1.8502×10−5kg/(m.s) corresponding to the experimental work of Mostafa et al.
(1989). Total number of particles, Np,inlet, required for injecting into the domain
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per each flow time step, ∆tf , is calculated based on the given inlet volume loading,
[θp]inlet, particle’s diameter, dp, nozzle diameter, dj, and jet bulk velocity as

Np,inlet =
6[θp]inletdj

2Uj∆tf

4dp
3 (2.3.1)

Tracking Lagrangian particles individually results in large number of particles
(∼ 13-100 million) in dense cases. To reduce the number of Lagrangian trajectories
used, a discrete-parcel-model is commonly employed (O’Rourke & Bracco, 1980;
O’Rourke, 1985). A parcel or computational particle represents a group of identical
particles, Npar, with similar characteristics (diameter, velocity). For cases B-F, 40
particles form a parcel. The total number of particles/parcels in the domain,
Np,tot, interacting with the carrier phase is tabulated in Tab. 2.2. It is crucial to
mention that for cases with parcel employed, collision takes place between parcels
and the corresponding collision parameters are modified based on the total number
of particles in each parcel (Npar). Accordingly, the mass or volume of each parcel
is Npar times the particle mass or volume. In addition, effective diameter of parcels
is obtained as dparc=dpartN

1/3
par .

A Cartesian structured grid is utilized for solving fluid flow in a rectangular
computational domain. Convective outflow boundary condition is applied at the
outlet while slip boundary condition is enforced at the other sides of the domain
except at the nozzle exit (inlet). Inflow data over several flow through times
is generated by a periodic turbulent pipe flow with the same clear jet Reynolds
number and read at each flow time step to specify the carrier phase velocity com-
ponents at the inlet. In all cases, solid particles are injected at the nozzle surface
into the already statistically stable turbulent clear round jet with prescribed mean
and r.m.s. velocities measured at x/dj=0.04 corresponding to the experiment of
case A. It is well recognized that the hyperbolic characteristic of the convective
outlet boundary condition may reflect error toward upstream of the flow if the
computational domain is not long enough in the stream-wise direction (Dai et al.,
1994). Therefore, in order to overcome this error, a long enough computational
domain with size of 14dj×6dj×6dj in the directions of x, y and z, respectively is
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Case dp(µm) Rej S.G. St [θp]inlet Npar Np,tot
Inter-particle

collision
Coupling

type

A 105 5712 2122.24 11.6 0.047(%) 1 0.15× 106 No S2W and V2W
B 105 5712 2122.24 11.6 4.7(%) 40 0.34× 106 Yes S2W and V2W
C 105 5712 2122.24 11.6 18.8(%) 40 1.3× 106 Yes S2W and V2W
D 105 5712 2122.24 11.6 37.6(%) 40 2.56× 106 Yes S2W and V2W
E 105 5712 700 3.83 37.6(%) 40 2.56× 106 Yes S2W and V2W
F 105 5712 7 0.0383 37.6(%) 40 2.56× 106 Yes S2W and V2W
C1 105 5712 2122.24 11.6 18.8(%) 40 1.3× 106 No S1W and V1W

Table 2.2: Flow parameters for different particle-laden turbulent jet cases.

employed. A grid resolution of 100×140×140 in x, y and z directions, respectively
was found to be sufficient to accurately capture the effect of the large scales of
motion as gauged by the flow statistics. Non-uniform grid spacing was chosen for
the stream-wise direction, x, with minimum grid spacing of ∆xmin=455µm at the
inlet. To capture the shear layer of the jet, a uniform and relatively fine resolution
was used in y and z directions up to 3.5rj from center of the jet with grid spacing of
∆ymin=∆zmin=703µm while stretching resolution was used further away, r>3.5rj.
The grid resolution satisfies the so-called assumption of point-particle approach
where particles/parcels are to be subgrid, i.e., their size must be smaller than the
smallest resolved length scale, dp<∆. For the cases with parcels, the volume of all
particles in a parcel is also less than the grid volume. Collision parameters are all
identical among cases B-D as they have similar material properties. However, for
cases E and F different stiffness coefficients are employed based on their densities
which are explained later.

It should be noted that the Reynolds number in the particulate cases could vary
as the bulk velocity of the laden jet gets influenced by particles as shown later.
Although one may calculate it based on the modified bulk velocity, here we only
tabulate it based on the clear jet to ensure that the flow into which particles are
injected is identical among all cases. Throughout the paper, all numerical results
at each nozzle distance are obtained based on the azimuthal averaging in space (y
and z directions) as well as time averaging.
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2.3.2 Dilute particle-laden turbulent jet

Case A is performed as a validation study for the numerical scheme presented
above and serves as a baseline case for further investigations on the volumetric
displacement effects. For this case, the results of standard and volumetric two-
way couplings are compared with the corresponding experiment of Mostafa et al.
(1989). Figure 2.4 shows the comparison on the mean velocity of the carrier as
well as dispersed phases of case A at different nozzle distances. Stream-wise mean
velocity of the carrier and dispersed phases is normalized by bulk velocity of the
clear jet, Uj, and the local centreline velocity of the particle laden jet at each nozzle
distance, Uc, respectively. A good agreement between numerical results and the
corresponding experiment is achieved on the mean velocity of both phases validat-
ing our numerical model in simulating the particle-laden jet flows. As illustrated,
the developing (x/dj<6) and self-similar (x/dj>6) regions of the jet are clearly
noticeable. Decay and spread of the jet are well captured. As depicted, predic-
tion of the volumetric two-way coupling matches the results of standard two-way
coupling. This is expected due to the dilute loading in this case (0.047%) and
even inter-particle collision is negligible. Therefore, the spatio-temporal variations
in the fluid volume fraction and consequently the volumetric displacement effects
are negligible in this case. Similar observation was also reported by Vreman et al.
(2004) wherein they found insignificant difference between the results of these
two couplings for a turbulent channel flow laden with average volume loading of
θp=0.013 (i.e., 1.3%).

2.3.3 Influence of volume loading

In this part, cases B-D are computed to investigate the volumetric displacement
effects in denser regimes. According to the classification map by Elghobashi (2006)
(Fig. 2.2), the inter-particle collision is crucial for these cases (St=11.6 and
θp≥10−3). Accordingly, both standard and volumetric two-way couplings include
the inter-particle collisions. Figure 2.5 depicts the radial profile of carrier phase
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Figure 2.4: Radial profile of normalized stream-wise mean velocity for the carrier
phase (a) and dispersed phase (b) corresponding to case A. Volumetric two-way
coupling (solid); standard two-way coupling (dashed); Experiment (◦) by Mostafa
et al. (1989).
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mean velocity predicted by both couplings normalized by the bulk velocity of the
clear jet, Uj. For case B as shown in Fig. 2.5(a), a marginal increase exists on the
centreline (r/rj=0) mean velocity of the volumetric two-way coupling prediction
at x/dj=0.04. For the same nozzle distance, the difference between these two for-
mulations becomes more pronounced and remarkable as particle loading increases
as shown in Fig. 2.5(b) and 2.5(c) for cases C and D, respectively. This increase
in mean velocity of the carrier phase is attributed to the volumetric displacement
effects. It is worth mentioning that despite this increase in the near field of jet
(x/dj<0.62), the volumetric displacement effects decrease with nozzle distance in
all dense cases (B-D) resulting in nearly similar predictions between two formula-
tions. The decrease in these effects further downstream is conjectured to be due to
the particle dispersion as well as the more enhanced point-particle reaction forces
as explained in section 2.3.3.

Similar observations are obtained by looking at the r.m.s. velocity of the carrier
phase in the stream-wise direction. Figure 2.6 shows the normalized carrier phase
turbulence intensity obtained by these two couplings. In line with mean velocity,
slight difference in r.m.s. velocity between these two couplings is observed for case
B (Fig. 2.6(a)) while it becomes more significant and noticeable for cases C and
D as depicted in Fig. 2.6(b) and 2.6(c), respectively. Moreover, this difference
decreases with nozzle distance similar to the mean velocity results. The relative
increase in the results of volumetric coupling respect to the standard coupling is
plotted in Fig. 2.7 for both mean and r.m.s. velocities. A 28% and 160% increase
in the volumetric coupling prediction of centreline mean and r.m.s. velocities,
respectively, is observed for case D at x/dj=0.04. As illustrated, the dynamics of
the flow is more remarkably affected by the volumetric displacement effects than
the mean flow.

Mechanisms involved in volumetric coupling formulation

In this part, the mechanisms behind increasing and decreasing the volumetric dis-
placement effects in the volumetric coupling formulation are discussed in detail. In
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Figure 2.5: Radial profile of normalized stream-wise mean velocity of the carrier
phase for cases B-D shown in (a)-(c) respectively. Volumetric two-way coupling
(solid); standard two-way coupling (dashed).
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this formulation, the carrier phase gets influenced by the dispersed phase not only
through the momentum exchange point-particle forces, Fi,p→f , but also through
the spatio-temporal variations in the volume fraction of the carrier phase which
the latter generates source terms in both continuity and momentum equations. On
the one hand, Ferrante & Elghobashi (2004) concluded that the accurate prediction
of the drag reduction in the microbubble-laden turbulent boundary layer over a
flat plate was due to the results of velocity divergence effect, the continuity source
term (Sv,cont). On the other hand, Cihonski et al. (2013) showed that the accurate
prediction of volumetric coupling for lower-than-fluid density bubbles was solely
due to volumetric displacement forces, the momentum source term induced by this
formulation (Sv,mom). The effects of these source terms are investigated in detail
for the densest case, D, wherein a remarkable difference between the standard and
volumetric couplings exists.

As shown in Fig. 2.8, the radial profile of velocity divergence effect for case D
at different nozzle distances is plotted for both standard and volumetric couplings.
As depicted, volumetric coupling generates a non-zero divergence of velocity due



36

100 50 0

0.3

r/
r j

400 200 0
0

1

2

3
x/d

j
= 0.04

100 50 0

1.45

100 50 0

2.08

100 50 0

0.62

200 100 0

0.1

<∂ui/∂xi>

Figure 2.8: Radial profile of time-averaged divergence of the carrier phase velocity
for case D based on prediction of volumetric two-way coupling (solid) compared to
the standard two-way coupling (dashed).

to the variations in the volume fraction of the fluid. This continuity source term in
the volumetric coupling formulation increases the pressure and velocity of the car-
rier phase in the region of high void fraction (i.e., volume fraction of the dispersed
phase) to satisfy the conservation of mass. That is speculated to be the dominant
mechanism in increasing the velocity in this formulation. The deviation of this
term from the standard two-way coupling, however, decreases further downstream
owing to the jet spread and dispersion of particles which in turn reduce the local
volume fraction of particles. This decreases the velocity divergence effects down-
stream which consequently weakens the volumetric displacement effects on the
flow. Figure 2.9 depicts the radial distribution of solid volume fraction predicted
by both couplings. Different dispersion between these two couplings is observed.
As shown, particles are more dispersed in the volumetric coupling compared to
the standard coupling. That is conjectured due to the volumetric displacement ef-
fects which displace more particles from core region of the jet owing to the higher
velocity prediction of this formulation.

The effect of volumetric coupling induced momentum source term (Sv,mom)
on the flow is studied by evaluating its magnitude compared to the point-particle
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Figure 2.9: Radial profile of time-averaged solid volume fraction along the jet for
case D based on prediction of volumetric two-way coupling (solid) compared to the
standard two-way coupling (dashed).

forces (Fp→f ). Figure 2.10 depicts a comparison on the radial profile of these forces
in the volumetric two-way coupling prediction of case D. The point-particle feed-
back force of the corresponding standard two-way coupling prediction, Fp→f,2w,
for case D is also plotted as a reference. Forces on this plot are normalized by
the stream-wise momentum of the clear jet, ρfAjU2

j . As illustrated, contribution
of Sv,mom is quite insignificant compared to its counterpart point-particle force,
Fp→f,vol. Therefore, higher velocity in the regions with high void fraction is solely
attributed to the continuity source term. The point-particle force predicted in the
volumetric coupling (Fp→f,vol) is much higher than that of the standard coupling
(Fp→f,2w). This is caused by the higher velocity prediction in the volumetric cou-
pling formulation which increases the point-particle forces back to the flow. This
could potentially decelerate the carrier phase in the downstream region of this
formulation more than that of the standard two-way coupling. As a result, be-
side jet spread and particle dispersion, another opposing mechanism in volumetric
displacement effects further downstream could be the higher point-particle forces
predicted in the volumetric coupling formulation. However, the latter is conjec-
tured to be less significant as the relative magnitude of the point-particle forces
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compared to the jet momentum is still quite insignificant. The interaction between
these opposing mechanisms and the effect of the continuity source term may be
the reason for small oscillations in the near-field results of the mean velocity, par-
ticularly for the densest case (Fig. 2.5(c)). Moreover, these oscillations might be
attributed to the computation of (Dρfθf/Dt) which might not be smooth (Fig.
2.8) due to the sharp variations in the gradients of the volume fraction.
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The most dominant point-particle forces, viscous drag and pressure-gradient,
predicted by the two couplings for case D at x/dj=0.04 are plotted in Fig. 2.11.
Buoyancy force, mpg(1−ρf/ρp), is used for normalizing the forces. As shown, both
viscous drag and pressure-gradient forces predicted by the volumetric coupling
are greater than those of the standard coupling. This is again due to the mod-
ified continuity and hence the pressure Poisson equation. The continuity source
term increases both pressure and velocity in the region of high void fraction which
sequentially intensifies the viscous drag and pressure-gradient forces acting on par-
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ticles. As explained in section 2.2.2, the drag force accounts for the local volume
fraction of dispersed phase. It is important to mention that even in the standard
two-way coupling, wherein the volume fraction variations are not accounted for
in continuity and momentum equations, the drag force is still modified by these
variations. This is performed to obtain identical force wise conditions between the
two couplings.
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Figure 2.11: Radial profile of the most dominant time-averaged point-particle
forces in case D at x/dj=0.04. (a) viscous drag closure; (b) pressure-gradient
closure. Volumetric two-way coupling prediction (solid); standard two-way cou-
pling prediction (dashed). Buoyancy, mpg(1−ρf/ρp), is used for normalizing the
forces.

Further quantification of the velocity divergence effect in volumetric coupling
formulation is achieved by masking the point-particle forces as well as inter-particle
collisions. Excluding these two opposing mechanisms would reduce the dispersion
of particles, keep the local volume fractions nearly unchanged along the jet and
isolate the volumetric displacement effects. Note that, unlike the standard one-way
coupling approach, in the volumetric coupling formulation even in the absence of
point-particle forces, flow could still be altered through the variations in the fluid
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volume fraction. Case C1 (Tab. 2.2) compares volumetric and standard one-way
couplings. Figure 2.12 depicts the respective mean and r.m.s velocities of the car-
rier phase for case C1 based on the two different couplings. As shown, a noticeable
increase in the mean velocity prediction of volumetric formulation is observed all
along the jet compared to the standard one-way coupling. Unlike case C (Fig.
2.5(b)) where only noticeable difference was observed up to x/dj=0.3, here in
case C1, the difference between the two couplings remains unchanged even further
downstream. The difference between these two couplings would even become more
pronounced and significant for denser loadings. Regarding the dynamics of flow,
an increase in the r.m.s. velocity of the volumetric one-way coupling prediction is
observed only at x/dj=0.04 while further downstream both formulations predict
similar results. As a result, for cases studied in this part with Stokes number of
St=11.6, one can conclude that the velocity divergence effect caused by modified
continuity equation in the volumetric coupling formulation is the most dominant
mechanism in driving volumetric displacement effects. This increases the velocity
of the carrier phase in the regions of high void fraction. However, further down-
stream, due to the dispersion of particles and their reaction forces, the volumetric
displacement effects decrease.

2.3.4 Influence of Stokes number

Three cases (D-F) with different Stokes numbers are examined accordingly while
other flow parameters are kept identical. The different Stokes numbers are achieved
by changing density of the dispersed phase and keeping other particle parame-
ters constant. As listed in Tab. 2.2, Stokes number varies from 11.6 in case D
to 0.0383 in case F. It is important to note that the Stokes number is defined
based on turnover time of large eddy (τf=dj/Uj); thus, these numbers would be
greater if calculated based on the Kolmogorov time scale (η). In the preceding
section, the stiffness coefficient for inter-particle collision was constant among the
cases due to the similar density of particles. In this part, however, the coefficient
must vary among the cases in order to take into account the density effect on the



41

0 0.15 0.3

1.45

0 0.15 0.3

0.3

u
f

rms
/U

j

0 0.15 0.3

0.62

0 0.15 0.3

2.08

r/
r j

0 0.6 1.2

0.62

0 0.6 1.2
0

1

2

3
x/d

j
= 0.04

0 0.6 1.2

2.08

<u
f
>/U

j

r/
r j

0 0.6 1.2

0.1

0 0.6 1.2

0.3

0 0.6 1.2

1.45

0 0.15 0.3
0

1

2

3
x/d

j
= 0.04

0 0.15 0.3

0.1

Figure 2.12: Radial profile of normalized stream-wise mean and r.m.s. velocities
of the carrier phase for case C1. Volumetric one-way coupling (solid); standard
one-way coupling (dashed).



42

inter-particles collisions. Therefore, a first order linear relationship for stiffness
parameter between cases is chosen based on their density ratios. As an example,
stiffness parameter for case F, kF is set as kF=kDρF/ρD knowing the value for kD
and particle densities for cases F and D.

As Stokes number decreases, particles respond more quickly to the changes in
the background flow, and tend to reach lower relative velocity as they move along
the jet. Compared to the high Stokes number cases, this could decrease the viscous
drag force as well as the effect of opposing point-particle forces in the volumetric
displacement effects. In addition, reducing the Stokes number would change the
local concentration as well as dispersion of particles among cases. Particles with
higher Stokes number may stay longer in the core region of the jet keeping higher
void fraction while low Stokes number particles behave more likely as fluid tracers
and have less dispersion.

Figure 2.13 shows mean and r.m.s velocities of the carrier phase for case F
(the lowest Stokes number) which can be compared with the results of case D
(Fig. 2.5(c) and 2.6(c)). As plotted, the volumetric two-way coupling predicts
higher mean velocity for case F similar to the observation of case D, although
some distinctions between these two cases exist. On the one hand, very close to
the nozzle (x/dj<0.3) the difference between these two couplings for case F is less
than that of case D. This can be attributed to the preferential concentration as
well as quick response time of low Stokes number particles in case F. Particles in
case F tend to preferentially accumulate in the shear layer of the jet. Due to their
quick response time, the particles are carried away by the fluid faster, resulting
in less accumulation and smaller volume fraction in the core region as shown in
Fig. 2.14. This decreases the volumetric displacement effects very close to the
nozzle (x/dj<0.3) for case F compared to D. On the other hand, unlike case D,
further downstream in case F (0.62<x/dj<2.08), the difference between these two
couplings is more noticeable and indeed remains nearly unchanged owing to less
dispersion of low Stokes number particles as well as their smaller reaction forces.

The influence of Stokes number on the motion of dispersed phase predicted
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by these two approaches is also investigated. Figures 2.15(a,b) depict the particle
phase mean velocity for cases D and F, respectively, normalized by the clear jet
bulk velocity. As shown, the high Stokes number particles in case D react slowly to
the changes in the background flow and it takes them longer to get affected by the
increased fluid velocity observed in the volumetric coupling formulation. In fact,
very close to the nozzle both couplings predict nearly similar results; however, fur-
ther downstream a 5% increase in the results of volumetric coupling on the motion
of particles is observed. In contrast, as shown in Fig. 2.15(b), lower Stokes number
particles in case F react more quickly to the changes in the background flow. In
line with the results of the carrier phase for case F, the difference between these
two approaches remains unchanged all along the jet with almost 11% increase rela-
tively in the results of volumetric coupling. Figures 2.16(a,b) show the percentage
increase in the results of volumetric coupling on the mean velocity of both phases
for each case.

Further insight into the influence of Stokes number on the volumetric dis-
placement effects is obtained by looking at the contribution of different momen-
tum forces employed in the volumetric coupling formulation; point-particle forces
(Fp→f ) and volumetric displacement forces (Sv,mom). Figure 2.17(a) shows the
summation of these forces, Ftot at centreline of the jet for cases D and F pre-
dicted by the volumetric coupling. As shown, high Stokes number particles in
case D exert greater forces back to the flow due to the higher relative velocity
between phases which in turn push the flow stronger either backward (x/dj<1.45)
or forward (x/dj>1.45). Although the magnitude of this force is relatively small
compared to the jet momentum, it could be interpreted as a mechanism in reduc-
ing the fluid velocity further downstream in case D. In contrast, the corresponding
force in case F is quite negligible. This allows the velocity divergence effect to
increase the fluid mean velocity even further downstream in this case. In addition,
as shown in Fig. 2.17(b), the ratio of point-particle forces and volumetric coupling
induced momentum source term, Fp/Sv,mom, is on the order of 100 and 1 for cases
D and F, respectively. It shows that for high inertial particles, one can neglect the
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volumetric displacement forces while for low Stokes number particulate flows, this
term is important (Cihonski et al., 2013).
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2.4 Conclusions

In this work, a large eddy simulation coupled with modified point-particle approach
was performed to study a dense particle-laden turbulent jet flow. Two different
approaches modelling the particle-turbulence interactions in dense regimes were
studied: (i) standard two-way coupling; and (ii) volumetric two-way coupling. In
the former, the effect of particles on the flow is modelled through momentum
point-particle forces whereas in the latter, in addition to this force, the local varia-
tions in the volume fraction of the fluid phase are accounted for in both continuity
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and momentum equations. This formulation gives rise to unique source terms in
both continuity and momentum equations. Comparing these two formulations, the
volumetric displacement effects of the carrier phase due to presence and motion
of particles were identified. Investigations were performed through different cases
by varying either the inlet volume loading of particles (0.047≤θp≤37.6%) or the
particle Stokes number (0.0383≤St≤11.6) for each of which other flow parame-
ters remained constant. It was found that the volumetric displacement effects are
noticeable when the inlet volume loading is larger than 5%. Above this volume
loading, the volumetric displacement effects increased both mean and r.m.s. ve-
locities of the carrier phase with even more pronounced effects for higher loadings.

For the densest case with the highest Stokes number studied, 28 and 160%
increase in the mean and r.m.s. velocities of the carrier phase, respectively, were
observed at the nozzle exit due to displacement effects. The mechanism behind the
velocity increase was found to be the continuity source term, Sv,cont, that appears
in the modified continuity equation. These effects decreased further downstream of
the nozzle owing to the radial dispersion of particles and jet spread which reduced
the local volume fraction of the particles.

Lowering the Stokes number in the densest case revealed some significant differ-
ences on the volumetric displacement effects. Very close to the nozzle, these effects
were found to be less pronounced for the lowest Stokes number case (St=0.038)
compared to the highest (St=11.6). However, further downstream more remark-
able effects were observed for St=0.038. In addition, the dispersed phase in the
lowest Stokes number case was observed to be more affected by the volumetric
displacement effects particularly in the downstream region. An increase of 11% in
the downstream velocity of particles was observed compared to the corresponding
5% for the highest Stokes number case. These differences are attributed mainly to
the preferential concentration and dispersion of particles as well as the particles
response time. Close to the nozzle, the lowest Stokes number particles would react
as fluid tracers and they tend to accumulate in the shear layer of the jet. In addi-
tion, due to their quick response time they were carried away by the fluid faster,
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which in turn decreases the volume fraction as well as the volumetric displacement
effects. On the other hand, further downstream, due to less dispersion of particles
as well as their smaller reaction forces, the higher volume fraction in the core region
of the jet remains and increases the volumetric displacement effects.

It was shown that the ratio of point-particle and volumetric displacement forces,
Fp→f/Sv,mom, ranged from 1 to 100 for the lowest and highest Stokes number
cases, respectively. This emphasizes the importance of volumetric coupling induced
momentum source term for low Stokes number particle-laden flows. However,
for high Stokes number flows, this term could be negligible and the continuity
source term, Sv,cont, is the only mechanism in dominantly driving the volumetric
displacement effects.

As a result, we conclude that for modeling the particulate jets with inlet volume
loading of 5% or greater, in addition to the standard two-way coupling approaches,
the volumetric displacement effects of the carrier phase due to the motion and
presence of particles should be included. Accordingly, we update the well-known
classification map by Elghobashi (1991) on the particle-turbulence interactions if
employed in EL approaches. A region identifying the necessity of volumetric dis-
placement effects has been added to this map (Fig.2.2). Based on the observations
of this work, we conjecture that similar results with more pronounced displacement
effects would be achieved for atomizing sprays.
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Abstract

The accuracy of Euler-Lagrange point-particle models employed in particle-laden
fluid flow simulations depends on accurate estimation of the particle force through
closure models. Typical force closure models require computation of the slip ve-
locity at the particle location, which in turn requires accurate estimation of the
undisturbed fluid velocity. However, when the fluid and particle phases are two-way
coupled, wherein the particle and fluid phases exchange momentum through equal
and opposite reaction forces, the fluid velocity field is disturbed by the presence of
the particle. Since the undisturbed fluid velocity is not readily available, a com-
mon practice is to use the disturbed velocity, without any correction, to compute
the particle force. This can result in errors as much as 100% in predicting the
particle dynamics. In this work, a general velocity correction scheme is developed
that facilitates accurate estimation of the undisturbed fluid velocity in particle-
laden fluid flows with and without no-slip walls. The model is generic and can
handle particles of different size and density, arbitrary interpolation and distribu-
tion functions, anisotropic grids with large aspect ratios, and wall-bounded flows.
The present correction scheme is motivated by the recent work of Esmaily & Hor-
witz (JCP, 2018) on unbounded particle-laden flows. Modifications necessary for
wall-bounded flows are developed such that the undisturbed fluid velocity at any
wall distance is accurately recovered, asymptotically approaching the unbounded
scheme for particles far away from walls. A detailed series of verification tests were
conducted on settling velocity of a particle in parallel and perpendicular motions
to a no-slip wall. A range of flow parameters and grid configurations; involving
anisotropic grids with aspect ratios typically encountered in particle-laden turbu-
lent channel flows, were considered in detail. When the wall effects are accounted
for, the present correction scheme reduces the errors in predicting the near-wall
particle motion by one order of magnitude smaller values compared to the un-
bounded correction schemes.
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3.1 Introduction

Particle-laden flows are widely encountered in biology, nature and industry. Stroke
by embolic particles in brain arteries (Mukherjee et al., 2016), motion of red blood
cells and margination of platelets in vessels (Müller et al., 2016), drug delivery,
urban pollutant and settling in human respiratory system, spray combustion (Apte
et al., 2003), particle-based solar receivers (Pouransari & Mani, 2017), surgical site
infection caused by dispersion of squames in the operating rooms (He et al., 2018),
sediment transport (Finn et al., 2016); among others are examples of such flows.
Understanding the underlying physics of such flows, making predictions without
performing expensive experiments, and ultimately optimizing the current systems
require accurate predictive modelling tools.

The point-particle (PP) approach (Maxey & Riley, 1983; Maxey et al., 1997)
has received much attention in simulating these flows due to its simplicity, afford-
ability and partial accuracy. This approach was initially introduced for modeling
dilute particle-laden flows with relatively small size particles that have negligible
effects on the background flow. For such a “one-way" coupled flow (Elghobashi,
1991), imposing the no-slip boundary condition on the surface of particles is not
needed as the perturbation generated at the particle scale is insignificant. The
fluid phase is solved using an Eulerian framework while particles are treated as
Lagrangian points in the flow and tracked following the Newton’s second law of
motion based on the available closures for the fluid forces acting on the particles.
Such one-way coupled simulations are mostly used for particle tracking and cluster-
ing. Nevertheless, owing to its affordability, this Euler-Lagrange (EL) approach has
also been applied to particulate flows with dense loading or those with relatively
large size particles wherein the effect of particles on the background flow is in-
evitable (Squires & Eaton, 1990; Elghobashi & Truesdell, 1993). For such two-way
coupled flows, the effect of particles on the carrier phase is modelled by applying
the particle reaction force to the background flow through a momentum source
term. Using such a simplified point force in modelling the inter-phase interactions,
however, could result in some inaccuracies in capturing the experimental observa-
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tions (Segura, 2004; Eaton, 2009; Pakseresht et al., 2017) or analytical solutions
(Pan & Banerjee, 1996) of particle-laden flows.

One source of inaccuracy is that, the fluid phase equations in this approach are
solved for the entire flow field including the volumes occupied by the particles, and
the mass displacement of the particles is not accounted for. Several works have
shown the considerable effects of this displacement and have argued that this effect
should be included in addition to the point-particle force (Ferrante & Elghobashi,
2004; Apte et al., 2008; Cihonski et al., 2013; Pakseresht & Apte, 2019b), in order to
improve the predictions compared to the experimental observations. The other one,
that is the focus of this work, is that the accuracy of PP in predicting the particle
force can decay when the two phases are two-way coupled, owing to the disturbance
created by the particle force on the background flow. Such a disturbance produces
an error in the force calculations since the closure models often rely on the slip
velocity computed based on the undisturbed fluid flow, which is not readily available
in the two-way coupled simulations.

Few schemes have been recently developed as a substitute for the standard PP
approach in order to improve the modeling of particle-laden flows. Pan & Baner-
jee (1996) were the first to develop a velocity-disturbance-model that couples two
phases through the velocity field rather than the momentum exchange force. Their
model is based upon the Stokes solution for the motion of a particle in a quies-
cent flow, for which the flow field generated around the particle is analytically
known. Accordingly, to couple the two phases and capture the particle’s effect on
the flow, one could directly enforce this solution to the background flow. Unlike
the standard PP approach, this velocity-disturbance-model eliminates any depen-
dency to the undisturbed fluid velocity and results in more accurate inter-phase
coupling. Despite its accuracy, it is limited to flows with particles in the Stokesian
regime (Rep<O(0.1)). Maxey & Patel (2001) introduced an alternative scheme
that approximately satisfies the no-slip boundary condition at the particle surface,
that is suitable for particle-laden flows with relatively large particle sizes. In this
force-coupling model, the presence of particles on the flow is approximated by a
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multipole expansion of a regularized steady Stokes solution. Despite its promis-
ing results for unbounded flows, for wall-bounded regimes it requires higher order
terms, more than monopole and dipole, in order to accurately capture the wall
lubrication effect (Lomholt et al., 2002) which in turn adds more complexity to
their formulation. In addition, similar to Pan & Banerjee (1996) scheme, the as-
sumption of Stokesian regime for flow around the particles limits the application
of their method to flows where Rep<O(0.1).

Recently, efforts have been made in order to improve the accuracy of the stan-
dard PP approach by retrieving the undisturbed fluid velocity from the available
disturbed field. Gualtieri et al. (2015) regularized the PP approach for the un-
bounded flows by deriving analytical equations to remove the self-induced velocity
disturbance created by the particles. Their approach requires considerable compu-
tational resources to resolve the stencil over which the particle force is distributed
using a Gaussian filter function. Horwitz & Mani (2016, 2018) originated a method
to obtain the undisturbed velocity based on the enhanced curvature in the dis-
turbed velocity field for particle Reynolds numbers of Rep<10.0. A C-field library
data was built using reverse engineering technique that should be added to the
current EL-PP approaches for recovering the undisturbed velocity. Although their
model showed excellent agreement in the predictions of particle settling velocity
and decaying isotropic turbulence (Mehrabadi et al., 2018), it is limited to (i) the
isotropic computational grids, (ii) particle-laden flows with particles with the max-
imum size of the grid (Λ=dp/∆) of O(1), where ∆ is the grid size and dp particle
diameter, and (iii) the unbounded flows. Ireland & Desjardins (2017) derived an
analytical expression for recovering the undisturbed velocity in unbounded flows
based on the steady state Stokes solution that was derived as the solution of a
feedback force distributed to the background flow using a Gaussian smoothening.
Although their model accounts for the mass displacement of the particles, it is
limited to unbounded flows with small Rep.

In a generic approach, Esmaily & Horwitz (2018) originated a correction scheme
in which each computational cell is treated as a solid object that is immersed
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in the fluid. Each computational cell that is subjected to the two-way coupling
force is dragged at a velocity that is identical to the disturbance created by the
particle. In their physics-based model, the disturbance of each computational cell
created by the particle is obtained by solving the Lagrangian motion of the cell
concurrently with the equation of motion of the particle. Although their model
was devised to handle (i) relatively large size particles (Λ>1), (ii) isotropic and
anisotropic grids, (iii) flows with finite Rep, and (iv) arbitrary interpolation and
distribution functions, it is limited to unbounded flows. Balachandar et al. (2019)
developed a model based on analytical and empirical equations that correct the PP
approach for modelling particle-laden flows with a wide range of particle Reynolds
number, Rep<200. Following their scheme, analogous model was developed by
Liu et al. (2019) for retrieving the undisturbed temperature in heated particle-
laden flows. Although their velocity and temperature models account for the mass
displacement of the particles (similar to Ireland & Desjardins (2017)) and are built
for a wide range of particle Reynolds number and Peclet number, they are derived
for unbounded flows only, and based on a specific filter function; namely Gaussian,
that limits their applicability.

Nearly all available correction schemes have been originated and developed for
the unbounded particle-laden flows. Due to the the wide range of wall-bounded
applications, developing more general correction schemes that are applicable for
flows near solid boundaries is necessary. Pakseresht et al. (2019) and Horwitz
et al. (2019) underscored the need for such general correction schemes while Bat-
tista et al. (2019) extended their regularized PP scheme (Gualtieri et al., 2015) for
a turbulent particle-laden pipe flow. Unique modeling issues arise in wall-bounded
particulate flows that need to be addressed in any correction scheme. First, parti-
cles near a wall, specially in a turbulent flow, are relatively bigger than the grid size
normal to the wall and consequently disturb the flow strongly and anisotrpically.
It has been observed that the disturbance created by a particle is proportional to
the ratio of its volume to that of the cell (Esmaily & Horwitz, 2018), hence the dis-
turbance of particles near the wall is expected to be strong. Second, the correction
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scheme should be able to handle the anisotropic grid resolution typically encoun-
tered near the walls in turbulent particle-laden flows. Third, unlike unbounded
flows, the disturbance created by a particle near the wall is conceptually asymmet-
ric and should decay faster to the wall, in order to satisfy the no-slip boundary
condition. These criteria necessitate the need for a general correction scheme that
can capture any type of disturbance in presence or absence of the no-slip walls.

This paper aims to develop such a generic correction scheme that meets the
criteria, mentioned above. Such a scheme enables accurate predictions of wall-
bounded, particle-laden flows, and will potentially help provide insights into the
underlying physics of such flows. In this regard, the correction scheme originated by
Esmaily & Horwitz (2018) (hereinafter named as E&H) is generalized and extended
to account for the wall effects on the disturbance field in the presence of no-slip
boundary conditions. Additional adjustments are made due to the collocated grid
arrangement used in this study. The generalized framework can be easily extended
to complex arbitrary shaped, unstructured grids (Pakseresht et al., 2012), as well as
walls with curvature and surface roughness. The newly developed scheme is general
and could be implemented and applied to all types of flows with different grid
resolutions, arbitrary interpolation functions and varying particle to grid size. The
new approach will be tested on canonical cases for which analytical solutions are
available and illustrates the need for such a general correction scheme. How much
the disturbance created by particle in the presence of no-slip wall gets deviated
from its unbounded counterpart and how this affects the particle’s motion and
the inter-phase coupling in the presence of no-slip wall are the questions that we
address in this paper.

The paper is organized as follows. We describe our correction scheme in section
3.2. Correction factors due to the presence of a no-slip wall are introduced and
the model is expanded to a wide range of grid resolutions typically encountered
in wall-bounded turbulent particle-laden flows. Section 3.3 validates the model on
predicting the velocity of a single particle settling in an unbounded domain. Then,
the new model will be tested for velocity of a single particle moving parallel to the
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wall at various wall-normal distances. In addition, the perpendicular motion of a
particle toward the wall is examined to assess the model for disturbances created
in the wall-normal direction. In order to quantify the accuracy of the model for a
wide range of applications, different flow parameters and computational grids are
studied. Isotropic and anisotropic grid resolutions are investigated to demonstrate
the capability of the model for different configurations. In order to illustrate the
importance and the need for the present approach, the results are compared with
the unbounded version of the present model, wherein wall effects are ignored, as
well as the uncorrected scheme. Section 3.4 concludes the paper with final remarks
and summary of the work.

3.2 A general correction scheme

In this section, we first introduce the main underlying issue in the two-way coupled
point-particle (PP) approach, then present a general methodology to resolve the
issue in the presence and absence of the no-slip walls. In the standard PP approach,
particles are assumed spherical and subgrid (smaller than the grid resolution), and
tracked in a Lagrangian framework using the second law of Newton as,

mp
du

(i)
p

dt
= F (i) +mpg

(i), (3.2.1)

wherein the particle velocity in direction i, u(i)
p , with mass of mp is obtained using

the total force of F (i) acting over the particle as well as its weight, mpg
(i). De-

pending upon the regime under consideration, different forces such as steady stokes
drag (F (i)

d ), shear-induced lift (F (i)
l ), Magnus effect (F (i)

m ), buoyancy (F (i)
b ), added

mass (F (i)
a ), history (F (i)

h ) and other forces may be included in the calculation of
F (i),

F (i) = F
(i)
d + F

(i)
b + F (i)

a + F
(i)
h + F

(i)
l + F (i)

m + ..., (3.2.2)

to accurately capture the motion of the particle (Maxey & Riley, 1983). Most of
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these forces are derived for a setting in which the upstream flow field in known
and unaffected by the presence of particle. As an example, the steady state Stokes
drag force over a sphere with diameter of dp and in a fluid with dynamic viscosity
of µ is

F
(i)
d = 3πµdp

(
u

(i)
f − u

(i)
p

)
, (3.2.3)

which is analytically derived based on the relative velocity between the undisturbed
(upstream) fluid velocity, u(i)

f , and the particle velocity of u(i)
p . When two-phases

are one-way coupled, i.e., the presence of particles do not affect the background
flow through the momentum exchange (Elghobashi, 1991), this force is employed
for tracking the particle to obtain its velocity and position as a function of time.
In such a scenario, the particle force is not exerted to the flow and the fluid phase
remains undisturbed. This process yields an accurate (and consistent with the
closure model) computation of u(i)

f and thereby Eqs. 3.2.1 and 3.2.3. In contrast,
when the two phases are two-way coupled, this force, with the same magnitude
and opposite direction, is applied back to the background flow to capture the inter-
phase momentum interactions. This inter-phase coupling disturbs the fluid velocity
around the particle and the newly disturbed velocity, u(i)

d , that is different from the
undisturbed velocity, u(i)

f , is used in the calculation of the drag force for the next
time step. This force computed based on the disturbed fluid velocity is inaccurate
and yields erroneous trajectory of the particle as well as the inter-phase momentum
interactions. For simple canonical particle-laden flows that are not bounded, this
inaccuracy depends on flow parameters such as (i) particle diameter to the grid
size ratio (Λ), (ii) the choice of interpolation and distribution functions used in
the PP approach, (iii) particle Reynolds number and (iv) particle Stokes numbers
(Horwitz & Mani, 2016; Esmaily & Horwitz, 2018). Computing the undisturbed
fluid velocity might be easy for some simple flows such as settling of a particle in a
quiescent flow, as the unaffected field could be readily obtained from the upstream
condition. However, for more complex flows with large number of particles, par-
ticularly in wall-bounded regimes, such a naive remedy becomes invalid due to the
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fact that the whole flow field is disturbed. This issue necessitates development of
a unified framework to accurately recover the undisturbed fluid velocity in gen-
eral unbounded or wall-bounded particle-laden flows. The basic concept behind
development of such a framework is described below.

Since the disturbed fluid velocity in a two-way coupled PP approach arises from
a point-force, finding the disturbance created by this force can be used to correct
the disturbed flow and obtained the undisturbed fluid velocity. In other words,
after a point force is applied to fluid within a computational cell in a discretized
domain, what is the cell fluid velocity (let us denote it by u(i)

c ) generated by this
force, and what does it depend upon are the main questions under consideration.
The u(i)

c is the velocity that is missing in the traditional two-way coupled PP
approaches, and if found, could be added to the disturbed fluid velocity to obtain
the undisturbed velocity as

u
(i)
f = u

(i)
d − u

(i)
c (3.2.4)

Thus, any predictive scheme that can model u(i)
c , would be able to accurately re-

cover the undisturbed fluid velocity. The correction scheme presented here is based
on a method to predict the velocity of fluid in the computational cell produced by
a force applied at its cell center.

To obtain a generalized approach applicable to wide range of unbounded and
wall-bounded particle-laden flows with different grid aspect ratios, consider a force
of F (i) is applied to fluid at a computational cell in an anisotropic, Cartesian grid,
that has an arbitrary size of [a(1), a(2), a(3)] and located near a no-slip wall, at a wall-
normal distance of x(2)

c as shown in Fig. 3.1. Also, suppose that the force is applied
to the center of the computational cell, i.e., is generated by a particle that is at
the center of the computational cell. Hereinafter, the superscripts (1) and (3) are
employed for streamwise and spanwise directions, respectively, while, (2) denotes
the wall-normal direction. Note that here we use anisotropic Cartesian grids for
simplicity, but this concept can be easily extended in the future to arbitrary shaped
unstructured grids with complex boundary walls as well. Conceptually, the time
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Figure 3.1: A computational cell with an arbitrary size of [a(1), a(2), a(3)] and wall-
normal distance of x(2)

c that is disturbed by force F.

dependent velocity created by this force could be approximated as

u(i)
c (t) ≈ f(a(1), a(2), a(3), F (i), t, x(2)

c ) (3.2.5)

By varying the grid aspect ratio, the distance to the wall, and the amount of
point-force applied, a data-set for the disturbance velocity of the computational
cell as a function of time can be generated. Although finding a generic function
for this data set may require some advanced data-science techniques, this relation-
ship can be significantly simplified by applying a small force that limits us to the
creeping/Stokes flow regime. For a small force and in the steady state condition,
the velocity of the computational cell is linearly proportional to the force, i.e.,
u

(i)
c ∝F (i), and one can write it as a function of the cell dimensions and its wall

distance, i.e., u(i)
c =F (i)g(a(1), a(2), a(3), x

(2)
c ). This hypothesis is examined to a com-

putational cell with an arbitrary size and situated at a wall distance. A small force
is applied to this cell and its velocity as a function of time is measured. Regardless
of size and the location of the cell, it is observed that its velocity exponentially
accelerates until reaches a terminal velocity, precisely similar to the settling ve-
locity of a spherical particle under gravity and in the presence of a drag force.
Motivated by this observation and following Esmaily & Horwitz (2018), we model
the computational cell as a solid object that is subjected to the particle force F (i),
and dragged through the surrounding computational cells. At steady state, the
particle force and the drag force exerted by the surrounding computational cells
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balance each other and the computational cell velocity becomes only a function of
its size and wall distance. The general form of the model then can be written using
a Maxey-Riely equation of motion for the computational cell velocity, including the
unsteady effect as,

3

2
mc

du
(i)
c

dt
= −3πµdcK

(i)
t u

(i)
c − F (i), (3.2.6)

where dc= 3
√

(6/π)a(1)a(2)a(3) is the volume-equivalent diameter of the computa-
tional cell, with mass of mc=(π/6)ρfd

3
c . The term on the left hand side expresses

the unsteady effect of the force on the computational velocity wherein the prefactor
3/2 captures the added mass effect. The first term on the right hand side of the
equation, 3πµdcK

(i)
t u

(i)
c , is the Stokes drag force acting on the computational cell

by its surrounding cells wherein the relative velocity is −u(i)
c as the ambient flow

for the disturbance field is at rest. The adjustment to the Stokes drag is expressed
by the factor K(i)

t as,

K
(i)
t =

K
(i)
c Cr

K
(i)
p C

(i)
t

. (3.2.7)

Here, K(i)
c accounts for non-sphericity of the computational cell and depends on

its size and aspect ratio. The factor K(i)
p accounts for wall effects as well as the

interpolation and distribution functions typically employed in PP approach. The
factor Cr accounts for the non-linear finite force effects whereas C(i)

t considers
the limited exposure time of the particle force to the computational cell. These
geometric and physics-based factors are defined and explained in details in the
following subsection.

3.2.1 Geometric correction factor, Kc

The geometric correction factor, Kc, is obtained based on the fact that a mov-
ing solid object in an unbounded flow with a small Reynolds number experiences
a constant drag coefficient that is dependent on its shape and geometry (Leith,
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1987). Inspired by this, the geometric correction factor to the Stokes drag of the
computational cell is conjectured to be a function of its size. In this part, an ex-
pression for Kc is derived that is different than the one derived in the E&H work, in
order to cover a wider range of grid sizes and aspect ratios, typically encountered
in highly turbulent particle-laden channel flows.

The procedure is explained as follows. A sufficiently large computational do-
main is chosen with a uniform grid resolution of 1283. Boundary conditions for
wall-normal direction are set to be no-slip and slip to enforce wall effects while
periodic boundary condition is employed for the other directions of the domain. A
small and stationary force, F (i)

small, that generates a disturbance field with nearly
zero Reynolds number, is applied to the center of a computational cell in i direc-
tion. Note that the computational cell is located in the middle of a large domain
wherein the no-slip boundary conditions have zero effect on the generated dis-
turbance field. At steady state, the velocity of the computational cell is directly
measured and K(i)

c is obtained by using Eq. 3.2.6 as,

K
(i)
c,measured =

∣∣∣∣∣ F
(i)
small

3πµdcu
(i)
c

∣∣∣∣∣ (3.2.8)

with other correction factors being one by definition as the force is small (Cr=1),
applied only to one cell and sufficiently away from the no-slip wall (K(i)

p =1), and
has infinite exposure time (C(i)

t =1). The procedure is repeated for a wide range
of grid size of 0.05∼a(2)/a(1)∼1 and 0.1∼a(3)/a(1)∼1. The choice of grid size and
aspect ratio studied here is inspired by the grid resolution of highly turbulent
channel flows (Moser et al., 1999). A best fit to the numerically measured data is
obtained as,

K(i)
c = 0.1705 exp

[
(Γ(i)

max)
−0.4005(Γ

(i)
min)0.06408

]
(Γ(i)

max)
0.7058(Γ

(i)
min)−0.452

+ ln
[
(Γ(i)

max)
−0.03746(Γ

(i)
min)0.2049

]
(Γ(i)

max)
0.355(Γ

(i)
min)0.05338,

(3.2.9)
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Figure 3.2: Prediction of Eq. 3.2.9 versus numerical measurements of Kc for a
wide range of grid sizes typically encountered in wall-bounded turbulent channel
flows.

where

Γ(i)
max = max

{
a(j)

a(i)
,
a(k)

a(i)

}
, Γ

(i)
min = min

{
a(j)

a(i)
,
a(k)

a(i)

}
; j, k 6= i. (3.2.10)

Figure 3.2 shows excellent prediction of the above empirical equation against
our numerical measurement for K(i)

c . The prediction of the corresponding expres-
sion used in E&H is also shown. For the studied range of grid sizes, our new
correlation matches with E&H for small K(i)

c , but for larger K(i)
c values, which

correspond to computational cells with higher aspect ratio, the new correlation
matches much better than E&H. In the next part, we show the derivation of wall
effects as well as the interpolation effects.

3.2.2 The wall and interpolation effects

The question that arises now is how does the geometric correction factor, K(i)
c ,

change when the computational cell of interest gets closer to the wall? The answer
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for this question lies in a new wall adjustment factor on geometric correction factor.
In order to answer this question we first look at the near wall motion of a spherical
object wherein its drag coefficient changes as a function of wall distance. Goldman
et al. (1967) derived an analytical equation for the wall-modified drag coefficient
of a sphere moving parallel to the wall, while Brenner (1961) using lubrication
theory, obtained the corresponding parameter for its normal motion toward the
wall. Based on these observations, it is expected that the wall adjustment on the
geometric correction factor be dependent on the force direction and increases as
wall-normal distance decreases. Having such a direction dependent adjustment is
of importance as in wall-bounded particle-laden flows, particles interact with the
sweep and burst events near the wall (Righetti & Romano, 2004), thus experiencing
different forces in the two directions and disturbing the background flow differently.

Following the procedure described in the previous part for obtaining the K(i)
c ,

its wall adjustment is achieved by applying the point-force at various wall distances.
For each wall distance, Eq. 3.2.8 gives rise to a wall-modified geometric correction
factor, K(i)

c,w, that deviates from its unbounded counterpart, K(i)
c . The ratio of

these two yields a wall adjustment factor as

Ψ
(i)
k =

K
(i)
c,w

K
(i)
c

. (3.2.11)

This factor approaches unity for cells sufficiently away from the wall (i.e.,
K

(i)
c,w = K

(i)
c ) and is greater than one for those near the wall. This procedure

is repeated for the studied range of the grid resolutions, for each of which, Ψ
(i)
k for

various wall distances with both wall-normal as well as parallel forces were mea-
sured and tabulated. As explained in Appendix A, for isotropic grid resolution,
it is observed that the wall adjustment to the Stokes drag coefficient of a spheri-
cal object obtained empirically by Zeng et al. (2009) matches our measured data.
This expression, however, deviates for highly skewed anisotropic grids, inevitably
encountered in the wall-bounded flows. This underscores the need for a more ac-
curate expression that could handle a wide range of grid aspect ratios. The best fit
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to our measured data for forces in both parallel and normal directions was found
to be,

Ψ
(i)
k = 1 +

A(i)

1 +B(i)h
(i)
k

, (3.2.12)

where h(i)
k is the normalized wall distance of the center of the computational cell

of interest as

h
(i)
k =


x
(2)
k

a(i)
, i=1,3

x
(2)
k

a(1)
, i=2

(3.2.13)

with x(2)
k being the dimensional wall distance of the computational cell, and A(i)

and B(i) are dependent on the grid size as,

A(i) =



ln

(
26.31a(3)

a(1)

)
(

0.05761+5.373
(

a(2)

a(1)

)1.057
) , i = 1

ln

(
14.04a(3)

a(1)

)
(

0.06608+5.14
(

a(2)

a(1)

)1.592
) , i = 2

ln

(
26.31a(1)

a(3)

)
(

0.05761+5.373
(

a(2)

a(3)

)1.057
) , i = 3

(3.2.14)

B(i) =



exp

(
−0.02873a(3)

a(1)

)
(

0.00008+0.5601
(

a(2)

a(1)

)1.894
) , i = 1

exp

(
−1.252a(3)

a(1)

)
(

0.01354+3.688
(

a(2)

a(1)

)2.202
) , i = 2

exp

(
−0.02873a(1)

a(3)

)
(

0.00008+0.5601
(

a(2)

a(3)

)1.894
) , i = 3

(3.2.15)

As implied by Eq. 3.2.12, Ψ
(i)
k becomes unity when the disturbance occurs

sufficiently away from the wall as,
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Figure 3.3: Shown are the predictions of Eqs. 3.2.12-3.2.15 and 3.2.17 for paral-
lel forces, i.e., i=1, 3 (left) and normal forces, i.e., i=2 (right) compared to the
numerical measurements.

lim
h
(i)
k →∞

Ψ
(i)
k = 1. (3.2.16)

It should be noted that our results show that for disturbances created by the
wall-normal force applied to highly skewed grids, i.e., a(2)/a(3)<0.5, Ψ

(i)
k for the

first computational cell attached to the wall is better predicted by,

Ψ
(2)
first,cell =

ln
(

25.3a
(3)

a(1)

)
−0.0007149 + 2.364

(
a(2)

a(1)

)0.7796 . (3.2.17)

Figure 3.3 shows the prediction of Ψ
(i)
k using the above equations for both

parallel and normal forces. Larger values correspond to the computational cells
with high aspect ratio or those situated closer to the wall. Ignoring wall effect
on the geometric correction factor and letting Ψ

(i)
k =1 yields overprediction of the

computational velocity of the cell as u(i)
c ∝(Ψ

(i)
k K

(i)
c )−1. As shown later, this over

prediction becomes remarkable when particles travel very close to the wall which
results in erroneous particle trajectory.
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So far we considered the disturbance created by a small force that is applied
to the center of a computational cell. This condition assumes that the particle
force is applied only to a cell that contains the particle. However, in EL-PP
simulations, this assumption does not necessarily hold, and the particle force is
commonly distributed to the number of computational cells that are located within
the stencil of the distribution function. Depending upon their distance from the
force, they receive a fraction of this force and get disturbed differently. Now, in the
next time step, when the fluid forces are to be computed, a function is similarly
employed to interpolate the fluid quantities to the location of particle. During
this process, the disturbance created in the surrounding computational cells in the
previous time step will enter into the force calculations and depending on the stencil
of this function, particle receives different disturbances. To accurately capturing
the disturbance that particle receives, these effects must be accounted for in the
correction scheme. Esmaily & Horwitz (2018) derived an analytical formulation
for these effects for unbounded flows wherein the disturbance around the particle is
symmetric. However, near a no-slip wall, the shape and strength of the disturbance
field vary and it becomes more asymmetric. Below, we generalize the analytical
expression of E&H to account for the no-slip walls and a new analytical expression
is derived.

Suppose the particle force, F (i)
p , is fed back to the background flow using a

distribution function that has a certain bandwidth. Those computational cells
that lie within the bandwidth receive a fraction of the force depending on their
distance to the particle. Accordingly, the corresponding force that computational
cell j receives is expressed as,

F
(i)
j = βjF

(i)
p , (3.2.18)

where βj is the distribution coefficient (weight) corresponding to the computational
cell j. When the particle forces (e.g., the drag that requires fluid velocity) are being
calculated, the disturbance field is interpolated to the particle location from the
neighbouring cells as,
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u(i)
c =

nj∑
j=1

γju
(i)
c,j, (3.2.19)

where u(i)
c is the disturbance that particle receives in i direction and γj is the in-

terpolation coefficient corresponding to the computational cell j that has compu-
tational velocity (disturbance velocity) of u(i)

c,j. nj is the total number of adjacent
computational cells that are employed for the interpolation. It is imperative to
note that unlike staggered grids, in collocated arrangements, γj and βk coefficients
are direction independent. The question that arises here is how to compute the
computational velocity of the adjacent computational cells, u(i)

c,j, when they are
imposed to a fraction of particle force. A naive way to obtain that, is to simply
use Eq. 3.2.6 for each cell with its given force, F (i)

j , assuming that the computa-
tional cells are independent and only disturbed by their direct forces. In practice,
however, this assumption does not hold and each computational cell gets disturbed
not only by their direct force but also through the perturbations induced by the
adjacent cells. For instance, when the computational cell k is disturbed by its
own force, βkF

(i)
p , the created disturbance velocity in this cell pushes and perturbs

the surrounding cells through α(i)
kj that is the velocity ratio of cell j generated by

perturbation of cell k to that of the computational cell k. This implies the fact
that the disturbance created in computational cell, e.g., j, constitutes a combina-
tion of the one created by its own direct force and those created by the adjacent
cells. Upon finding a closure for α(i)

kj , a linear superposition is valid if the created
disturbance field meets the zero Reynolds number criterion. For unbounded flows
and in the limit of zero Reynolds number, Esmaily & Horwitz (2018) showed that
α

(i)
kj can be predicted using the Stokes solution that is the solution for the velocity

field generated around a sphere slowly moving in an unbounded quiescent flow as

α
(i)
kj =

3

4
r′−1
kj

(
1 + cos2θ

(i)
kj

)
+

1

4
r′−3
kj

(
1− 3cos2θ

(i)
kj

)
, (3.2.20)

where θ(i)
kj is the polar angle between the line passing through the computational
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Figure 3.4: Schematic of computational cell k that is disturbed by a small force
and has disturbance velocity of u(i)

c,k which perturbs the adjacent computational
cells through the modelled Stokes solution. r′kj is the normalized distance between
cell k and j with polar angle of θ(i)

kj between the line passing through these cells
and i direction.

cells k and j and the i direction (Fig. 3.4) and r′kj is the distance between these two
cells normalized by the characteristic length of the computational cell. The choice
of this equation was inspired by the fact that the computational cell is treated as
a solid object that moves in the fluid and consequently disturbs the surrounding
fluid in a manner similar to a solid sphere. Using the prediction of this equation
and a characteristic length of 0.28dc, they showed an excellent agreement with
their numerical measurements.

For the collocated grid arrangement used in this study, we found that Stokes
solution (Eq. 3.2.20) normalized with a smaller characteristic length of 0.25dc

better predicts our numerical measurements. This was done by performing mea-
surements similar to the previous parts. A small force in i direction is applied
to the computational cell k located in the middle of a sufficiently large periodic
box. At steady state, we measure the velocity of the perturbed cell (k) as well
as those of its adjacent cells (j). The velocity ratio of these two cells, u(i)

c,j/u
(i)
c,k,

is α(i)
kj by definition. For the sake of clarity, this parameter could be alternatively

denoted by blmn in which the subscript lmn corresponds to the location of cell
j, that is [la(1),ma(2), na(3)] away from the computational cell k. As an example,
b100 represents the velocity ratio of cell j to k with j being the immediate cell in
the (1) direction and right hand side of the perturbed cell k. Table 3.1 shows the
prediction of Eq. 3.2.20 normalized with both 0.25dc and 0.28dc compared to our
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numerical measurements on the collocated grid arrangement for different aspect
ratios. Better predictions are obtained by the former characteristic length. For
the sake of comparison, we have also included the corresponding values of Esmaily
& Horwitz (2018) that are based on the staggered grid arrangements, revealing a
slight difference between these two arrangements. The difference is justified due to
the fact that in collocated arrangements, unlike the face velocity, the cell-centered
velocity is not necessarily divergence free, thereby causing small errors in the re-
sults compared to those of the staggered arrangements.

a(2)/a(1) a(3)/a(1) b000 b100 b010 b110 b001 b101 b011 b111

1.0 1.0 measured collocated 1.0 0.31 0.27 0.18 0.27 0.18 0.16 0.14
staggered 1.0 0.50 0.25 0.24 0.25 0.24 0.15 0.16

predicted using 0.25dc 1.0 0.45 0.24 0.25 0.24 0.25 0.17 0.18
using 0.28dc 1.0 0.50 0.27 0.27 0.27 0.27 0.19 0.20

1.0 2.0 measured collocated 1.0 0.41 0.33 0.26 0.19 0.17 0.15 0.14
Staggered 1.0 0.62 0.33 0.34 0.17 0.18 0.13 0.15

predicted using 0.25dc 1.0 0.56 0.31 0.31 0.15 0.16 0.13 0.14
using 0.28dc 1.0 0.61 0.35 0.34 0.17 0.18 0.15 0.16

2.0 4.0 measured collocated 1.0 0.62 0.36 0.34 0.22 0.21 0.18 0.18
staggered 1.0 0.83 0.31 0.34 0.16 0.17 0.13 0.13

predicted using 0.25dc 1.0 0.81 0.24 0.25 0.12 0.12 0.10 0.11
using 0.28dc 1.0 0.87 0.27 0.28 0.13 0.13 0.12 0.12

Table 3.1: Measured blmn values in comparison with the prediction of Eq. 3.2.20
normalized with the characteristic length of 0.25dc and 0.28dc. Shown also includes
the corresponding measured values from Esmaily & Horwitz (2018) that are based
on the staggered grid arrangement.

The next step is answering the question of how does αkj change when the
disturbance occurs close to a no-slip wall? One could substitute this parameter
with the wall-bounded Stokes solution of a sphere moving in a quiescent flow and
near a no-slip wall (O’Neill, 1964, 1967). Although there have been a few methods
for simplifying such solution (e.g., Chaoui & Feuillebois (2003)), it is expressed as
expansions of spherical harmonics with the coefficients that are obtained iteratively
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as the solution of an infinite linear system. This makes the use of wall-bounded
Stokes solution computationally expensive for EL approaches.

An alternative remedy is the choice of the “Stokeslet solution” that is the flow
field generated by a point force in a quiescent fluid. Direct analytical solutions are
available for both unbounded and wall-bounded flows (Blake, 1971) that makes it
more desirable and feasible to be implemented in EL approaches. Assuming that
the ratio of the wall-bounded to the unbounded Stokes solution, α(i)

stk,b/α
(i)
stk,un, ap-

proximately equals to the corresponding ratio of Stokeslet solution, α(i)
stkl,b/α

(i)
stkl,un,

an analytical expression for the wall adjustment to α(i)
kj is derived (see Appendix

B for the detailed Stokeslet solutions) as,

Φ
(i)
kj =

(α
(i)
stkl,b)kj

(α
(i)
stkl,un)kj

= 1−

 1
|Rkj |

+
(R

(i)
kj )2

|Rkj |3
+

2x
(2)
k f

(i)
kj

|Rkj |6

1
|rkj |

+
(r

(i)
kj )2

|rkj |3

 , (3.2.21)

where,

f
(i)
kj = (−1)i

(
x

(2)
k |Rkj|3 − 3|Rkj|(R(i)

kj )
2x

(2)
k − |Rkj|3R(2)

kj + 3|Rkj|(R(i)
kj )

2R
(2)
kj

)
(3.2.22)

r
(i)
kj = (x

(i)
j − x

(i)
k ), |rkj| =

√√√√ 3∑
i=1

(r
(i)
kj )2 (3.2.23)

R
(i)
kj =

r
(i)
kj , i = 1, 3

r
(2)
kj + 2x

(2)
k , i = 2

, |Rkj| =

√√√√ 3∑
i=1

(R
(i)
kj )

2 (3.2.24)

and x(i)
j and x(i)

k are the i coordinate of the computational cell j and k, respectively.
Note that Φ

(i)
kj is not normalized by any characteristic length that makes it general

for both staggered and collocated grid arrangements. It is imperative to mention
that when the disturbance created by a particle is situated sufficiently away from
the wall, both bounded and unbounded Stokeslet solutions become identical and
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this parameter becomes unity as

lim
x
(2)
k →∞

Φ
(i)
kj = 1, (3.2.25)

which makes the model general for capturing the disturbance field created at any
wall distance, a common scenario in wall-bounded particulate flows. Knowing the
adjacent perturbations, now we can find the computational velocity of each cell
and derive the analytical expression for K(i)

p as follows.
For the particle force that is stationary and distributed to its neighbour cells,

in the limit of steady state and zero Reynolds number, the computational velocity
of cell j is obtained as the superposition of disturbances created by its own force
as well as its adjacent cells as expressed below

u
(i)
c,j =

nk∑
k=1

[
α

(i)
kj βkΦ

(i)
kj

Ψ
(i)
k

]
−F (i)

p

3πµdcK
(i)
c

, (3.2.26)

where nk is the total number of computational cells to which the particle force is
distributed. In Eq. 3.2.26 and what follows, no implicit summation over repeated
indices is implied. Note that we keep the wall adjustment to the geometric correc-
tion factor, Ψ

(i)
k , in the bracket as it varies among the adjacent cells owing to their

different wall-normal distances. Knowing the disturbance velocity for the compu-
tational cells around the particle, the disturbance velocity seen by the particle is
obtained using Eqs. 3.2.19 and 3.2.26 as,

u(i)
c =

nj∑
j=1

[
γj

nk∑
k=1

[
α

(i)
kj βkΦ

(i)
kj

Ψ
(i)
k

]]
−F (i)

p

3πµdcK
(i)
c

, (3.2.27)

where nj is the total number of computational cells from which the fluid properties
are interpolated to the particle location. The analytical expression for K(i)

p is then
derived as
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K(i)
p =

nj∑
j=1

[
γj

nk∑
k=1

[
α

(i)
kj βkΦ

(i)
kj

Ψ
(i)
k

]]
. (3.2.28)

In the limit of large wall distances, since both Ψ
(i)
k and Φ

(i)
kj approach unity, theK(i)

p

derived here becomes identical to that derived in E&H. It is crucial to mention
that with this formulation all wall adjustments have been accounted for in the
derivation of K(i)

p .
For cases where only “box filtering" (zeroth order) is utilized, i.e., the particle

only disturbs one cell from which the fluid properties are interpolated to the particle
too (nk=nj=1), we have γj=βk=α

(i)
kj=Φ

(i)
kj=1. In this case, K(i)

p =1/Ψ
(i)
k , wherein

subscript k corresponds to the cell in which the particle lies. In such a simple case,
K

(i)
p becomes only the wall effect on the correction scheme.

3.2.3 Correction for the finite Reynolds number

The Stokes drag used in Eq. 3.2.6 is only valid for disturbances created with zero
Reynolds number. To account for the higher Reynolds number effects, a Schiller-
Naumann correction factor, analogous to the finite Reynolds number adjustment
to the Stokes drag of a sphere (Clift et al., 2005),

Cr = 1 + 0.15Re0.687
c (3.2.29)

can be used (Esmaily & Horwitz, 2018); where, Rec=ucdc/ν is defined as the
Reynolds number of the computational cell based on its velocity and diameter.
A wall-modified version of this equation has been empirically derived by Zeng
et al. (2009), yet our results show that the use of Schiller-Naumann expression
(Eq. 3.2.29) still yields better predictions for the studied wall-bounded cases.
This expression captures only the change to the Stokes drag for higher Rec cases,
however, the complexity of the asymmetric disturbance field at high Rec breaks
the use of Eq. 3.2.20, and the linear superposition employed in the derivation
of Eq. 3.2.28 does not hold anymore. Therefore, it is argued that for high Rec,
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a more elaborate formulation might be required. As explained later, our results
illustrate that the current formulation generates reasonable results for cases with
Rec of up to 10. For larger Rec, Balachandar et al. (2019) showed that the need
for the correction diminishes owing to the fact that the particle with larger Rep
does not stay in its own disturbance, and in the next time step, it sees a more
undisturbed flow for the force calculations. Although this effect is partly captured
by introducing a temporal correction factor for finite exposure time, C(i)

t , explained
in the next part, a comprehensive study on the necessity of the correction scheme
for a range of particle Reynolds number is left for future investigations.

3.2.4 Correction for the finite exposure time

A particle moving in the computational domain spends a limited time within each
computational cell and disturbs the cell for a finite time. This finite time exposure
of particle has to be accounted for in Eq. 3.2.6, separately. The unsteady term
in this equation is considered for the unsteady effect of a stationary force and
does not include its limited exposure time. To demonstrate the need for this
correction factor, consider a high velocity particle whose residency time within the
computational cell with diameter of dc is dc/up, which is much smaller than the
response time of the fluid to the particle force, d2

c/ν, i.e.,

dc
up
� d2

c

ν
(3.2.30)

If particle size is assumed to be in the same order of the computational cell,
i.e., dp∼dc, then this criterion results in Rep�1. In such scenario, particle passes
through the grid quickly with negligible disturbance that obviates any need for the
correction. Conversely, for particles with Rep�1, their large exposure time allows
them to sufficiently perturb the computational cell which underscores the need for
the correction. This effect should be accounted for in Eq. 3.2.6 separately as for
cases with Rep�1, this equation yields erroneously large computational velocity,
which conceptually should be zero. In order to account for this effect, one could
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track the particle within each computational cell and only integrate Eq. 3.2.6
over the period of time that particle spends in the cell and upon its exit the force
becomes zero. To avoid the complexity added by this, we use the corresponding
correction factor of E&H as,

C
(i)
t = 1− τ

(i)
c

∆t(i)

(
1− exp

(
−∆t(i)

τ
(i)
c

))
, (3.2.31)

where,

∆t(i) =
a(i)

|u(i)
p |

and τ (i)
c =

d2
c

12νK
(i)
c

, (3.2.32)

where τ (i)
c and ∆t(i) are respectively the computational cell relaxation time and the

particle residence time in i direction of the computational cell, respectively. The
factor C(i)

t is a time-average of the solution of Eq. 3.2.6 for a small force that is
applied on top of a computational cell. Accordingly, for a particle with Rep�1, its
exposure time to the cell becomes small, ∆t→0 and using Eq. 3.2.31, C(i)

t →0 which
eliminates any need for correction. However, for slow particles (Rep�1), ∆t→∞
and C(i)

t →1 which enforces the correction. In the next part, we combine all these
correction factors and explain the steps in order to correct the PP approach.

3.2.5 The correction algorithm

The entire correction scheme reduces to the computation of Eq. 3.2.6 that is solved
concurrently with the equation of motion of the particle (Eq. 3.2.1). Although
one could simply use any time integration scheme for these two equations, we use
an explicit method for the results presented in this work. Therefore, knowing the
u

(i)
c and u(i)

p from previous time step, the following procedure is used.

1. Compute the disturbed velocity at the location of particle, u(i)
d , that is readily

available in the standard PP packages.
2. Compute the undisturbed velocity at the location of particle, u(i)

f , by using Eq.
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3.2.4 and having the computational velocity at the location of particle, u(i)
c .

3. Compute the total fluid force exerted at the location of particle, F (i).
4. Update the velocity of particle, u(i)

p , using Eq. 3.2.1.
5. Calculate K(i)

c using Eqs. 3.2.9 and 3.2.10 based on the grid size [a(1), a(2), a(3)]
in which particle is located.
6. Identify the location of surrounding cells to which the particle force is dis-
tributed (nk).
7. Identify the location of surrounding cells from which the fluid quantities are
interpolated to the location of particle (nj).
8. From the location of particle to the above computational cells, calculate r′kj and
θ

(i)
kj and thereby α(i)

kj using Eq. 3.2.20.
9. In the presence of no-slip walls, calculate Φ

(i)
kj and Ψ

(i)
k based on Eqs. 3.2.12-

3.2.15 and Eqs. 3.2.21-3.2.24, respectively.
10. Compute K(i)

p , using Eq. 3.2.28 and knowing βk, γj, α
(i)
kj , Φ

(i)
kj and Ψ

(i)
k .

11. Compute Rec and thereby Cr using Eq. 3.2.29.
12. Compute τ (i)

c and ∆t(i) using Eq. 3.2.32 and thereby C(i)
t using Eq. 3.2.31.

13. Compute K(i)
t using Eq. 3.2.7 by knowing K(i)

c , K(i)
p , Cr and C

(i)
t .

14. Update u(i)
c using Eq. 3.2.6.

The initial condition for the procedure above is u(i)
c =0 corresponding to the

undisturbed fluid phase before injecting particles. For isotropic grids, the simplified
formulation introduced in Appendix A could be used to compute Ψ

(i)
k in the step 9

above. It is imperative to mention that for particle-laden flows wherein the particle
time scale is smaller than that of the fluid, sub-cycling for particles’ motion is
typically performed. Particles are advanced during the frozen flow time scale and
then at the end of the sub-cycling their force will be applied to the background
flow. For such cases, the correction should be enforced once the sub-cycling is
finished as that is when the flow is altered by the presence of particles. In the next
section, the results of the present correction scheme are discussed and the accuracy
of the scheme is assessed.
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3.3 Results

In this section, the present correction scheme is verified by performing several test
cases involving unbounded and wall-bounded flows. Different flow parameters and
grid aspect ratios are carried out in order to assess the generality and robustness of
the model for a wide range of applications. In the first set of computations, we start
with settling velocity of a particle in an unbounded flow wherein the wall effects
do not appear and the model for the collocated arrangements is validated against
the analytical solution. In the second set of test cases, the model is validated for
velocity of a particle settling parallel and close to a no-slip wall. Test cases at
different wall distances, ranging from near to sufficiently away from the wall, are
performed to test the model for possible situations that happen in particle-laden
flows. Different grid aspect ratios representative of typical turbulent channel flows
are used in these tests. In the third set of assessments, the model will be employed
to freely falling motion of a particle normal to the wall. The grid resolution for all
cases was set to be 1283 as it was found to be sufficient to produce the results that
are grid independent.

The three shared non-dimensional flow parameters among cases are those de-
fined based on the Stokes flow in an unbounded configuration. The first one is the
Stokes parameter, St, defined as the ratio of the particle relaxation time, τp, to
the fluid time scale, τf , as,

St =
τp
τf
, (3.3.1)

where,

τp =
ρpd

2
p

18µ
, (3.3.2)

and,

τf =
min

(
a(i)
)2

ν
, (3.3.3)
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Figure 3.5: Particle located at wall distance of x(2)
p near a no-slip wall.

The second parameter is the particle Reynolds number as,

ReStkp =
|uStks |dp

ν
, (3.3.4)

where,

uStks = (1− ρf/ρp) τpg, (3.3.5)

is the particle settling velocity under gravity, g, in an unbounded Stokes flow with
ρf and ρp being the fluid and particle densities, respectively. The third parameter
that has three components as the ratio of particle diameter to the grid size is

Λ(i) =
dp
a(i)

. (3.3.6)

For wall-bounded test cases, another non-dimensional parameter that is the
normalized wall distance from the bottom of particle is defined as (see Fig. 3.5)

δp =
x

(2)
p

dp
− 0.5, (3.3.7)

wherein x
(2)
p is the wall distance from the center of particle. It should be noted

that in wall-bounded cases, since the particle drag coefficient changes due to the
presence of wall, its actual Reynolds number then differs from its unbounded coun-
terpart expressed by Eq. 3.3.4.

For the first and second test cases, we evaluate the accuracy of the model based
on the errors in the settling, drifting and total velocities of the particle compared
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to their reference values. Accordingly, the particle velocity, up(t), is decomposed
into two components; parallel and perpendicular to the reference velocity of ur.
The parallel component is expressed as,

u||p =
ur · up(t)
|ur|2

ur, (3.3.8)

while the perpendicular component is obtained by,

u⊥p = up(t)− u||p. (3.3.9)

The errors in these two velocity components are then calculated based on the
following metrics,

e‖ =
u
‖
p(t).ur
|ur|2

− 1; (3.3.10)

e⊥ =
|u⊥p (t)|
|ur|

, (3.3.11)

where, overbar () denotes the time averaging. Finally, error in the total velocity
compared to the reference velocity is obtained as,

e =
|up(t)− ur|
|ur|

. (3.3.12)

The reference velocity, ur, is the settling velocity of particle that is defined
differently for each case depending on the corresponding drag coefficient.

3.3.1 Settling particle in an unbounded flow

In the test cases here, we first validate the present correction scheme for the un-
bounded flows in order to assess the new presentedK(i)

c equation and the new char-
acteristic length employed for normalization of Eq. 3.2.20. Settling velocity of a
particle in an unbounded periodic domain is performed. For the results of this part,
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we neglect the wall effects by setting Ψ
(i)
k =Φ

(i)
kj=1. For all test cases, a particle that

is initially stationary, u(i)
p =0, thus u(i)

c =0, and located in an unbounded flow settles
under gravity and in the presence of the stokes drag force. Following the advice by
Horwitz & Mani (2016), gravity vector is chosen as g=(1, (1+

√
5)/2, exp(1))/|g| so

that particle sweeps through different locations among its adjacent computational
cells ensuring that the model is capable of handling any arbitrary positioning of
particle. The particle equation of motion in a quiescent fluid is then written as

dup
dt

=

(
1− ρf

ρp

)
g − f

τp
up (3.3.13)

where f corresponds to any adjustment factor to the Stokes drag coefficient that
is unity for the studied cases in this part. Accordingly, the analytical solution for
the particle velocity for Stokes flow is obtained as

uStk(t) = uStks

(
1− exp(− t

τp
)

)
(3.3.14)

where uStks is the settling velocity as provided in Eq. 3.3.5 and serves as the
reference velocity. Table 3.2 shows six different cases with various flow parameters
and grid aspect ratios for all which the error in settling velocity of the particle
without the correction is remarkably large. Errors in settling, drifting and total
velocities of the particle predicted with and without the present correction scheme
are compared. Additionally, the corresponding values from E&H are listed for
comparison. In general, the present scheme reduces the errors with the same
order of magnitude as E&H, however, for cases with large size particles such as
case U02, the embedded error in the collocated arrangement that appears in the
computation of Eq. 3.2.20 inevitably yields larger values compared to the staggered
arrangement. It is worth mentioning that the time step used for the computations
of the current cases is half of those reported in Horwitz & Mani (2016) so that the
Peclet number of Pe=6νf∆t/min(a(i))2=0.18 as well as particle Courant number
of CFLp=∆t/τp=0.003 are satisfied.

Figure 3.6 shows the particle velocity of case U01 as a function of time with
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Case ReStkp St Λ(1) Λ(2) Λ(3) uncorrected
e‖ e⊥ e

E&H
e‖ e⊥ e

present model
e‖ e⊥ e

U01 0.1 10.0 1.0 1.0 1.0 78.94 0.074 78.94 0.83 0.44 1.00 0.59 0.74 1.05
U02 0.1 10.0 5.0 5.0 5.0 392.14 0.25 392.14 1.70 5.20 7.50 -1.98 7.40 10.97
U03 0.1 10.0 5.0 0.5 0.5 57.40 7.98 57.96 -2.00 1.80 2.90 -3.91 2.07 4.59
U04 0.1 10.0 4.0 2.0 0.2 51.22 10.65 51.32 -3.50 6.00 7.30 -4.62 2.61 5.70
U05 0.5 10.0 1.0 1.0 1.0 68.64 0.08 68.64 4.30 2.00 4.70 4.83 2.29 5.35
U06 0.1 0.25 1.0 1.0 1.0 78.73 0.57 78.73 0.43 0.86 1.40 -0.1 1.86 2.85

Table 3.2: Listed are the percentage errors for settling, drifting and total velocity of
a particle settling in an unbounded domain. Results with and without the present
correction scheme are compared with the corresponding values from E&H. Various
cases with different particle diameter to gird sizes, Λ, particle Reynolds numbers,
Rep, and particle Stokes numbers, St, are shown for validation.

and without the correction scheme. As illustrated, the present correction scheme
produces excellent result compared to the reference velocity.

3.3.2 Settling particle parallel to the wall

As the first step toward validating wall effects in the present correction scheme,
velocity of a particle settling parallel to a no-slip wall is tested at different wall
distances. In order to illustrate the need for the present scheme, results with and
without accounting for Ψ

(i)
k and Φ

(i)
kj in the formulation are compared against the

reference. As listed in Tab. 3.3, different flow parameters, grid aspect ratios and
particle to grid sizes are carried out to assess the capability of the model for a
wide range of applications. Similar to the preceding section, the errors in settling,
drifting and total velocities of the particle are measured and compared among
different schemes. For the studied cases, a particle that is initially located at a
normalized wall gap, δp, released to reach its settling velocity under a gravity vector
of g=(exp(1), 0, (1 +

√
5)/2)/|g| that guarantees the particle’s motion on a plane

parallel to the wall. In reality, the particle experiences a lateral force (Vasseur &
Cox, 1977; Takemura & Magnaudet, 2003), yet in this study other directions are
neglected in order to isolate the parallel motion. The particle’s equation of motion
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Figure 3.6: Plotted is the velocity of a settling particle as a function of time in
an unbounded domain. Analytical solution (dash-dotted black), prediction of the
present correction scheme (solid blue) as well as the uncorrected scheme (dashed
red) are compared. The reference velocity, ur, used for normalization is the particle
settling velocity in Stokes flow given by Eq. 3.3.5. Results pertain to case U01
from Tab. 3.2.
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in the presence of wall follows Eq. 3.3.13 with the correction factor of f that is
employed based on the work of Zeng et al. (2009). In their work, an empirical
drag coefficient is derived as a function of normalized wall gap, δp, and the relative
Reynolds number, Rep, for a spherical object moving parallel to the wall and in a
quiescent flow as,

C
w,||
d =

24

Rep
f ||(δp, Rep), (3.3.15)

where f ||(δp, Rep) is the correction factor to the Stokes drag including two terms
as

f ||(δp, Rep) = f
||
1 (δp)f

||
2 (δp, Rep), (3.3.16)

where,

f
||
1 (δp) =

[
1.028− 0.07

1 + 4δ2
p

− 8

15
log

(
270δp

135 + 256δp

)]
, (3.3.17)

f
||
2 (δp, Rep) =

[
1 + 0.15

(
1− exp

(
−
√
δp

))
Re

(0.687+0.313 exp(−2
√
δp))

p

]
. (3.3.18)

f
||
1 (δp) captures the wall effects on the Stokes drag for zero Rep that becomes

unity for large δp, recovering the Stokes drag coefficient. f
||
2 (δp, Rep), however,

handles the wall-modified finite Reynolds number effects to the Stokes drag that
converts to the Standard Schiller-Naumman correction factor (Clift et al., 2005)
when particle travels sufficiently away from the wall.

For the first cases studied in this part, Rep is very small, thus only f ||1 (δp) holds
and the particle velocity is directly solved as,

uw,||(t) = uw,||s

(
1− exp

(
− t

τp
f
||
1 (δp)

))
(3.3.19)

where, u
w,||
s is the particle settling velocity in parallel motion to the wall and in
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the limit of Rep∼0 as,

uw,||s =

(
1− ρf

ρp

)
τpg

f
||
1 (δp)

(3.3.20)

Based on this drag formulation, the actual particle relaxation time in the pres-
ence of wall then becomes,

τw,||p =
τp

f
||
1 (δp)

(3.3.21)

Results based on the prediction of different schemes are compared with the
reference given by Eq. 3.3.20. Following the metrics presented in the preceding
section, the errors in settling, drifting and total velocities are measured. Table 3.3
shows these errors for the studied cases of this part which includes five sets, each
of which has six cases corresponding to settling at different normalized wall gaps.
Results with and without the wall correction factors on the correction scheme, Ψ

(i)
k

and Φ
(i)
kj , are compared together with those of the uncorrected scheme to quantify

the need for the wall-modified corrections scheme. For all the sets studied in this
part, the particle Reynolds number of ReStkp =0.1 and Stokes number of St=10 that
are based on unbounded parameters, are kept constant. In practice, however, the
actual particle Reynolds number decreases when it gets closer to the wall owing to
the larger drag and this effect is studied separately in the next part.

Sets A and B correspond to isotropic grid configuration with two different par-
ticle diameter to grid sizes, whereas the rest, C-F, pertain to anisotropic grids with
various aspect ratios. The grid resolution used in the latter are those commonly
encountered in the turbulent channel flows. The first observation from Tab. 3.3 is
that the errors for the uncorrected scheme is significantly large for all cases, neces-
sitating the need for correcting the Point-Particle approach even in the presence
of a no-slip wall. In addition, consistent with observation of E&H, the error in
uncorrected results increases proportional to (Λ(1)Λ(2)Λ(3))1/3∝dp/dc. As an exam-
ple, the error in total velocity of the uncorrected scheme for case C1 is two order
of magnitude smaller than that of case B1 wherein the volume ratio of particle to
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the grid is much greater.
In the first place, one could correct the PP results with the unbounded version

of the present correction scheme wherein wall effects are ignored, i.e., Ψ
(i)
k =Φ

(i)
kj=1.

As listed in Tab. 3.3, for wall distances very close to the wall, such as δp=0.05 and
0.5, the unbounded version under predicts the particle velocity with negative er-
rors on the same order of magnitude as the uncorrected scheme. These large errors
in the near wall results are due to the overprediction in the computations of the
disturbance velocity of the unbounded correction scheme, while particle in prac-
tice receives much smaller uc from the background flow near the no-slip boundary.
When particle gets away from the wall, however, the predicted disturbance field us-
ing unbounded version becomes more accurate and reduces the errors significantly
(see cases at δp=∞).

When wall effects are accounted for in the correction scheme, the asymmetry
pattern is captured which results in excellent predictions. For the cases considered,
the errors reduce to one order of magnitude smaller values when the wall-modified
correction scheme is applied. For example, in case A1, the total error of 91.42%

in particle settling velocity predicted by the unbounded correction scheme reduces
to 6.03% when wall effects are accounted for. Additionally, for particles travelling
far away from the wall wherein the symmetric disturbance field is expected, the
wall-modified and unbounded versions of the present correction scheme both yield
nearly identical results. This shows the superiority of the former to the latter for
general particle-laden flows. Figure 3.7 illustrates the results of these two versions
on the particle velocity of case A as a function of time. The erroneous results of
the unbounded version for near wall motions is improved by including wall effects
in the correction scheme.

The results presented in the previous part were obtained for Rep<0.1, while
in the wall-bounded particle-laden flows, typically a wider range of Rep exists. In
this part, the present model is tested for a range of Rep up to 10 by performing
similar computations to the previous part. Table 3.4 lists the studied cases for this
part that are similar to case E1 of Tab. 3.3, yet with different Stokes and parti-



85

Case δp Λ(1) Λ(2) Λ(3) uncorrected
e‖ e⊥ e

corrected using
unbounded model
e‖ e⊥ e

corrected using
wall-modified model
e‖ e⊥ e

A1 0.05 1.0 1.0 1.0 125.82 0.17 125.82 -86.82 21.42 91.42 5.37 2.23 6.03
A2 0.5 1.0 1.0 1.0 59.16 0.095 59.16 -35.08 1.37 35.12 4.86 0.57 4.91
A3 1.0 1.0 1.0 1.0 103.12 0.073 103.12 -19.67 1.16 19.72 4.29 0.76 4.38
A4 1.5 1.0 1.0 1.0 66.12 0.073 66.12 -13.81 0.66 13.84 4.06 0.46 4.10
A5 2.0 1.0 1.0 1.0 102.96 0.06 102.96 -10.02 0.87 10.08 2.08 0.72 2.24
A6 ∞ 1.0 1.0 1.0 69.19 0.05 69.19 0.74 0.45 0.95 1.0 0.44 1.14

B1 0.05 5.0 5.0 5.0 745.72 0.54 745.72 -102.6 142.86 212.04 -3.02 13.66 19.50
B2 0.5 5.0 5.0 5.0 437.08 0.28 437.08 -31.02 20.99 42.67 4.51 6.96 11.16
B3 1.0 5.0 5.0 5.0 589.81 0.16 589.8 -22.48 10.12 28.80 -4.17 9.77 17.54
B4 1.5 5.0 5.0 5.0 390.42 0.22 390.42 -10.43 6.02 15.35 4.78 5.58 10.01
B5 2.0 5.0 5.0 5.0 554.19 0.15 554.19 -9.99 8.89 20.14 -0.59 9.08 16.06
B6 ∞ 5.0 5.0 5.0 353.79 0.2 353.79 0.35 5.01 9.16 0.83 4.85 8.97

C1 0.05 0.1 1.0 0.2 7.91 0.17 7.91 -33.79 2.12 33.87 0.58 0.33 0.67
C2 0.5 0.1 1.0 0.2 5.59 0.25 5.59 -18.12 1.14 18.16 1.03 0.32 1.08
C3 1.0 0.1 1.0 0.2 9.82 0.46 9.83 -11.47 0.78 11.51 1.29 0.53 1.40
C4 1.5 0.1 1.0 0.2 8.93 0.58 8.95 -11.27 0.62 11.29 0.71 0.59 0.93
C5 2.0 0.1 1.0 0.2 11.98 0.77 12.01 -7.55 0.42 7.57 0.55 0.65 0.86
C6 ∞ 0.1 1.0 0.2 14.88 1.09 14.92 -2.16 0.25 2.19 -1.89 0.25 1.92

D1 0.05 0.5 5.0 1.0 106.87 7.99 107.17 -69.94 3.33 70.02 -3.04 7.25 8.40
D2 0.5 0.5 5.0 1.0 82.44 7.69 82.80 -44.12 1.03 44.15 -12.55 4.7 13.45
D3 1.0 0.5 5.0 1.0 95.70 8.00 96.04 -16.49 1.93 16.64 -4.21 2.72 5.05
D4 1.5 0.5 5.0 1.0 82.49 7.24 82.81 -20.79 1.17 20.84 -9.87 2.14 10.23
D5 2.0 0.5 5.0 1.0 94.04 7.12 94.31 -9.59 0.84 9.64 -0.78 1.58 3.13
D6 ∞ 0.5 5.0 1.0 79.99 5.95 80.21 -10.84 1.01 10.92 -9.53 0.99 9.63

E1 0.05 0.3 6.0 0.6 42.99 2.14 43.05 -43.24 2.93 43.34 -0.69 1.54 1.71
E2 0.5 0.3 6.0 0.6 50.17 3.78 50.31 -21.67 0.9 21.69 -3.15 1.34 3.45
E3 1.0 0.3 6.0 0.6 49.20 4.28 49.39 -16.29 0.14 16.29 -4.33 1.40 4.58
E4 1.5 0.3 6.0 0.6 48.27 4.34 48.47 -12.23 0.91 12.28 -4.43 1.77 4.88
E5 2.0 0.3 6.0 0.6 56.16 5.08 56.39 -9.27 0.65 9.29 -3.47 1.2 3.68
E6 ∞ 0.3 6.0 0.6 53.61 4.05 53.77 -5.47 0.23 5.48 -4.41 0.31 4.42

F1 0.05 0.6 12.0 1.2 113.56 8.25 113.86 -50.01 1.61 50.03 -4.82 4.09 6.52
F2 0.5 0.6 12.0 1.2 121.47 11.00 121.97 -19.90 1.18 19.94 -3.06 3.01 4.44
F3 1.0 0.6 12.0 1.2 113.10 9.81 113.53 -12.64 1.51 12.74 -3.03 2.47 4.2
F4 1.5 0.6 12.0 1.2 108.30 8.8 108.66 -10.05 1.25 10.13 -3.48 1.86 4.27
F5 2.0 0.6 12.0 1.2 105.95 8.24 106.27 -8.19 1.01 8.26 -3.28 1.44 3.82
F6 ∞ 0.6 12.0 1.2 100.45 7.42 100.72 -6.05 0.72 6.10 -4.12 0.90 4.27

Table 3.3: Tabulated are the percentage errors in the simulated velocity of a single
particle settling parallel to a wall under gravity and at different normalized wall
gaps. Different sets of computations including various types of grid aspect ratio as
well as particle diameter to the grid size, Λ(i) are studied. For each set, different
wall distances of δp, is examined to study the error in the settling velocity, e||,
drifting velocity, e⊥, and the overall error, e. Flow parameters are kept constant in
all cases with Stokes number of St=10 and unbounded particle Reynolds number of
ReStkp =0.1. The results of the present wall-modified correction scheme is compared
with its unbounded counterpart as well as the classical uncorrected point-particle
approach.
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Figure 3.7: Shown are velocity of a particle settling under gravity parallel to a
wall at different wall distances of (a): δp=0.05, (b): δp=0.5, (c): δp=1.5 and (d):
δp=∞. Results of the present scheme with wall-modified version (dash-dotted
blue), unbounded version (dotted red) and uncorrected scheme (dashed black) are
all compared against the reference velocity (solid black). These results are based
on case A of Tab. 3.3.
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cle Reynolds numbers. Unlike the previous part, the reported particle Reynolds
number here is based on its actual velocity and defined by Rep=ReStkp /f ||(δp, Rep)

which varies from 0.044 to 10. For all cases, settling is performed at δp=0.05 for
which the deviation between unbounded and wall-modified correction schemes of
the previous part was found to be significant. For studied cases here, the whole
terms in Eq. 3.3.18 hold and we use first order forward Euler finite difference
scheme to solve Eq. 3.3.8 and obtain its reference velocity as a function of time.

As shown in Tab. 3.4, the error in uncorrected scheme is reduced as Rep in-
creases which is in line with the observations of the preceding works (Horwitz &
Mani, 2018; Balachandar et al., 2019). This is conceptually justified due to the
fact that, unlike particles with small Rep, higher Reynolds number particles move
faster and stay less in their own disturbance field created in the previous time step.
Although this diminishes the need for the correction, the error of approximately
30% that pertains to the case with Rep=10 (the largest studied Rep), is still consid-
erable. As listed in Tab. 3.4, the present wall-modified correction scheme reduces
the errors by approximately one order of magnitude for cases with Rep<10 and
results in better predictions compared to the unbounded version wherein the wall
effects are ignored.

It should be emphasized that the present model is constructed based on the
small Rep assumption. Although the finite Rep effects are partially accounted for
through the factor Cr (Eq. 3.2.29), a more elaborate formulation is required to
improve the accuracy of the model for Rep>10. For such cases, the assumption
of symmetric Stokes solution is not valid anymore and the linear superposition of
the perturbations caused by neighbour cells used in the derivation of Kp may be
broken, that are left for future investigations. Similar observations were achieved
by Horwitz & Mani (2018) wherein they showed that their unbounded correction
scheme that was developed based on small Rep, is still reliable for cases with Rep
of 10 with errors in settling velocity of 10%. Concerning the Stokes number effects,
our results show insignificant changes to the prediction of the present model for
the studied range of this parameter (3<St<30).
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Case Rep St
uncorrected

e‖ e⊥ e

corrected using
unbounded version
e‖ e⊥ e

corrected using
wall-modified version

e‖ e⊥ e

R1 0.044 3.0 32.94 1.64 32.99 -41.59 2.77 41.68 -3.10 0.77 3.20
R2 0.044 10.0 40.80 2.02 40.85 -41.58 2.84 41.68 -2.74 0.86 2.88
R3 0.044 30.0 61.31 3.09 61.38 -47.91 3.63 48.05 -6.75 1.23 6.87

R4 0.5 3.0 50.95 2.60 51.02 -48.35 3.99 48.52 -4.11 1.43 4.66
R5 0.5 10.0 53.11 2.68 53.18 -49.24 3.74 49.41 -1.86 1.31 2.78
R6 0.5 30.0 52.43 2.62 52.50 -47.14 3.07 47.26 -1.46 1.24 2.11

R7 5.0 3.0 39.62 1.77 39.66 -26.45 2.34 26.58 2.76 1.11 3.18
R8 5.0 10.0 39.77 1.76 39.81 -26.18 2.40 26.31 2.96 1.10 3.23
R9 5.0 30.0 39.90 1.76 39.94 -26.16 2.37 26.27 3.04 1.10 3.24

R10 10.0 3.0 33.56 1.26 33.59 -17.60 2.23 17.77 5.25 0.76 5.31
R11 10.0 10.0 34.06 1.27 34.09 -17.45 2.26 17.60 5.45 0.76 5.50
R12 10.0 30.0 33.92 1.26 33.94 -17.39 2.27 17.54 5.40 0.74 5.45

Table 3.4: The effects of particle Reynolds number, Rep, and particle Stokes num-
ber, St, on the velocity of a single particle settling parallel and close to a wall
at δp=0.05 are shown. The anisotropic grid resolution of case E from Tab. 3.3
with Λ=[0.3, 6.0, 0.6] is employed for all cases. The wall-modified and unbounded
versions of the present correction scheme are compared together and against the
uncorrected PP approach in terms of the error in settling velocity, e||, drifting
velocity, e⊥ and total velocity, e.
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3.3.3 Free falling particle normal to the wall

This section verifies the present model for capturing the disturbance field in the
wall-normal motion of particles, as commonly encountered in wall-bounded particle-
laden flows. The free falling motion of a particle normal to the wall is considered
as a test case for this part. In such scenario, a particle falls under gravity and its
drag coefficient increases as it approaches to the wall, owing to the wall lubrica-
tion effects. Gondret et al. (1999) observed that depending on the particle Stokes
number, it could either sit on the wall if St<20 or hit the wall and re-bound if
St>20. To eliminate the particle-wall collision and isolate the particle-fluid in-
teraction only, we perform the first situation wherein the particle is supposed to
retard and sit on the wall. Accordingly, the Stokes number of St=10 is chosen for
all the studied cases of this part.

Brenner (1961) derived an exact solution for the wall adjustment to the drag
coefficient of a particle in normal motion to the wall which has small Reynolds
number of Rep<0.1. In their work, a corresponding asymptotic solution was also
obtained that matches their exact solution for the normalized wall gaps of δp>1.38.
For δp<1.38, Cox & Brenner (1967) achieved an asymptotic solution that combined
with the one obtained by Brenner (1961) are used in this work for the wall ad-
justment drag coefficient of a particle in normal motion toward the wall. This
adjustment is expressed as

f⊥(δp) =

1 +
(

0.562
1+2δp

)
for δp > 1.38 (Brenner, 1961)

1
2δp

(
1 + 0.4δp log

(
1

2δp

)
+ 1.94δp

)
for δp < 1.38 (Cox & Brenner, 1967)

(3.3.22)
Figure 3.8 compares these asymptotic solutions to the exact solution of Brenner

(1961). Based on the adjustment factor provided by Eq. 3.3.22, the particle
equation of motion (Eq. 3.3.13) is solved for the reference velocity using a first
order forward Euler finite difference scheme. For all the studied cases, the particle
is initially stationary and located at the normalized wall gap of δp=7 and falls
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Figure 3.8: Shown is the wall adjustment to the drag coefficient of a particle in
wall-normal motion. Exact solution of Brenner (1961) is shown along with the
asymptotic solution provided by Brenner (1961) and Cox & Brenner (1967), given
in Eq. 3.3.22.

under gravity. Similar to the preceding section, results of the wall-modified and
unbounded versions of the present correction scheme are compared with those of
the uncorrected approach. Studied cases are listed in Tab. 3.5 that are carried out
using both isotropic and anisotropic grids. A range of particle Reynolds number
of 0.04<Rep<10 and Stokes number of 3<St<30 are used for each grid resolution.
For each case, the total time that particle requires to reach the normalized wall
gap of δp=0.5 is computed and compared against the corresponding reference value,
tref . The deviation of each scheme from the reference is quantified based on the
following metric

e =
t− tref
tref

(3.3.23)

As Tab. 3.5 shows, without correcting the PP approach, the considerable and
negative errors for each case imply that particle sees a smaller drag force due
to the disturbance created in the background flow, accelerates faster and reaches
the wall-gap of interest quicker. However, when the PP is corrected using the
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Case ReStkp St Λ(1) Λ(2) Λ(3) uncorrected
e

corrected using
unbounded version

e

corrected using
wall-modified version

e

N1 0.1 3.0 1.0 1.0 1.0 -30.55 32.30 -6.05
N2 0.1 10.0 1.0 1.0 1.0 -24.37 23.86 -4.77
N3 0.1 30.0 1.0 1.0 1.0 -15.09 10.13 -2.79
N4 5.0 10.0 1.0 1.0 1.0 -2.30 0.97 -0.07
N5 10.0 10.0 1.0 1.0 1.0 -1.37 0.62 0.02

N6 0.1 3.0 0.3 6.0 0.6 -9.62 4.95 -2.88
N7 0.1 10.0 0.3 6.0 0.6 -9.61 5.04 -2.75
N8 0.1 30.0 0.3 6.0 0.6 -9.57 4.78 -2.87
N9 5 10.0 0.3 6.0 0.6 -1.80 0.72 -0.24
N10 10 10.0 0.3 6.0 0.6 -0.73 0.52 0.1

Table 3.5: Errors calculated in the prediction of particle’s wall-normal motion.
Two sets of grid aspect ratio with various particle Reynolds numbers and Stokes
numbers are performed. For each case, the error in the time that particle requires
to reach the normalized wall gap of δp=0.5 is computed based on the wall-modified
and unbounded versions of the present correction scheme in comparison with that
of the uncorrected scheme.

present wall-modified correction scheme, it reduces the errors and results in better
prediction for the particle trajectory and velocity. Although the errors obtained
based on the unbounded version of the correction scheme are still better than
the uncorrected approach, the superiority of the wall-modified version on other
schemes is observed in this case as well.

Figure 3.9 shows the prediction of different schemes on the particle velocity and
trajectory of case N2 from Tab. 3.5. The reference velocity used for normalization
is based on Eq. 3.3.5 that pertains to the Stokes settling velocity of a particle in an
unbounded domain. As illustrated, the wall-modified version of the present model
captures quite well the accurate trajectory and velocity of the particle whereas the
unbounded scheme hinders the particle settling due to the overprediction in the
disturbance field. Results in this part along with the observation of the previous
parts underscore the need for accounting for the wall effects in capturing the dis-
turbance field and having a general correction scheme that could be applied to all
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Figure 3.9: Shown are the normalized velocity (left) and normalized wall-gap
(right) of a particle settling normal to a wall predicted by the wall-modified and
unbounded versions of the present correction scheme. Results are compared with
the uncorrected scheme as well as the reference. Results here pertain to the case
N2 from Tab. 3.5.

types of particle-laden flows in the presence and absence of no-slip boundaries.

3.4 Conclusion

Modeling two-way coupled Euler-Lagrange (EL) particle-laden flows using point-
particle (PP) approach can result in erroneous predictions due to an issue that
arises in the calculation of fluid forces acting on the particles. The available clo-
sures for force calculations are all based on the undisturbed fluid velocity, which
by definition is the fluid velocity not influenced by the presence of particles. In
the two-way coupled computations, however, the particle reaction force disturbs
the fluid velocity around the particle and using such a disturbed velocity for force
calculations in the next time step yields inaccurate inter-phase interactions and
wrong predictions. More importantly, depending on whether the particle is trav-
elling near a no-slip boundary or in an unbounded domain, its disturbance in the
background flow can be different in terms of shape and strength, and can also be
asymmetric.
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In this paper, we presented a general correction scheme for EL-PP approaches
to recover the undisturbed fluid velocity from the available disturbed field in the
presence and absence of the no-slip walls. In the present velocity correction ap-
proach, the disturbance created by a particle in a computational cell that carries
the particle is obtained by finding the response of the cell (its velocity) to the
particle force. Analogous to the motion of a solid object, the disturbance velocity
of the computational cell is obtained by treating the computational cell as a solid
object that is subjected to the particle force and dragged through the adjacent
computational cells (Esmaily & Horwitz, 2018). Knowing these two forces, the
disturbance velocity of the cell is solved using a Maxey-Riley equation of motion
for the computational cell. The model is general and can be used for (i) un-
bounded and wall-bounded regimes, (ii) isotropic and anisotropic grid resolutions,
(iii) particles bigger than the grid size, (iv) arbitrary interpolation and distribution
functions, and (v) flows with finite particle Reynolds number.

An empirical expression was obtained for the drag coefficient of the computa-
tional cell (K(i)

c ) that is applicable for a wide range of grid aspect ratios, typically
encountered in the particle-laden turbulent channel flows. The new expression,
obtained based on the employed collocated grid arrangement, is a function of the
grid size. Just as a slowly moving solid particle in a quiescent fluid influences
the near field through Stokes solution, the particle force at a computational cell
perturbs the surrounding cells. It was shown that for the employed collocated
grid arrangement, Stokes solution normalized by the characteristics length scale
of 0.25dc results in accurate predictions for the disturbance field created in the
surrounding cells in comparison with the numerical measurements.

Wall effects in the model were taken into account through two different factors;
(i) Ψ

(i)
k and (ii) Φ

(i)
kj . The first pertains to the wall modification to the drag co-

efficient of the computational cell near a no-slip boundary, analogous to the near
wall motion of a solid object. Two components for this parameter were obtained
for the disturbances created in parallel and wall-normal directions. For isotropic
grid, it was shown that the wall adjustment to the drag coefficient of a solid sphere
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moving near a no-slip wall, empirically derived by Zeng et al. (2009), can be an
excellent choice for Ψ

(i)
k . However, for anisotropic grids owing to their large aspect

ratios, this expression does not hold, and a new fitted expression was obtained that
covers a wide range of grid sizes and aspect ratios. The second parameter, Φ

(i)
kj , was

introduced to capture the wall effect on the Stokes solution of the computational
cell. It was shown that perturbation created at neighbouring cells by a compu-
tational cell that is exposed to the particle force differs in shape and strength as
the cell becomes closer to a no-slip wall. It was argued that one could directly use
the wall-modified Stokes solution instead of its unbounded counterpart, however,
due to the complexity and expense embedded in the implementation and solution
of the wall-modified version, Stokeslet solution was suggested as the second wall
adjustment factor. In that regard, we kept the Stokes solution in the formulation,
while its wall effect was accounted for by multiplying this solution by the ratio
of the wall-bounded to the unbounded Stokeslet solutions, defined as Ψ

(i)
k . Our

results showed that the choice of this ratio yields in good predictions with small
errors.

An unbounded version of the present model can be obtained by ignoring wall ef-
fects, i.e., letting Ψ

(i)
k =Φ

(i)
kj=1 in the formulation, that can be used in particle-laden

flows without no-slip boundary conditions. To verify the collocated adjustments
made in the formulation, the unbounded version of the scheme was first tested
for settling of a particle in an unbounded domain and results were compared with
those reported in Esmaily & Horwitz (2018). For the different studied flow and
grid parameters, it was shown that the model using the collocated grid arrange-
ment accurately captures the settling velocity of the particle with a few percent
errors.

To assess the model for wall-bounded applications, settling of a particle par-
allel to a no-slip wall was performed at various wall-normal distances. Consistent
with the observation of Esmaily & Horwitz (2018), the error in the uncorrected
particle velocity was observed to be a function of particle’s diameter to the grid
size, (dp/dc). Correcting the PP approach with the current model, however, cap-
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tured the disturbance field at all wall distances and significantly reduced the errors
in the predicted particle velocity by accurately recovering the undisturbed field.
Furthermore, it was observed that ignoring the wall effects in the formulation for
wall-bounded flows, i.e., assuming Ψ

(i)
k =Φ

(i)
kj=1, results in large errors that are in

the same order of magnitude of the uncorrected scheme, particularly in the near
wall motions. As particle gets away from the wall, however, the effects of wall
diminish and the formulation approaches the unbounded version.

Tests performed for a range of 0<Rep<10 revealed the fact that the error
in the uncorrected settling velocity decreases as Rep increases, consistent with
the observation of Balachandar et al. (2019). This is justified due to the fact
that particles with large Rep do not stay in their own disturbance, created in the
previous time step, and this alleviates the need for the correction. Nevertheless,
the relatively small errors associated with large Rep cases was still lowered using
the present correction scheme.

The last test cases were carried out on the free falling motion of a particle in the
wall-normal direction. It was shown that the particle’s velocity in the uncorrected
scheme is erroneously overpredicted which makes the particle hit the wall earlier
than it would in reality. When the PP approach is corrected with the present
model, however, it recovers the undisturbed velocity at any wall distance and
captures the particle’s velocity and trajectory more accurately. Tests performed
for this part with different grid configurations and flow parameters showed the
superiority of the present model to the uncorrected and unbounded correction
schemes.

The present correction scheme is general, cost-efficient and accurate that can
be easily implemented in EL-PP packages to study a wide range of particulate
flows with and without the no-slip boundaries. We conjecture that this scheme
could help improve the investigations and the state-of-the-art of the wall-bounded
particle-laden flows wherein the lack of accuracy of the standard uncorrected PP
approaches has been widely observed. For such flows, the proposed correction
scheme can significantly improve the predictive capability of point-particle method
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approaching those of the particle-resolved methods at significantly lower compu-
tational cost.

Appendix A. A simplified equation for Ψ
(i)
k on isotropic grids

A simplified expression for Ψ
(i)
k that is only applicable for isotropic grids is intro-

duced here. The new equation denoted by Ψiso
k is obtained based on the work of

Zeng et al. (2009). In their work, an expression using fully resolved direct nu-
merical simulation, was empirically derived for the wall adjustment to the drag
coefficient of a solid sphere in parallel motion to a no-slip wall. Our results show
that their wall adjustment expression matches our measured values for the wall
adjustment to the drag coefficient of isotropic computational cells. Accordingly,
the new equation for Ψ

(i)
k that is only applicable for isotropic computational cells

is introduced based on their empirical expression as

Ψiso
k =

(
1.028− 0.07

1 + 4δ2
k

− 8

15
log

(
270δk

135 + 256δk

))
, (3.4.1)

where

δk = x
(2)
k /(0.5dc)− 0.5, (3.4.2)

and x
(2)
k is the wall-normal distance of the center of the computational cell k,

normalized by its equivalent radius of 0.5dc. The choice of these two parameters
(x(2)

k and 0.5dc) are slightly changed compared to the original formulation of Zeng
et al. (2009) in order to produce better predictions. It is also imperative to mention
that Eq. 3.4.1 covers a wide range of wall distances and approaches unity when
the computational cell is sufficiently away from the wall. Figure 3.10 shows the
predictions of this equation for both parallel and normal directions compared to
the measured values. It should be emphasized that unlike the predictive capability
of the equation above for the uniform grid resolutions, it deviates significantly for
anisotropic grids with high aspect ratios.
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Figure 3.10: Shown are the predictions of Eq. 3.4.1 for the wall adjustment to
the drag coefficient of an isotropic computational cell compared to the measured
values for parallel (left) and perpendicular (right) forces to the wall.

Appendix B. Stokeslet solutions

In this Appendix, the wall-bounded and unbounded Stokeslet solutions used in the
derivation of Φ

(i)
kj in section 3.2, are explained in detail. The unbounded Stokeslet

solution that is the flow generated by a point force in an unbounded quiescent fluid
with dynamic viscosity of µ is expressed as (Blake, 1971)

u
(i)
stkl,un =

F (j)

8πµ

(
δij
|rkj|

+
r

(i)
kj r

(j)
kj

|rkj|3

)
(3.4.3)

where

r
(i)
kj = (x

(i)
j − x

(i)
k ), |rkj| =

√√√√ 3∑
i=1

(r
(i)
kj )2 (3.4.4)

and u(i) is the i component of velocity created at the location of (x
(1)
j , x

(2)
j , x

(3)
j )

by the point force, F (j), exerted in j direction and located at (x
(1)
k , x

(2)
k , x

(3)
k ). δij

is the Kronecker delta which is unity for i=j and zero otherwise. Similar to this,
the wall-bounded Stokeslet solution for a point force that is applied near a no-slip
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wall is expressed as (Blake, 1971)

u
(i)
stkl,b =

F (j)

8πµ

[(
δij
|rkj|

+
r

(i)
kj r

(j)
kj

|rkj|3

)
−

(
δij
|Rkj|

+
R

(i)
kjR

(j)
kj

|Rkj|3

)
+

2x
(2)
k (δjmδml − δj3δ3l)

∂

∂R
(l)
kj

(
x

(2)
k R

(i)
kj

|Rkj|3
−

(
δi3
|Rkj|

+
R

(i)
kjR

(2)
kj

|Rkj|3

))] (3.4.5)

where

R
(i)
kj =

r
(i)
kj , i = 1, 3

r
(2)
kj + 2x

(2)
k , i = 2

, |Rkj| =

√√√√ 3∑
i=1

(R
(i)
kj )

2 (3.4.6)

and x(2)
k is the wall distance at which the force is applied. The rest of parameters

are similar to those of the unbounded Stokeslet solution.
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Abstract

Modeling sediment-laden turbulent channel flow using Euler-Lagrange (EL) point-
particle (PP) approach is challenging due to the disturbance created by the rel-
atively large size particles in the near wall region of the channel. The accuracy
of this approach depends on accurate estimation of fluid forces acting on the par-
ticles which are in turn based on the undisturbed fluid velocity at the location of
particle. When the fluid and particle phases are two-way coupled, the particle
reaction force disturbs the background flow at the location of particle, and using
such a disturbed fluid velocity for force computations results in erroneous predic-
tions. Such a disturbance becomes larger as the particles gets bigger than the local
grid size, a scenario that typically happens in the near wall region of the highly
turbulent channel flows. In this paper, large eddy simulations (LES) coupled with
PP approach is employed for modeling the sediment-turbulence interactions in a
horizontal channel flow with Reτ=583.3. In order to accurately obtain the fluid
forces acting on the particles, the PP approach is corrected by the recently de-
veloped correction scheme of Pakseresht et al. (JCP, 2020). It is shown that the
standard PP approach (uncorrected), wherein the undisturbed fluid velocity is not
available, fails in capturing the experimental observations with flow remains nearly
unchanged of presence of particles. However, when this approach is corrected and
undisturbed fluid velocity is recovered, most of the experimental observations are
achieved, revealing the importance of the undisturbed field in force computations.
An increase in the friction velocity due to presence of particles is captured in con-
sistent with the corresponding experiment. Damping in the outer layer as well
as enhancing in the inner layer of the fluid mean velocity are both captured with
the corrected PP approach. In line with the experimental observations, enhancing
in the turbulence intensities as well as sweep and ejection events in the near wall
region are all observed, as well.
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4.1 Introduction

Interaction of small particles with wall-bounded turbulence is widely encountered
in environmental phenomena such as sediment transport within rivers as well as
industrial applications, e.g., pneumatic transport of granular materials, among oth-
ers. Accurate modeling of these flows is of paramount importance in order to bet-
ter understand the interaction of particle and turbulence, make robust predictions
without performing expensive experiments and ultimately optimize the devices
wherein these flows occur. Of specific interest is the interaction of sediment par-
ticles with turbulence in a horizontal channel flow wherein a unique configuration
exists. Due to the normal alignment of the gravity to the flow direction, inertial
sediments tend to accumulate near the bed with relative large size compared to the
local fluid length scale. Point-Particle (PP) approach has received much attention
in modeling of this flow due to its affordability, simplicity and partial accuracy. In
this approach, the fluid phase is solved using an Eulerian framework while sedi-
ment are treated as Lagrangian subgrid points in the flow and tracked following
the Newton’s second law of motion based on the available closures for the fluid
forces acting on the point-particles.

For two-way coupled regimes, wherein each phase affects the other Elghobashi
(1991), the effect of particles on the carrier phase is modelled by applying the
particle reaction force to the background flow through a momentum source term.
Using such a simplified point force in modelling the inter-phase interactions, how-
ever, could result in some inaccuracies in capturing the experimental observations
of particle-laden turbulent channel flows.

Coleman (1986) and Lyn (1988) observed a damping in the whole fluid velocity
profile due to the presence of particles in the flow. They explained two mecha-
nisms for such a damping; (i) roughness at the bed as well as (ii) local interaction
of suspended particles and turbulence. Rogers & Eaton (1991) found similar flat-
tening in the fluid mean velocity of a particle-laden flow over a flat plat due to
the interaction of particles and turbulence near the wall. Best et al. (1997) and
Muste & Patel (1997) observed the same reduction and claimed that this damping
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is only attributed to the roughness at the bed. Following their work, Kulick et al.
(1994) found insignificant effect of particles on the mean fluid flow in a vertical
channel flow. In such a configuration, the gravity is align with the main flow and
the near wall concentration of particles is lower than the horizontal channel flows,
hence reduction in the interaction of particles and near wall turbulence. Kaftori
et al. (1995) observed that such a reduction in the fluid mean velocity can only
occur when there is a significant concentration of neutrally buoyant particles near
the wall.

In addition to these observations, Kiger & Pan (2002) showed that in the pres-
ence of dilute loading of particles (O(10−4)) in a horizontal turbulent channel flow,
the dimensional fluid mean velocity is slightly damped in the outer layer. How-
ever, unlike the outer layer, a 7% increase in the friction velocity (the velocity
representing the near wall shear stress) was observed in their work. Although they
did not directly measure flow quantities near the bed, such an increase in their
calculated friction velocity could indirectly reveal a potential enhancement in their
near wall fluid velocity. Following these observations, they argued that the damp-
ing phenomenon becomes stronger when such a larger friction velocity is used for
normalizing the fluid velocity profile. In other words, they claimed that the main
reason behind damping is attributed to the increase in friction velocity than the
local interaction of particles and turbulence in the outer layer.

Righetti & Romano (2004) investigated the effect of sediment particles on the
dynamics and structure of the near wall region of a highly turbulent channel flow
(Reτ=730∼811) with measurement down to viscous sublayer (y+=3). In their
work and consistent with the preceding works, damping in the outer layer was
observed while for the first time, they reported an enhancement in the near wall
fluid velocity profile. Their experiments with different size particles showed depen-
dency of the damping on the size of particles with large size particles affecting the
fluid phase stronger. In line with Kiger & Pan (2002), the higher friction veloc-
ity due to presence of particles was also observed in their measurements. Muste
et al. (2009) showed that the damping effect is more related to the interaction
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of particles and the near wall turbulence structure than the equivalent roughness
created by particles at the wall. This observation was found by increasing the flow
Reynolds number so that no streak is formed on the bed which obviates the pos-
sibility of the effect of roughness to the damping. They also reported that friction
velocity remains almost identical as the clear case, although that contradicts their
observation on the enhancing mean fluid velocity in the near wall region. Beside
from these observations on the mean fluid velocity across the boundary layer, a
difference between velocity of particle and fluid phases is observed in most of the
experimental works with fluid to be faster in the outer layer while slower in the
inner layer. Similar observations were obtained in the work of Yu et al. (2014).

Turbulence modulation due to presence of particles has also been observed.
Kulick et al. (1994) found a damping in the vertical velocity fluctuations in vertical
turbulent channel flow. Kiger & Pan (2002); Righetti & Romano (2004) observed
a damping in both streamwise and vertical fluctuations of the outer layer whereas
the latter found an increase in the corresponding parameters in the near wall
region. In addition, Righetti & Romano (2004) revealed an enhancing in the near
wall turbulence coherent structure and found that the main mechanism in such a
damping and enhancing is mostly related to the burst and sweep events in the near
wall, the mechanism that was later on observed by Muste et al. (2009) as well.

Whether these experimental observations can be captured by the PP approach
has been an open question in the field. McLaughlin (1989) and Pedinotti et al.
(1992) were the first groups that performed particle-laden vertical channel flow
using Direct Numerical Simulation (DNS) one-way coupled with the PP approach
to investigate the segregation and preferential concentration of particles in a ver-
tical turbulent channel flow. Rouson & Eaton (2001) used the same formulation
to perform the experimental work of Kulick et al. (1994) with a smaller Reynolds
number to investigate the preferential concentration and evaluate statistics that
were unavailable experimentally. Wang & Squires (1996) performed Large Eddy
Simulations (LES) one-way coupled with PP approach to predict the experimental
work of Kulick et al. (1994). Streamwise particle fluctuation relative to the fluid
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was correctly predicted in their work. Observations on the preferential concentra-
tion were also similar to those found in the experiments of Fessler et al. (1994).
Yamamoto et al. (2001) carried out LES two-way coupled with PP approach to sim-
ulate the particle-turbulence interactions in a vertical channel flow with Reτ = 644.
Several discrepancies between their numerical results and the experiment of Kulick
et al. (1994) are observed. Profile of particle mean velocity is over predicted in
their computations while better results for the stremawise and wall-normal parti-
cle velocity fluctuations were observed. Concerning the fluid phase, the damping
in the streamwise fluid velocity fluctuation was not predicted for large size parti-
cles, and they found that the turbulence modification is only captured for small
Stokes number particles. Segura (2004) in a comprehensive study using LES and
PP approach performed computations corresponding to the experiments of Paris
& Eaton (2001) and Benson & Eaton (2003) for smooth and rough walls, respec-
tively. For dilute regimes, they showed that LES coupled one-way with PP was
able to adequately predict particle motion for smooth wall boundary conditions,
however, there were some discrepancy for rough walls. For higher mass loading,
they showed that two-way coupled LES with PP was not able to accurately predict
turbulence modifications measured in the corresponding experiment. They found
that artificially increasing the mass loading of particles by a factor of 10 could
show minimal change in the gas-phase mean streamwise velocity and predict the
non-uniform turbulence attenuation and the Reynolds stress profile measured by
the experiment. Vreman (2007) performed simulations of a vertical air-solid pipe
flow using DNS coupled with PP, some of the discrepancies reported in Yamamoto
et al. (2001) between numerical results and experiment were also revealed in their
work.

In nearly all predictions using PP approach, some discrepancy has been ob-
served in comparison to the experimental works. Of importance is the prediction
of horizontal channel flow due its unique configuration. In such a flow, depend-
ing on flow Reynolds number and the near wall grid resolution, particles become
relatively large in that region and the point-particle assumption does not hold any-
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more Eaton (2009); Balachandar (2009). Therefore, using such a simplified model
results in some inaccuracies in capturing the experimental observations (Segura,
2004; Eaton, 2009; Pakseresht et al., 2017).

One source of inaccuracy is that, the fluid phase equations in this approach are
solved for the entire flow field including the volume occupied by the particles, and
the mass displacement of the particles is not taken into account. Several works have
shown the considerable effects of this displacement and have argued that this effect
should be included in addition to the point-particle force (Ferrante & Elghobashi,
2004; Apte et al., 2008; Cihonski et al., 2013; Pakseresht & Apte, 2019b), in order
to improve the predictions. The other one, is that the accuracy of PP in predicting
the fluid forces acting on the particles can decay when the two phases are two-way
coupled. Typical force closure models require the undisturbed fluid velocity for
accurate estimation of fluid forces, however, in the two-way coupled regimes, the
particle reaction force disturbs the background flow and results in a disturbed
fluid velocity at the location of particles. Then, using such a disturbed field for
force computations produces erroneous results and large deviations in the inter-
phase predictions. As the size of particle becomes bigger, these deviations in the
prediction and inter-phase interactions become larger too.

Recently, efforts have been made in order to improve the accuracy of the stan-
dard PP approach by retrieving the undisturbed fluid velocity from the available
disturbed field. Gualtieri et al. (2015) regularized the PP approach for the un-
bounded flows by deriving analytical equations to remove the self-induced velocity
disturbance created by the particles. Their approach requires considerable compu-
tational resources to resolve the stencil over which the particle force is distributed
using a Gaussian filter function. Horwitz & Mani (2016, 2018) originated a method
to obtain the undisturbed velocity based on the enhanced curvature in the dis-
turbed velocity field for particle Reynolds numbers of Rep<10.0. A C-field library
data was built using reverse engineering technique that should be added to the
current EL-PP approaches for recovering the undisturbed velocity. Although their
model showed excellent agreement in the predictions of particle settling velocity
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and decaying isotropic turbulence (Mehrabadi et al., 2018), it is limited to (i) the
isotropic computational grids, (ii) particle-laden flows with particles with the max-
imum size of the grid (Λ=dp/∆) of O(1), where ∆ is the grid size and dp particle
diameter, and (iii) the unbounded flows. Ireland & Desjardins (2017) derived an
analytical expression for recovering the undisturbed velocity in unbounded flows
based on the steady state Stokes solution that was derived as the solution of a
feedback force distributed to the background flow using a Gaussian smoothening.
Although their model accounts for the mass displacement of the particles, it is
limited to unbounded flows with small Rep.

Esmaily & Horwitz (2018) originated a correction scheme in which each com-
putational cell is treated as a solid object that is immersed in the fluid. Each
computational cell that is subjected to the two-way coupling force is dragged at
a velocity that is identical to the disturbance created by the particle. In their
physics-based model, the disturbance of each computational cell created by the
particle is obtained by solving the Lagrangian motion of the cell concurrently with
the equation of motion of the particle. Although their model was devised to han-
dle (i) relatively large size particles (Λ>1), (ii) isotropic and anisotropic grids, (iii)
flows with finite Rep, and (iv) arbitrary interpolation and distribution functions, it
is limited to unbounded flows. Balachandar et al. (2019) developed a model based
on analytical and empirical equations that correct the PP approach for modelling
particle-laden flows with a wide range of particle Reynolds number, Rep<200. Al-
though their model account for the mass displacement of the particles (similar to
Ireland & Desjardins (2017)) and is built for a wide range of particle Reynolds
number, they are derived for unbounded flows only, and based on a specific filter
function; namely Gaussian, that limits their applicability.

Battista et al. (2019) extended their regularized PP scheme for a turbulent
particle-laden pipe flow and Pakseresht et al. (2019) and Horwitz et al. (2019)
underscored the need for correction schemes that are applicable for wall-bounded
flows. In a generic model, Pakseresht et al. (2020) developed a correction scheme
that is applicable for unbounded and wall-bounded flows. It handles highly skewed
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anisotropic grids that is used for high resolution of turbulent channel flows near
the wall.

In this work, the recently developed correction scheme by Pakseresht et al.
(2020) is employed to regularize the PP approach to perform a sediment-laden
horizontal turbulent channel flow. We show that the standard PP approach fails
in capturing the particle-turbulence interactions that are experimentally observed
in the literature. It will be shown that, however, when the PP is corrected and
the undisturbed fluid velocity is recovered at the location of particles, most of the
experimental observations, such as damping in the outer layer as well as enhancing
in the inner layer are accurately captured.

The rest of paper is arranged as follows. Section 4.2 describes the mathemati-
cal formulation of EL point-particle approach modified with the mass displacement
effects of particles. The correction scheme for PP approach is explained briefly.
Section 4.3 validates the LES and the employed grid resolution for a clear turbu-
lent channel flow without particles. Results are compared with the experiment of
Kiger & Pan (2002) and DNS of Moser et al. (1999). In the same section, LES cou-
pled with PP approach with and without the correction scheme are performed to
simulate the horizontal turbulent particulate channel flow of Kiger & Pan (2002).
With such a comparison, the need for correcting the standard PP approaches in
modeling particle-laden channel flows is highlighted. Section 4.4 concludes the
paper with final remarks and summary of the work.

4.2 Methodology

An EL approach is used wherein the continuity and momentum equations for the
fluid phase are solved on a fixed Eulerian framework using LES formulation while
particles are assumed subgird and modelled as Lagrangian points. Particles are
tracked using Newton’s second law of motion and the fluid forces acting on the par-
ticles are computed based on the available closures. The inter-phase interactions
are performed using two different approaches: (i) the standard two-way coupling
and (ii) the volumetric two-way coupling (Pakseresht & Apte, 2019b). In the first,
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two phases are coupled through the momentum exchange reaction forces while in
the latter, in addition to the momentum exchange force, the mass displacement ef-
fects of particles on the carrier phase are taken into account. In order to accurately
predict the particle reaction forces to the background flow, our recently developed
correction scheme (Pakseresht et al., 2020) is employed to recover the undisturbed
fluid velocity at the location of particles. Details of different approaches and the
corresponding formulations are given in the following section.

4.2.1 Carrier phase formulation

In order to account for the mass displacement effects of particles on the background
flow, volume-averaged continuity and momentum equations are used for the fluid
phase as expressed in Eq. 4.2.1 and 4.2.2, respectively (Anderson & Jackson, 1967;
Dukowicz, 1980; Joseph et al., 1990)

∂

∂t
(ρfθf ) +

∂

∂xj
(ρfθfuj) = 0, (4.2.1)

∂

∂t
(ρfθfui) +

∂

∂xj
(ρfθfuiuj) =

− ∂P

∂xi
+

∂

∂xj

[
2µf

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
δij
∂uk
∂xk

)]
+ ρfθfgi + Fi,p→f ,

(4.2.2)

where gi is the gravitational acceleration, µf , ρf , θf , and uf are dynamic viscos-
ity, density, volume fraction, and velocity of the fluid phase, respectively. Fluid
volume fraction in each computational cell is calculated as θf=1−θp, where θp cor-
responds to the volume fraction of particles occupying the computational cell. The
particle force per unit volume, F t

i,p→f , is the particle reaction force that is equal
and opposite to the particle surface forces exerting by the fluid phase on them.
Since the zero-Mach number variable density equations account for the volumetric
displacement of the carrier phase as well as point-particle forces, thus the inter-
phase coupling is named volumetric two-way coupling (V2W). Setting θf=1 in the
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Abbreviation Coupling type Fi,p→f
Volumetric

displacement effects

S2W Standard two-way coupling Yes No
V2W Volumetric two-way coupling Yes Yes

Table 4.1: Terminologies used for different couplings in EL formulations.

above formulation, the standard two-way coupling (S2W) is recalled in which the
displacement effects are neglected. Table 4.1 describes these inter-phase couplings.
It should be noted that throughout the paper the two-way terminology is only
used for the inter-phase coupling, while in the computations reported here, the
inter-particle collision is employed, as well.

For LES, the equations above are spatially filtered using Favre (density-weighted)
averaging (e.g., ρθu=ρθũ) where the filtering operation is denoted by an overbar
and density-weighted Favre averaging by a tilde (Moin & Apte, 2006). The gov-
erning equations for LES of particle-laden turbulent flow then become

∂

∂t

(
ρfθf

)
+

∂

∂xj

(
ρfθf ũj

)
= 0 (4.2.3)
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(4.2.4)
where,

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3
δij
∂ũk
∂xk

. (4.2.5)

Here, ρfθf is the filtered density modified by local volume fraction. ũi, P̃ and S̃ij
are the Favre-averaged velocity field, pressure and rate of strain respectively.

The additional term in the momentum equation containing qr,volij , represents
the subgrid-scale stress in the volumetric coupling formulation and is modeled
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using the dynamic Smagorinsky (Germano et al., 1991; Moin et al., 1991). The
unclosed term in Eq. 4.2.4 is modeled using the gradient-diffusion hypothesis with
eddy-viscosity as

qr,volij = ρfθf (ũiũj − ũiuj) = 2µtS̃ij −
1

3
ρfθfq

2δij (4.2.6)

where 1
2
ρfθfq

2 is the subgrid kinetic energy and the eddy viscosity, µt, is calculated
as

µt = Cµρfθf∆
2|S̃| ; ∆ = V 1/3

cv ; |S̃| =
(
S̃ijS̃ij

)1/2

(4.2.7)

where Vcv is the volume of the cell and the model constant, Cµ, is evaluated dynam-
ically (Pierce & Moin, 1998). Note that in the volumetric coupling formulation the
subgrid effects of fluid displacement are also present in the subgrid model. For the
standard two-way coupling the subgrid-scale stress term, qr,2wij , is simply obtained
by setting θf=1 in the Eq. 4.2.6-4.2.7.

4.2.2 Dispersed phase formulation

Point-particle approach (Maxey & Riley, 1983) is used for the motion of particles
wherein particles are assumed subgrid and tracked using the Newton’s second law
of motion as

dxp
dt

= up (4.2.8)

mp
dup
dt

= Fg + Fpr + Fd + Fl,Saff + Fam (4.2.9)

where xp and up are the respective position and velocity vector of each individual
particle with mass of mp. Equation 4.2.9 shows all possible forces such as weight,
Fg, dynamic pressure-gradient force, Fpr, shear induced lift force (Saffman, 1965),
Fl,Saff , as well as added mass force (Auton, 1983), Fam. It has been observed that
the Basset history force does not remarkably affect the motion of particles in the
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presence of the steady drag force (Maxey & Riley, 1983; Bagchi & Balachandar,
2003); therefore, this force is excluded in this study. All aforementioned forces are
given as follows

Fg = (ρp − ρf )ϑpg ; g = −9.81m/s2 (4.2.10)

Fpr = −ϑp∇P f |p (4.2.11)

Fl,Saff = mpCl
ρf
ρp

(
ũf |p − up

)
× (∇× ũf )|p ; Cl =

1.61× 6

πdp

√
µf
ρf
| (∇× ũf )|p |

(4.2.12)

Fam = mpCam
ρf
ρp

(
Dũf |p
Dt

− dup
dt

)
; Cam = 0.5 (4.2.13)

Fd = mp
Cd
τp

(
ũf |p − up

)
; Cd = (1 + 0.15Re0.687

p ) (4.2.14)

where, τp=(ρpdp
2)/(18µf ) and Rep=ρf |urel|dp/µf are the respective particle re-

laxation time and particle Reynolds number. D/Dt and d/dt denote the time
derivative following the fluid (material derivative) and particle phases, respectively
(Maxey & Riley, 1983).

The closures used for force calculations of Eq. 4.2.9 rely on the undisturbed
fluid velocity at the location of particles. This is by definition the velocity that
is not influenced by the presence of particles, which is no longer available when
two phases are two-way coupled. In order to obtain such a velocity, our recently
developed correction scheme (Pakseresht et al., 2020) is employed to recover the
undisturbed velocity from the available disturbed flow flied. It should also be
mentioned that the undisturbed velocity has to be based on the unfiltered velocity
field, while in LES simulations, this is the filtered fluid velocity that is available.
Although particles are indirectly affected by the SGS model used for fluid phase,
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Figure 4.1: A computational cell with dimensions of [a(1), a(2), a(3)] in streamwise,
wall-normal and spanwise directions, respectively. The cell is located at a wall-
normal distance of x(2)

c .

further investigations on the need for particle SGS model (Marchioli, 2017) is left
for future investigations.

4.2.3 Correction scheme

The undisturbed fluid velocity at the location of a particle is recovered by obtaining
the response of the computational cell to the particle force located in the cell. The
velocity generated by this force is the disturbance created in the cell and that
is the missing velocity in the standard PP approaches. If accurately predicted,
this velocity recovers the undisturbed fluid velocity from the available disturbed
field. The newly developed general correction scheme of Pakseresht et al. (2020)
is used that captures the disturbance created by particles in the presence and
absence of no-slip walls. In such a generic model, the disturbance is predicted by
modelling the computational cell with dimensions of [a(1), a(2), a(3)] (see Fig. 4.1)
as a solid object that is subjected to the particle force and is dragged through
the surrounding computational cells. Using a Maxey-Riley equation of motion
for the computational cell, the disturbance created by the particle’s force, u(i)

c , is
computed as

3

2
mc

du
(i)
c

dt
= −3πµdcK

(i)
t u

(i)
c − F (i), (4.2.15)
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where dc= 3
√

(6/π)a(1)a(2)a(3) is the volume-equivalent diameter of the computa-
tional cell with mass of mc=(π/6)ρfd

3
c . The term on the left hand side expresses

the unsteady effect of the force on the computational velocity wherein the prefactor
3/2 captures the added mass effect. The first term on the right hand side of the
equation, 3πµdcK

(i)
t u

(i)
c , is the Stokes drag force acting on the computational cell

by its surrounding cells wherein the relative velocity is −u(i)
c as the ambient flow

for the disturbance field is at rest. The adjustment to the Stokes drag is expressed
by the factor K(i)

t as,

K
(i)
t =

K
(i)
c Cr

K
(i)
p C

(i)
t

. (4.2.16)

Here, K(i)
c accounts for non-sphericity of the computational cell whileK(i)

p accounts
for wall effects as well as the interpolation and distribution functions. The factor
Cr accounts for the non-linear finite force effects whereas C

(i)
t considers the limited

exposure time of the particle force to the computational cell. These physics-based
factors are defined and explained in the following.

Geometric correction factor, K(i)
c

The geometric correction factor, K(i)
c , accounts for non-sphericity of the computa-

tional cell and depends on its size and aspect ratio as

K(i)
c = 0.1705 exp

[
(Γ(i)

max)
−0.4005(Γ

(i)
min)0.06408

]
(Γ(i)

max)
0.7058(Γ

(i)
min)−0.452

+ ln
[
(Γ(i)

max)
−0.03746(Γ

(i)
min)0.2049

]
(Γ(i)

max)
0.355(Γ

(i)
min)0.05338,

(4.2.17)

where

Γ(i)
max = max

{
a(j)

a(i)
,
a(k)

a(i)

}
, Γ

(i)
min = min

{
a(j)

a(i)
,
a(k)

a(i)

}
; j, k 6= i. (4.2.18)



114

Figure 4.2: Schematic of computational cell k that is disturbed by a small force
and has disturbance velocity of u(i)

c,k which perturbs the adjacent computational
cells through the modelled Stokes solution. r′kj is the normalized distance between
cell k and j with polar angle of θ(i)

kj between the line passing through these cells
and i direction.

Wall effects and interpolation effects, K(i)
p

The factor K(i)
p accounts for the wall effects on the disturbance field as well as

the choice of arbitrary interpolation and distribution functions typically employed
in the point-particle approach. This correction factor is analytically derived and
expressed as

K(i)
p =

nj∑
j=1

[
γj

nk∑
k=1

[
α

(i)
kj βkΦ

(i)
kj

Ψ
(i)
k

]]
(4.2.19)

wherein, γj and βk are the interpolation and distribution coefficients pertain to
the surrounding computational cells of j and k, respectively. nj is the number of
computational cells from which the fluid properties are interpolated to the par-
ticle’s location, while nk denotes the total number of adjacent cells to which the
particle’s force is distributed. Parameter α(i)

kj is the Stokes solution that models
the perturbation induced at cell j by the disturbance created at cell k as

α
(i)
kj =

3

4
r
′−1
kj

(
1 + cos2θ

(i)
kj

)
+

1

4
r
′−3
kj

(
1− 3cos2θ

(i)
kj

)
, (4.2.20)

where θ(i)
kj is the polar angle between the line passing through the computational

cells k and j and the i direction and r
′

kj is the distance between these two cells
normalized by the characteristic length of the computational cell, 0.25dc (see Fig.
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4.2). Wall effects are accounted for through the correction factors of Ψ
(i)
k and Φ

(i)
kj .

The first one is the wall adjustment to the geometric correction factor of K(i)
c as

expressed below

Ψ
(i)
k = 1 +

A(i)

1 +B(i)h
(i)
k

, (4.2.21)

where h(i)
c,k is the normalized wall distance of the center of the computational cell

k obtained by

h
(i)
c,k =

x
(2)
c

a(i)
, i=1,3

x
(2)
c

a(1)
, i=2

(4.2.22)

with x(2)
c being the dimensional wall distance of the computational cell (see Fig.4.1),

and A(i) and B(i) are wall-distance dependent coefficients given as,

A(i) =



ln

(
26.31a(3)

a(1)

)
(

0.05761+5.373
(

a(2)

a(1)

)1.057
) , i = 1

ln

(
14.04a(3)

a(1)

)
(

0.06608+5.14
(

a(2)

a(1)

)1.592
) , i = 2

ln

(
26.31a(1)

a(3)

)
(

0.05761+5.373
(

a(2)

a(3)

)1.057
) , i = 3

(4.2.23)

B(i) =



exp

(
−0.02873a(3)

a(1)

)
(

0.00008+0.5601
(

a(2)

a(1)

)1.894
) , i = 1

exp

(
−1.252a(3)

a(1)

)
(

0.01354+3.688
(

a(2)

a(1)

)2.202
) , i = 2

exp

(
−0.02873a(1)

a(3)

)
(

0.00008+0.5601
(

a(2)

a(3)

)1.894
) , i = 3

(4.2.24)

The second parameter, Φ
(i)
kj , accounts for the wall effects on the Stokes solution

and is analytically derived as
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Φ
(i)
kj = 1−

 1
|Rkj |

+
(R

(i)
kj )2

|Rkj |3
+

2x
(2)
k f

(i)
kj

|Rkj |6

1
|rkj |

+
(r

(i)
kj )2

|rkj |3

 , (4.2.25)

where,

f
(i)
kj = (−1)i

(
x

(2)
k |Rkj|3 − 3|Rkj|(R(i)

kj )
2x

(2)
k − |Rkj|3R(2)

kj + 3|Rkj|(R(i)
kj )

2R
(2)
kj

)
(4.2.26)

r
(i)
kj = (x

(i)
j − x

(i)
k ), |rkj| =

√√√√ 3∑
i=1

(r
(i)
kj )2 (4.2.27)

R
(i)
kj =

r
(i)
kj , i = 1, 3

r
(2)
kj + 2x

(2)
k , i = 2

, |Rkj| =

√√√√ 3∑
i=1

(R
(i)
kj )

2 (4.2.28)

and x(i)
j and x(i)

k are the i coordinate of the computational cell j and k, respectively.

Correction for the finite Reynolds number, Cr

The Stokes drag used in Eq. 4.2.15 is only valid for disturbances created with zero
Reynolds number. To account for the higher Reynolds number effects, a Schiller-
Naumann correction factor, analogous to the finite Reynolds number adjustment
to the Stokes drag of a sphere (Clift et al., 2005),

Cr = 1 + 0.15Re0.687
c (4.2.29)

is used, where Rec=ucdc/ν is defined as the Reynolds number of the computational
cell based on its diameter and disturbance velocity.
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Correction for the finite exposure time, C(i)
t

A particle moving in the computational cell spends a limited time within that cell
and disturbs it for a finite time. The correction factor of C(i)

t accounts for this finite
exposure time of the particle to the computational cell and expressed as below

C
(i)
t = 1− τ

(i)
c

∆t(i)

(
1− exp

(
−∆t(i)

τ
(i)
c

))
, (4.2.30)

where,

∆t(i) =
a(i)

|u(i)
p |

and τ (i)
c =

d2
c

12νK
(i)
c

, (4.2.31)

where τ (i)
c and ∆t(i) are respectively the computational cell relaxation time and

the particle residence time in i direction of the computational cell, respectively.

4.2.4 Collision modeling

Inter-particle and wall-particle collisions play crucial roles in dynamics of the tur-
bulent channel flows in addition to the inter-phase momentum coupling. In order
to model the collision in a physically realistic way, soft–sphere Discrete Element
Model (DEM) based on work of Cundall & Strack (1979) is employed here. Col-
lision force, Fcl,ij, generated by two particles undergoing collision is modeled by
considering the overlap between particle-particle as a linear-damper system with
spring constant (stiffness parameter), kcl, and damping constant, ηcl, as

Fcl,ij =

−kclδijnij − ηcluij for:|∆xij| < 0.5 (dp,i + dp,j) + α

0 Otherwise
(4.2.32)

where,
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δij = 0.5 (dp,i + dp,j)− |xp,i − xp,j|, (4.2.33)

and ∆xij=xp,i−xp,j, uij=up,i−up,j and nij is the normal vector between two par-
ticles of i and j with position, diameter and velocity of xp, dp and up, respectively.
Also, α is the radius of influence adjusted linearly as a function of collision CFL
number in line with Capecelatro & Desjardins (2013). The damping parameter,
ηcl, is computed as (Patankar & Joseph, 2001b)

ηcl =
−2 ln (e)

√
mijkcl√

π2 + ln2 (e)
, (4.2.34)

where restitution coefficient, e, is taken to be 0.65 in line with Finn et al. (2016)
and mij=mimj/(mi+mj) is the reduced mass of colliding particles.

The stiffness parameter could be calculated directly from the Young’s and shear
modulus of a material (Tsuji et al., 1992); however, this would result in small col-
lision events and expensive EL simulations. In order to avoid this, lower values
are commonly employed in the presence of dominant drag force. For the compu-
tations of the current work, the stiffness parameter is chosen based on the work
of (Finn et al., 2016) wherein extensive test cases were performed to obtain the
proper collision parameters for the flow properties similar to the studied case here.

4.2.5 Numerical algorithm

The variable density zero-Mach number equations presented above are solved using
a pressure-based, second-order, fractional time stepping scheme on a collocated grid
arrangement. Details on this numerical method can be found in Finn et al. (2011);
Shams et al. (2011). In this scheme, the velocity, pressure and volume fraction
of the fluid phase are stored at the centroid of the control volumes. Using the
disturbance field, uc, from previous time step, the undisturbed fluid velocity at the
location of particles is recovered and the particle forces are computed based on this
velocity. Particles are then advanced using a forward Euler approximation with
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subcycling within each flow time step (∆tf ) in order to resolve their time scale
(∆tp). Point-particle forces are applied back to the cells in which they are located,
and the undisturbed velocity for the next time step is explicitly computed using a
froward Euler scheme. Knowing the new location of particles, the volume fraction
for both phases are computed and stored at the cell centres. Given the volume
fraction variations, the eddy viscosity, µt, is modified based on these variations
through ρfθf in order to account for their effects in the subgrid scales (Eq. 4.2.7).
Knowing the volume fraction of each cell as well as particle reaction forces, the
cell-centred velocities, ρfθf ũi, are advanced by solving the momentum equation
as a predictor step. The predicted velocities are interpolated to the faces and
then projected to satisfy the continuity constraint. Projection yields the pressure
potential at the cell centres, and its gradient is used to correct the cell and face-
normal velocities. It should be mentioned that for disturbance field, initial value of
zero is set as particles do not perturb the background flow before injection into the
flow. For interpolation and distribution processes, a trilinear function is employed
wherein two computational cells in the immediate distance to the particle’s center
are used in each direction.

4.3 Results

The numerical scheme described above without the correction scheme has been
extensively applied to and validated for different flows (Shams et al., 2011; Finn
et al., 2011; Cihonski et al., 2013; Pakseresht et al., 2014, 2015, 2016; Finn et al.,
2016; Pakseresht et al., 2017; He et al., 2018; Pakseresht & Apte, 2019b). In addi-
tion, the present correction scheme has also been validated for some canonical test
cases of a settling particle in the presence and absence of the no-slip boundaries
(Pakseresht et al., 2020). In this work, we first validate the numerical scheme for
a clear turbulent channel flow and results are compared against the experimental
work of Kiger & Pan (2002) as well as the Direct Numerical Simulation (DNS) of
Moser et al. (1999). Once the scheme is validated for a clear flow, the correspond-
ing experimental particle-laden turbulent channel flow of Kiger & Pan (2002) is
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simulated using the LES coupled with PP approach. Results with and without the
correction scheme on the PP approach are compared together to identify the need
for such a correction in two-way coupled EL-PP approaches.

4.3.1 Numerical simulation setup

The turbulent channel flow is simulated using a Cartesian structured grid in a
rectangular computational domain. Periodic boundary condition is employed for
the streamwise and spanwise directions whereas the no-slip boundary condition is
enforced for the wall-normal direction. Flow parameters are chosen based on the
experimental work of Kiger & Pan (2002) with Reynolds number of Reτ=583.33

that is defined based on the friction velocity of the unladen case, uτ=2.8×10−2m/s,
and the channel half-width of δ=0.02m. Moser et al. (1999) provided a reference for
the domain size and grid resolution for DNS of turbulent channel flows at different
Reynolds numbers. For the LES computations, we use their advised DNS domain
size based on our studied Reynolds number. For the grid resolution, however, a
coarser spacing (nearly half of the DNS) is chosen that was found to sufficiently
reproduce the flow statistics. The employed grid resolution and the domain size
are provided in Tab.4.2 with the corresponding DNS values from Moser et al.
(1999). In this table, Lx, Ly and Lz are the respective domain size in streamwise,
wall-normal and spanwise directions, while Nx, Ny and Nz denote the number of
grids in the corresponding directions. Although the Reynolds number used in our
LES computations is slightly smaller than the corresponding DNS, we conjecture
that this difference does not make significant changes on the results and its effect
is minimal. Uniform grid resolution is used for both streamwise and spanwise
directions whereas a non-uniform spacing with stretching toward the center of the
channel is utilized for the wall-normal direction. With this configuration, the first
grid is put at y+<1 to ensure that LES sufficiently resolves the viscous sublayer.

For all cases, the parabolic velocity profile for the laminar channel flow is ini-
tially prescribed with an imposed noise on top, in order to trigger the turbulent
flow. For deriving the flow in the periodic domain, a body force is required, that
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Simulation Reτ Lx Ly Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+
c

DNS 587.19 2πδ 2δ πδ 384× 257× 384 9.7 4.8 7.2
LES 583.33 2πδ 2δ πδ 192× 128× 192 19.09 9.95 20.64

Table 4.2: Domain size and grid resolution employed in the LES simulations. The
corresponding DNS values from Moser et al. (1999) is also provided.

is typically enforced based on either (i) constant mass flow rate or (ii) constant
pressure gradient. In this work, the former is used which applies a volumetric force
to the entire domain to ensure that the mass flow rate is kept constant at each time
step. Once conditions become stable, wall-normal profile of the results are collected
based on time-averaging as well as homogeneous averaging in the streamwise and
spanwise directions. For particle-laden cases, after flow has become statistically
stable, particles are randomly injected into the domain and once the new condition
is stable, then the corresponding results are gathered. Total number of particles
required for the injection is calculated based on the given volume loading, αv,
particle’s diameter, dp, (see Tab. 4.5) and the domain volume as

NP =
6αvLxLyLz

πd3
P

(4.3.1)

Throughout the paper, results are normalized with the characteristic scales in
the wall units. Friction velocity, uτ=

√
τw/ρf , and characteristic length of µ/(ρuτ )

are used for normalizing the respective velocities and lengths. Since uτ varies
among the cases, therefore, for each case, its computed value from that case is
employed.

4.3.2 Unladen turbulent channel flow

The unladen turbulent channel flow corresponding to the experimental work of
Kiger & Pan (2002) with the flow parameters listed in Tab. 4.4 is performed in this
part as a validation study. Figure 4.3 shows wall-normal profile of the LES results
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Unladen channel flow uτ (cm.s
−1)

DNS 2.8
PIV 2.8
LES 2.8

Table 4.3: Friction velocity computed based on LES of unladen turbulent channel
flow. The corresponding DNS value by Moser et al. (1999) and PIV by Kiger &
Pan (2002) are provided, as well.

on the mean velocity, streamwise r.m.s., wall-normal r.m.s. and Reynolds shear
stress in comparison with the experiment as well as the DNS of Moser et al. (1999).
A good agreement with both DNS results and the experiment is achieved for the
mean and streamwise r.m.s. velocities. However, for Reynolds shear stress as well
as the wall-normal r.m.s. velocity, a deviation in the experimental data from both
LES and DNS is noticeable that could be justified due to the uncertainty of the
experiment. Overall, the LES results obtained for the unladen turbulent channel
flow validate our numerical scheme and ensure the sufficiency of the employed
grid resolution for the particle-laden simulations of the next part. In addition, as
listed in Tab. 4.3, the computed friction velocity in LES agrees quite well with the
corresponding values by DNS and PIV.

Parameter value
Fluid density, ρf (kg.m−3) 998
Fluid viscosity, µ (Pa.s) 0.95808× 10−3

Channel half-width, δ (m) 0.02
Friction velocity, uτ (m.s−1) 2.8× 10−2

Bulk velocity, Ub (m.s−1) 0.5202
Reynolds number based on friction velocity, Reτ = ρuτδ/µ 583.33
Reynolds number based on bulk velocity, Reb = ρUbδ/µ 10837.5

Table 4.4: Flow parameters for unladen turbulent channel flow simulations.
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Figure 4.3: Comparison of LES results with DNS of Moser et al. (1999) as well as
experimental PIV data of Kiger & Pan (2002). Shown are (a) Mean velocity, (b)
streamwise r.m.s. velocity, (c) wall-normal r.m.s. velocity, and (d) Reynolds shear
stress.
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Parameter value
Particle diameter, dp (µm) 195
Particle density, ρp (kg.m−3) 2600
Average volume loading, αv 2.27× 10−4

Average mass loading, αm 6× 10−4

Particle Stokes relaxation time, τp=ρpd2
p/18µ (ms) 5.73

Bulk Stokes number, Stb=τpUb/h 0.15
Wall Stokes number, Stτ=τpρu2

τ/µ 5.37

Table 4.5: Particle parameters for particle-laden turbulent channel flow simula-
tions.

Particle-laden channel flow uτ (cm.s
−1)

PIV 2.99
Uncorrected LES-PP 2.8
Corrected LES-PP 2.98

Table 4.6: Friction velocity computed based on laden LES simulations with and
without the correction scheme. The corresponding DNS value by Moser et al.
(1999) and PIV value by Kiger & Pan (2002) are also provided.

4.3.3 Particle-laden turbulent channel flow

In this part, particle-laden turbulent channel flow is simulated using LES coupled
with PP approach. Particles with diameter of dp=200 and density of ρp=2600

(see Tab. 4.5) are injected into the already stationary unladen turbulent channel
flow with Reτ=583.33. Results with and without the correction scheme on the PP
formulation are compared against the corresponding experimental work of Kiger &
Pan (2002). To the best of our knowledge, no DNS data is available for such a high
turbulent particle-laden channel flow, therefore, we only compare our LES results
with the corresponding experiment. In order to drive the flow in laden cases, we
use the same mass flow rate as the unladen case, consistent with the procedure
employed in the experiment.
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It is imperative to note that the predictions with and without the mass dis-
placement effect of particles show nearly identical results, revealing the fact that
the standrad and volumetric couplings almost produce similar results. This can
be justified when the current study is compared with that of Pakseresht & Apte
(2019b) wherein they found that for particle-laden jet flows with volume loadings
of or greater than 5%, the displacement effect tends to become important. In the
current channel flow, the maximum concentration of 3% occurring near the wall
(that is smaller than their threshold) could justify the potential reason behind
that. Although for lighter-than-fluid bubble-laden flows, Ferrante & Elghobashi
(2004, 2005) observed that the displacement effect makes significant changes for
a similar configuration, for the studied heaver-than-fluid particles of the current
wok, no difference between these two formulations was observed. Therefore, for
the rest of this paper, we only use the standard two-way coupling wherein the
spatio-temporal variations of the local fluid volume fraction are ignored, and the
inter-phase interactions are only enforced through the particle reaction force.

As the first step, the friction velocity of each case is computed and compared
with that of the experiment. As listed in Tab. 4.6, an increase in this parameter
is experimentally observed due to the presence of particles in the flow. Such an
increase in the near wall dynamics is reasonably well predicted using the corrected
PP approach. However, the uncorrected PP fails in capturing that enhancement
and nearly produces the similar friction velocity as the unladen case. The increase
in friction velocity reveals an enhancement in the near wall dynamics that is in line
with the work of Righetti & Romano (2004) wherein measurements were performed
down to y+=1 and such an enhancement in both mean and r.m.s. velocities of the
fluid phase was observed. In their work, this enhancement was speculated to be due
to the rolling and sliding of particles near the wall which would generate a slip-like
boundary condition. Based on the present observation here using the correction
scheme, however, it can be argued that such an enhancement is mostly attributed
to the particles’ reaction force than their rotation as in our numerical scheme
the effect of particles’ rotation on the background flow is not explicitly enforced.
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Further insight into the effect of the corrected PP on the flow is obtained by looking
at the statistics of the flow such as mean, r.m.s., as well as quadrant analysis, as
explained in detail below.

Mean velocity

The effect of particles on the mean velocity is investigated in this part. Figure
4.4 shows the dimensional and non-dimensional mean velocities of both phases
computed based on the present LES-PP and compared with the corresponding
experiment. Results with and without the correction scheme are depicted. It
can be be inferred from the experiment that a slight damping in the fluid mean
velocity of the laden case is noticeable in comparison with its unladen counterpart.
However, the damping becomes more noticeable in the normalized velocities, owing
to the larger friction velocity measured in the laden case. Similar observation is
shown in our corrected PP results while the uncorrected PP fails in capturing any
effect of particles on the fluid mean velocity. This shows that using the undisturbed
fluid velocity in force computations increases the fluid forces acting on the particles
as well as the particle reaction forces, hence stronger inter-phase coupling and
more influence on the background flow. Ignoring such a correction and using
the disturbed fluid velocity, however, produces weak inter-phase interactions that
do not alter the flow and results in nearly identical unladen fluid velocity with no
damping effect. Concerning the particle phase mean velocity, reasonable agreement
is observed based on both approaches with slight underprediction in the results of
the corrected PP scheme. The difference between two schemes could potentially
lie in the range of accuracy of the correction scheme as well as the uncertainty of
the experiment.

The mechanism behind damping and enhancing in the respective outer and
inner layers can be related to the velocity difference between the phases. As shown
in Fig. 4.5, there is a lag in particle velocity compared to the fluid phase in the
outer layer. Particles with lower velocity in this region push back the flow, hence
damping in the fluid mean velocity. In the near wall region, however, particles
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Figure 4.4: Shown are mean velocities of the fluid (a and b) and particle (c and d)
phases in comparison with the corresponding experiment of Kiger & Pan (2002).
Both dimensional and non-dimensional velocities are plotted for each phase.
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Figure 4.5: Mean velocity of both phases across the channel, predicted by the
corrected PP.

have higher velocity than the fluid phase and this could potentially enhance the
velocity of the fluid phase. The predicted lag and lead in the particle velocity
profile in the respective outer and inner layers are consistent with the observation
of experimental works.

Turbulence intensities

In this part, the effect of particles on the turbulence intensities of the flow is
considered. Normalized streamwise and wall-normal fluid velocity fluctuations are
shown in Fig. 4.6. Results with and without the correction scheme are compared
to the corresponding experiment. For sake of comparison, the unladen results by
LES are shown as well. It is important to mention that the experimental data
is only available for y+>10 as near wall region was not measured in their work,
however, we qualitatively compare the results of this part with the experiment
of Righetti & Romano (2004) for the near wall region. As implied by Fig. 4.6,
without correcting the PP approach, particles do not affect the streamwise fluid
velocity fluctuation and results are almost the same as the unladen case, in line
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with the prediction of the fluid mean velocity. However, when the PP is corrected,
the shape and structure of the turbulence intensity in the outer layer matches that
of the experimental data, although slight overprediction is noticeable. Concerning
the near wall region, an increase is observed compared to the unladen case which
is not captured by the uncorrected PP. Such an enhancing in the inner layer is in
consistent with the observations of Righetti & Romano (2004). Regarding the wall-
normal turbulence intensity, the uncorrected PP produces some enhancing near the
wall which become much stronger when this approach is corrected. Overprediction
in the outer layer of channel is also observed for this direction when the corrected
scheme is used. The overprediction in the turbulence intensities could be justified
due to some reasons. First, Pakseresht et al. (2020) showed that even though the
correction scheme reduces the error to one order of magnitude smaller values, it
still produces few percent errors. Second, particles near the wall experience higher
relative velocity, hence higher particle Reynolds number (Rep∼10). For such a
case, the correction scheme needs further adjustments to accurately capture the
Rep effect. Overall, results here show that the corrected PP approach is able to
capture the enhancement in the dynamics of the near wall region, however, better
experimental measurements are required for this region for the sake of comparison.

Near wall turbulence structure

In order to better study the effects of particles on the damping and enhancing
observations, a quadrant analysis of the Reynolds stress is performed in this part
(Lu & Willmarth, 1973). The average contribution to the Reynolds stress of the
ith quadrant on the plane forming by streamwise and wall-normal components of
fluid velocity fluctuation (u′v′) is evaluated as

Qi = lim
T→∞

1

Ti

∫ T

0

u′v′i(t)dt, i = (1, 2, 3, 4), (4.3.2)

where u′v′i(t) is the contribution of the Reynolds stress to the ith quadrant, Ti is the
time spent within each quadrant itself and T is the total average time. Figure 4.7



130

10
-1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

10
-1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

unaden experiment

laden experiment

unladen LES

uncorrected LES-PP

corrected LES-PP

Figure 4.6: streamwise and wall-normal components of r.m.s. velocity for fluid
phase. LES-PP results with and without the correction scheme are compared with
the corresponding experiment. The unladen LES results are shown as well.

shows each of the quadrant for the fluid phase. Results based on the corrected and
uncorrected PP approach are compared against the unladen case. For this part,
there is no available experimental data from Kiger & Pan (2002), however, the
corresponding parameters of Righetti & Romano (2004) are qualitatively compared
with the predicted results. As illustrated, for all quadrants, an enhancing in the
inner layer is observed that is consistent with the observation of Righetti & Romano
(2004). In particular, close to the wall, the second (u′<0, v′>0) and fourth (u′>0,
v′<0) quadrant events have intensities more than two times larger than the unladen
case, precisely in consistent with the observation of Righetti & Romano (2004).
Additionally, the zigzag pattern illustrated in the near wall region of each quadrant
event follows those of the experiment. When uncorrected scheme is used, however,
no enhancing in the quadrant events is observed with results being nearly identical
to the unladen case.

The observations in this work show the importance of the undisturbed fluid
velocity in estimation of fluid forces acting on the particles. For particles that
are smaller than the grid size, their disturbance becomes negligible and using the
uncorrected PP approach might be sufficient. On the contrary, when size of the
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particles becomes bigger than the grid size, e.g., the near wall configuration of the
channel flow, then their disturbance becomes larger and one needs to account for
that in the force computations.

4.4 Conclusion

In this work, a large eddy simulation (LES) coupled with point-particle (PP) ap-
proach was performed to study the interaction of sediment particles and turbulence
in a horizontal channel flow in a dilute loading of 2.27×10−4. In this approach the
fluid phase is solved on a fixed Eulerian framework while particles are treated as
subgrid points and tracked using the Newton’s second law of motion. The fluid
forces acting on the particles are computed based on the available closures for drag,
lift, added mass and etc. These forces are derived based on the slip velocity that
is dependent on the undisturbed fluid velocity at the location of particles. When
the two phases are two-way coupled, such an undisturbed field becomes unavail-
able due to the disturbance created by the particles reaction force and using the
disturbed fluid velocity for force computations results in erroneous predictions.

In this work, in order to recover the undisturbed field from the available dis-
turbed fluid velocity, the correction scheme recently developed by Pakseresht et al.
(2020) was employed to regularize the standard PP approach. This scheme was
build in features to handle particle-laden flows with no-slip walls as well as those
wherein the computational grid resolution is anisotropic. In order to account for
mass displacement of particles on the background flow, the spatio-temporal varia-
tions in the volume fraction of the fluid phase were accounted for in both continuity
and momentum equations.

It was shown that the standard uncorrected PP approach coupled with LES
fails in capturing the experimental observations of the sediment-laden channel flow.
Results obtained based on this formulation were almost identical to the unladen
case, revealing the fact that particles in the uncorrected scheme do not alter the
background flow. It was argued that the use of disturbed fluid velocity for force
calculations on the particles results in such erroneous predictions as when the
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PP approach was corrected with the correction scheme, most of the experimental
observations were captured.

Increase in the friction velocity as well as in the near wall mean velocity of
the fluid phase were both captured in line with the experimental observations.
Additionally, damping in the outer layer of the fluid mean velocity, that is widely
observed in the experimental works, was captured by the corrected PP approach.
Consistent with the experiment of Kiger & Pan (2002), it was argued that the main
mechanism behind damping is due to the normalization of the fluid mean velocity
by a larger friction velocity obtained in the particle-laden case. In other words,
the dimensional fluid velocity by itself is slightly damped due to the interaction
of particles and turbulence in the outer layer. However, when it is normalized
by the near wall scale, which has higher velocity, a stronger damping is observed.
Consistent with the available experiments, a lag and lean in the particle mean
velocity compared to the fluid phase were observed in the respective outer and
inner layers of the channel using the prediction of the corrected PP approach. It
was argued that the slight damping and enhancing in the dimensional fluid velocity
are attributed to such a lag and lead in velocities of both phases. Slower-than-
fluid particles in the outer layer push back the fluid phase while faster-than-fluid
particles increase the velocity of the fluid phase in the inner layer.

Turbulence intensities in both streamwise and wall-normal directions showed
an enhancing in the inner layer of the channel consistent with the observations
of Righetti & Romano (2004). Similar enhancing was observed in the quadrant
events of the Reynolds stress, while insignificant difference between the results
of the uncorrected PP and unladen case was found, showing the negligible effect
of particles on the flow in the uncorrected scheme. For very close to the wall
regions, ejections and sweep events were both enhanced with two times larger values
than the unladen case, consistent with the experimental observations. Despite
the promising predictions, an overprediction in the outer layer of the results for
turbulence intensities as well as quadrant events were observed. It was argued that
such an overprediction could be attributed to either the embedded error in the
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correction scheme (even few percent) or the experimental uncertainty. Regarding
the former, the correction scheme is built upon the slow particle motions (Rep∼0.1)
whereas in the current channel flow, particles near the wall could experience larger
particle Reynolds number on the order of Rep∼10 for which further refinements in
the correction scheme are necessary.

As a result, we conclude that using the uncorrected PP approaches for mod-
eling the sediment-laden channel flows produces erroneous predictions and fails in
capturing the effect of sediment particles on the flow. Promising results obtained
using the corrected PP approach necessitates a need for using the velocity correc-
tion schemes along with the PP approach. This is required to accurately recover the
undisturbed fluid velocity that is needed for the force computations. It should be
noted that such a correction scheme should be able to handle the unique configura-
tion of wall-bounded turbulent channel flows, wherein no-slip boundary condition
as well as anisotropic grid resolutions with high aspect ratios are inevitable. We
conjecture that the corrected PP framework used in this work could help improve
the investigations and the state-of-the-art of the wall-bounded particle-laden flows
wherein the lack of accuracy of the standard uncorrected PP approaches has been
widely observed.
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Abstract

Accurate prediction of spray atomization process using an Euler-Lagrange (EL)
approach requires accounting for the deformation of droplets, that is typically
neglected in modeling such flows. Before atomization happens, liquid droplets
undergo deformation due to the interaction of aerodynamic force, surface tension
and viscous forces. In this work, droplet deformation effect is quantified by consid-
ering different models and comparing them against experimental data. Different
breakup regimes are studied in order to identify the best model for each regime.
The shape deformation effect is isolated by performing a single droplet injected
into the cross flow with flow conditions similar to the bag-type breakup. A sig-
nificant deviation in the motion of droplet is observed compared to a case where
deformation is neglected.

5.1 Introduction

Liquid spray atomization plays an important role in analyzing the combustion
process. A standard modeling approach is to split the process into two steps:
primary followed by secondary atomization. Traditionally, the spray dynamics
is modeled using an EL point-particle/parcel approach where liquid droplets are
assumed subgrid as point droplets and their motion is captured by laws for drag,
lift, added mass, and pressure forces. Their effect on the carrier phase is then
modeled through two-way coupling of mass, momentum, and energy exchange
(Dukowicz, 1980).

When a droplet is exposed to a high velocity gaseous phase, it undergoes de-
formation and distortion due to the balance between aerodynamic pressure force,
surface tension and viscous dissipation forces. This effect which is typically ne-
glected in the standard EL approaches could ultimately change the breakup process
such as breakup time as well as size and velocity of the product drops. However,
modeling such an effect and coming up with a unique predictive tool for all type of
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breakup regimes is challenging. Taylor (1963) suggested an analogy between the
oscillating and distorting droplet and a spring-mass system. In this analogy, the
surface tension is analogous to the restoring force of the spring and the aerody-
namic pressure force is analogous to the the external force on the mass. O’Rourke
& Amsden (1987) added the liquid viscosity as a damping force to this model and
modified it as Taylor Analogy Breakup (TAB) model which predicts the breakup
process as well. In this spring-dashpot-mass system, forces are assumed to act
on the center of droplet in order to model its oscillation and deformation. Since
droplet is distorted at both north and south equators, therefore the idea of having
forces act on the center of droplet was corrected by Clark (1988) in an energy
conserved based formulation. In this modified model, each droplet consists of two
half drops where forces act on the center of mass of each half. This results in
two spring-dashpot-mass system for the given condition. Since Clark’s model was
linearized and the effect of non-linear deformation particularly for the large mag-
nitudes was lost, Ibrahim et al. (1993) improved their model to account for the
non-linear effects in large deformations. Three dimensional nature of distorting
drop is accounted for by conserving the drop volume instead of area leading to a
new Droplet Deformation breakup (DDB) model.

Park et al. (2002) improved the original TAB model by modifying the aerody-
namic pressure force. This was performed by taking into account the size variation
in the projected area of the drop during deformation which was neglected in the
original TAB model. Wang et al. (2014) developed a model for Bag-Type Breakup
(BTB) based on a modified version of the model that was put forth by Detkovskii
& Frolov (1994) wherein kinetic energy of drop is assumed negligible for low We-
ber number deformations. In their formulation, the expression of deformation was
moved to the center of half-drop due to Hill-vortex formation around this point.
Similar to Clark (1988) and Ibrahim et al. (1993), all forces are applied to the
center of mass of half drop. Surface tension is decomposed into two positive and
negative parts where the former tends to flatten and the latter restores the drop,
respectively. The extension of their model for higher Weber number cases, i.e.,
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Multimode Bag (MMB) breakup regime includes the kinetic energy of the droplet
Wang et al. (2015).

Sor & García-Magariño (2015) in the context of ice accretion modified the DDB
model by Ibrahim et al. (1993) by taking into account the accurate calculation
of surface tension force. In addition, the instantaneous velocity of the droplet
is employed in the deformation model rather than a constant upstream velocity.
Furthermore, the center of mass of a half ellipsoid was chosen rather than that of
half of sphere. Better predictions on the deformation of a droplet impinging on an
airfoil were observed compared to the traditional models, e.g., TAB, Clark’s and
DDB models.

In this work, the deformation effect of droplets in a liquid jet in cross flow is
planned for investigation. Different deformation models are investigated by assess-
ing their predictive capabilities for a wide range of Weber numbers and breakup
regimes typically observed in sprays. Drop deformation in bag, multimode, tran-
sition and shear breakup regimes are all examined to identify a proper model for
each regime. These models are deemed to apply to a real atomizing jet in cross
flow. However, as a first step in studying the deformation effects, a single liquid
droplet injected into a cross flow is examined where the flow parameters are sim-
ilar to a bag-type breakup condition. It is conjectured that accounting for drop
deformation is necessary for accurately modeling liquid jet in cross flow.

5.2 Mathematical description

Different modeling approaches on the droplet deformation are explained and com-
pared here. For each model the normalized equations with y=y/ro and t=tu∞/ro
are provided. Deformation equation in the TAB model is expressed as follows

d2y

dt2
+

5N

ReK

dy

dt
+

8

WeK
y =

2

3K
(5.2.1)

where N=µl/µg, K=ρl/ρg, Re = ρgur/µg and We=ρgu
2r/σ are viscosity ratio,

density ratio, Reynolds and Weber numbers of drop, respectively. The improved
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TAB model developed by Park et al. (2002) in which the aerodynamic force mod-
ified during deformation process is obtained as

d2y

dt2
+

5N

ReK

dy

dt
+

1

K
y

(
8

We
− 2CF − 0.5CF

)
=

2CF
K

(5.2.2)

where CF=4/19 is chosen such that the critical Weber number, i.e., Wecrt=6 is
met. DDB model by Ibrahim et al. (1993) and its modified version by Sor & García-
Magariño (2015) are given below. These two models are different in calculation of
surface area as well as the center of mass of half drop. The latter leads to different
constant c values of 3π/4 and 8/3 for DDB and its modified version, respectively.

d2y

dt2
+

4N

ReK

1

y2

dy

dt
+

3c

4KWe

dAs
da

=
3

8K
cp (5.2.3)

where cp is the pressure coefficient in order to take into account the variations in
the gas pressure acting on the droplet surface during deformation. This parame-
ter could be adjusted based on any available experimental data or accurate fully
resolved DNS results. dAs/da for both models is given based on the following
expression. Despite the original DDB wherein a simplified version of this parame-
ter was used, its accurate calculation is employed in the modified DDB by Sor &
García-Magariño (2015).

dAs
da

=

4a− 4
a5ε

ln
(

1+ε
1−ε

)
+ 3

a11ε

[
2

ε(1−ε2)
− 1

ε2
ln
(

1+ε
1−ε

)]
Modified DDB

4a(1− 2(a)−6) DDB
(5.2.4)

where a=cy is the normalized major semi-axis of the half drop and ε=
√

1−a−6.
The deformation model in BTB model developed by Wang et al. (2014) is expressed
as

dy

dt
=

yCL
(KN)1/3

(
Cd
2
− 2Cf
We

[
a−1 + a5 − 2a−4

])
(5.2.5)

where CL=Cd,sph=0.45 to account for changes in the pressure on drop surface
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during deformation from sphere to disk. Comparing with experiments, Cf=1/600

was obtained to be the best to close the model Wang et al. (2014). The drag
coefficient, Cd, is obtained as

Cd =

Cd,sph for (We < 10)

2.1− 13.63/We0.95 for (We ≥ 10)
(5.2.6)

The MMB model by Wang et al. (2015) is expressed as

d2y

dt2
=

12N

KRe

[
−1

y

dy

dt
+

CL
(KN)1/3

(
Cd
2
− 2Cf
We

[
a−1 + a5 − 2a−4

])]
(5.2.7)

where Cf=0.005 and Cd is achieved similar to Eq. 5.2.6 while CL is obtained as
following

CL =


Cµ(360− 413.We−0.057) (15 < We ≤ 40)

Cµ[18.72 exp(5.29× 10−3We)

+ 0.1125 exp(5.8× 10−2We)] (40 < We ≤ 80)

(5.2.8)

where

Cµ = 7.024× 10−3Oh−4/3K−1/3 (5.2.9)

and Ohnesorge number, Oh=µl/
√
ρld0σ. Note that in the two last models (BTB

and MMB) unlike others, the Weber and Reynolds numbers are calculated based
on diameter of drop.

5.3 Results and Discussion

The deformation effect on the dynamics of a liquid droplet is studied in this part.
It is widely observed that in a spray atomization process, depending on the Weber
and Ohnesorge numbers, droplets undergo different phases in terms of deforma-
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Case Re We Oh N K
Bag 3323.16 13.5 1.88× 10−3 47.9 789
Mult. bag 5161.93 18 1.4× 10−3 47.9 789
Transition 8794.4 52.6 1.4× 10−3 47.9 789
Shear 12235.69 101 1.4× 10−3 47.9 789

Table 5.1: Different breakup regimes based on the experimental work of
Krzeczkowski (1980).

tion and breakup Krzeczkowski (1980); Hsiang & Faeth (1992). For We<1, no
deformation occurs while drops experience non-oscillatory or oscillatory deforma-
tion for 1<We<10. Increasing Weber number further results in more distortion
which in turn depending on Weber number, one of the bag, multimode, transition
or shear breakup takes place Hsiang & Faeth (1992). Moreover, it is observed that
deformation in each breakup regime is quite different Krzeczkowski (1980).

There have been several models predicting the deformation, yet having a model
being capable for all regimes is challenging. In this part, the capability of all avail-
able models are compared together against the experimental data of Krzeczkowski
(1980) in order to identify the best possible model for each breakup regime. Bag,
multimode bag, transition and shear breakup regimes corresponding to the exper-
iment are listed in Tab. 5.1.

Deformation models were solved numerically using fourth order Runge-kutta
method. Note that the ratio of drop diameter to its initial value, a/ro, is defined
differently among models. In TAB and its modified version, a/ro=1+0.5y whereas
in other models a/ro=cy. As shown in Fig. 5.1 and 5.2, the MMB model by Wang
et al. (2015) predicts better deformation among others where a good agreement
with experiment is achieved. TAB and DDB models and their modifications fail
in predicting the large deformation involve in these cases. The modified TAB
model by Park et al. (2002) predicts the deformation better than TAB and DDB,
however, it underpredicts for t>100. Accordingly, it can be inferred that the
MMB model developed by Wang et al. (2015) would be suitable for deformation
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Figure 5.1: Drop deformation in bag breakup regime based on different models
compared to the experiment

modeling of a droplet in bag and multimode bag breakup regimes. Regarding the
transition regime shown in Fig. 5.3, both TAB and DDB models show better
agreement with the experiment whereas BTB, MMB and modified TAB models
all together overpredict the large deformations, i.e., t>80. For shear-type breakup
regime as plotted in Fig. 5.4, the modified TAB model enormously over predict the
experimental observation and does not follow the experimental trend. In addition,
as mentioned in their work, both BTB and MMB models are suited for bag breakup
regime and applying them to shear regime is naive Wang et al. (2014, 2015). Both
TAB and DDBmodels are within the range of experiment for shear breakup regime,
however, the downward trend observed in the experiment is only captured in the
DDB model and its modification by Sor & García-Magariño (2015). This shows
that for shear breakup regime, one can employ the energy based deformation model
by Ibrahim et al. (1993). It is worth mentioning that the robustness and predictive
capability of these models would be verified better if they were compared with more
experimental data in each regime.

Moreover, as observed by Sor & García-Magariño (2015), the pressure term may
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compared to the experiment

vary during deformation and this can be accounted for by introducing a pressure
coefficient, Cp. They found Cp=0.93 to better predict the corresponding experi-
ment in the context of ice accretion, however, this may change for different flow
and regimes. The effect of this parameter on the deformation of a droplet in the
shear breakup regime is shown in Fig. 5.5. cp=0.7 gives rise to better results for
this regime revealing the fact that further modifications and tuning are required
for this model and the assumption of having constant pressure on drop surface
might be invalid.

It should be mentioned that these models have to be implemented for real cases
where more accurate Reynolds and Weber numbers are used rather than the con-
stant values typically employed in the literature. However, depending on the drop
relaxation and deformation time scales, one can estimate whether drop is displaced
significantly during deformation. For cases where deformation occurs much faster
than its displacement, then assuming a constant slip velocity during deformation
would be acceptable. For a real spray case where different Weber and Reynolds
numbers exist, a strategy would be required in order to switch between these mod-



145

0 50 100 150

t

1

2

3

4

5

6

7

8

a
/r

o

Shear breakup

Krzeczkowski

DRD,C
p
=1.0

DRD,C
p
=0.9

DRD,C
p
=0.8

DRD,C
p
=0.7

Figure 5.5: Effect of pressure coefficient on the prediction of DDB model

els. Therefore, employing one model may result in inaccurate deformation results
and its consequence effects on breakup.

These models are intended to be tested on a case wherein series of liquid drops
are injected into a cross flow and they undergo deformation before breakup occurs.
As an initial test case, in order to isolate the deformation effect, a single liquid
droplet is injected into a uniform flow with parameters similar to bag breakup
regime. Due to the small volume loading of the drop, one-way coupling is chosen
and the volumetric displacement effect for this case is conjectured to be insignifi-
cant. Hsiang & Faeth (1992) observed that drag coefficient increases linearly from
sphere to disk during deformation process if internal circulation is negligible. This
shows that deformation has a direct influence on the dynamics of the drop through
its modified drag coefficient. Liu et al. (1993) obtained a linear relation for drag
coefficient as a function of deformation parameter based on TAB model as

Cd = Cd,sph(1 + 2.632y) (5.3.1)

while Liang et al. (2017) derived a power law relation for this coefficient as
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Cd = 0.7y0.516 + 0.47 (5.3.2)

In order to couple the deformation and its effect on the motion of a single
droplet injected into the cross flow, cases with and without the deformation effect
on the drag are compared. Bag-type breakup condition of Tab. 5.1 is examined
before breakup occurs (t<300). Fig. 5.6 shows the results with modified drag
coefficient based on the above formulations. As shown, a significant deviation is
observed in the motion of droplet relative to the case where deformation is not
accounted for. This could potentially alter the breakup process and affect the size
and velocity of the product drops after breakup and disintegration takes place.
In our future investigations, the deformation effects on the trajectory of series of
liquid drops injected into the cross flow will be examined where a combination
of different models will be employed to more accurately capture these effects. In
addition, the effect of internal circulation, which is conjectured to decrease the
drag coefficient, is deemed for further investigations.
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Figure 5.6: Drop deformation effect on the motion of a liquid droplet in a bag-type
breakup regime
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5.4 Conclusions

Different deformation models were tested against the available experimental data
to identify the most accurate model for each breakup regime. It was observed that
the MMB model predicts the best for bag and multimode bag breakup regimes
while the original TAB agreed well with the experiment in the transition regime.
The modified DDB model with a modified pressure coefficient was observed to
match the data very well. It was conjectured that a hybrid model based on com-
bination of these models is required for real spray atomization flows wherein a
wide range of Weber numbers and breakup regimes exist. In order to isolate the
deformation effects, as a first step, a single droplet injected into the cross flow was
investigated. It was observed that accounting for deformation effect results in a
significant increase in the velocity of droplet. Accordingly, we hypothesize that if
deformation effect is systematically extended to the dense liquid jet in cross flow,
similar results with more pronounced effects will be achieved.
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Chapter 6 Conclusions and future directions

This work focused on improvement of the Euler-Lagrange (EL) approaches in
modeling of particle-laden turbulent flows. In this approach, the fluid phase is
typically solved using an Eulerian framework while particles are treated as La-
grangian point-particles (PP) and tracked following the Newton’s second law of
motion based on the available closures for the fluid forces acting on them. The
effect of particles on the background flow is modelled by applying the particle
reaction force to the flow through a momentum source term. However, such a sim-
plified point-force model for capturing the inter-phase interactions has been shown
to be insufficient or produce erroneous predictions.

When the fluid and particle phases are two-way coupled, inaccuracies arise in
predictions of this approach. One source of inaccuracy is that the fluid phase
equations in this approach are solved for the entire flow field including the vol-
ume occupied by the particles, while the mass displacement of the particles is
not accounted for. The other source is that the accuracy of fluid forces decays in
two-way coupled simulations, owing to the disturbance created by particle reaction
forces. The closure models for computing fluid forces acting on the particles require
undisturbed fluid velocity at the location of particles. However, when the fluid and
particle phases are two-way coupled, the particle reaction force disturbs the back-
ground flow at the location of particles, and using such a disturbed fluid velocity
for the force computations results in erroneous predictions. These two sources of
inaccuracy were tackled in this dissertation in order to improve the predictions of
EL approach.

Concerning the first issue, the spatio-temporal variations of the fluid phase
volume fraction were accounted for in solving the continuity and Navier-Stokes
equations of the fluid phase. Using this volume-averaged formulation, two source
terms appear in both continuity and momentum equations that account for the
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mass displacement effect of particles on the background flow. The inter-phase
coupling are then enforced through two different mechanisms; (i) momentum ex-
change through reaction force between phases and (ii) the mass displacement effect
of particles on the background flow through these two source terms. Large Eddy
Simulations (LES) of a particle-laden jet under a wide range of volume loadings
(0.047%−37.6%) and particle Strokes numbers (0.038−11.6) were carried out with
and without the mass displacement effect of particles. It was shown that for vol-
ume loadings above 5%, the displacement effect of particles enhances both mean
and r.m.s. velocities of the carrier phase near the nozzle exit. The mechanism
behind such an enhancement was found to be due to the continuity source term
that diminishes further downstream of the nozzle, owing to the radial dispersion
of particles and jet spread. Lowering the Stokes number of particles decreased
the displacement effects near the nozzle, however, increased further downstream.
Preferential concentration and dispersion of particles were found to be responsible
for these two observations, respectively.

The second issue that arises in the fluid force computation of the two-way cou-
pled simulations was resolved by introducing a general velocity correction scheme
in order to recover the undisturbed fluid velocity at the location of particles from
the available disturbed field. The newly developed model is general and can be
used for (i) unbounded and wall-bounded regimes, (ii) isotropic and anisotropic
gris resolutions, (iii) particles with different density and size, (iv) arbitrary in-
terpolation and distribution functions, and (v) flows with finite particle Reynolds
number. The scheme captures the disturbance of a particle created in a computa-
tional cell by modeling that cell as a solid object that is exposed to the particle’s
force. Using analytical and empirical expressions, the response of the cell to the
particles force is computed at each time step concurrently to the equation of mo-
tion of particles. knowing the disturbance velocity, the undisturbed fluid velocity
at the location of particles is retrieved. The model was assessed for settling veloc-
ity of a particle in unbounded and wall-bounded regimes with few percent errors
at all wall distances. Ignoring wall effects in the model, however, results in errors
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on the same order of magnitude of the uncorrected scheme, underscoring the need
for such a wall-modified correction scheme.

The volume-averaged formulation along with the velocity correction scheme de-
veloped in Chapter 2 and 3, respectively, were employed to predict the interaction
of particle and turbulence in a horizontal turbulent channel flow with Reτ=583.33.
It was observed that the standard EL-PP approach, wherein neither mass displace-
ment effect of particles nor undisturbed fluid velocity is employed, fails in capturing
the experimental observations. Results of this approach in the presence or absence
of particles were nearly identical, revealing the weakness of this uncorrected ap-
proach in capturing particles’ effect. Furthermore, it was observed that accounting
for the mass displacement of particles does not improve the predictions and results
with and without this effect are similar. However, when the undisturbed fluid
velocity at the location of particles was recovered, the fluid forces acting on the
particles were computed accurately, and the effect of particles on the background
flow was correctly captured, in line with the experimental observations. Increase
in the friction velocity as well as enhancing in the near wall dynamics were both
observed. In addition, the so-called damping effect of particles on the fluid mean
velocity was observed, as well.

Finally, the deformation of particles that is commonly encountered in the liq-
uid droplets (before breakup happens) in liquid atomization flows was investigated.
It was shown that the current models are each suitable for a particular breakup
regime, and a hybrid deformation model is required to accurately predict the de-
formation effect of a real atomization process, wherein different breakup regimes
are encountered. As a test case, deformation of a droplet in a simplified config-
uration wherein the droplet was injected into a cross flow, was studied. It was
observed that ignoring such an effect produces underprediction on the motion of
the droplet, which could ultimately affect the the breakup process and the size of
product drops.
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6.1 Future directions

The formulation developed in this dissertation will open up many other investi-
gations for the near future. From model development to studying the underlying
physics of the particle-laden flows, different extensions of the current work are
explained briefly in the following.

Concerning the model development, the correction scheme introduced in Chap-
ter 3 requires further refinements. The scheme was built based on the concept that
the relative velocity of the particles to the fluid is small enough, e.g., Rep<O(0.1),
that the assumption of Stokes flow around the particles becomes valid. Although
an adjustment to account for Rep up to 10 was introduced in the model, the non-
linear and asymmetric behaviour of the flow around the particle in larger values
(Rep>10) were not captured in that adjustment. There are many applications such
as spray atomization or liquid jet in cross flow wherein the liquid droplets will not
experience such a Stokes flow condition. Although the need for such a correction
in extremely large Rep cases diminishes, further investigations are still required
to identify a range of Rep for which the correction is necessary. For such a range
modifications due to the larger Rep in the correction scheme is crucial.

Besides, the correction scheme was based on the assumption that the loading
of particles in the flow is so dilute that the disturbance created by each particle
does not affect the ones created by others. For each particle, its disturbance is
computed as if there is no other particles in its vicinity, and the background flow
is only influenced by the presence of itself. However, for flows with dense loadings
or areas with clustering of particles, such an assumption does not necessarily hold
and the disturbance created by each particle affects the others’. In a simplified
configuration, let us assume having two particles almost touching each other. The
disturbance created on the background flow at their interface will be the superpo-
sition of the disturbance created by each individual particle. Such a disturbance
will certainly differ from the one that would have been created if there was only
one particle. When we predict the disturbance created by the particles on the
background flow, such a secondary effect must be taken into account, otherwise,
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erroneous predictions will be obtained by ignoring such an effect. A remedy to ac-
count for neighbouring effect is to change the current formulation from Lagrangian
to Eulerian framework. Currently, the correction velocity formulation is attached
to each particle in a Lagrangian frame and solved for each particle, individually.
One can use the same formulation for disturbance created for each Eulerian com-
putational cell rather than each Lagrangian particle. In this case, the disturbance
created by all particles in a computational cell will be superimposed and stored in
that cell. In other words, a disturbance velocity will be associated to each fluid
cell in the computational domain. When the disturbance is needed at the loca-
tion of each particle, then the disturbances created in the adjacent computational
cells are interpolated to the particle which this process automatically captures the
neighbouring effects.

It is imperative to mention that such an effect should also be accounted on the
drag force of particles, when the dense regime is concerned. Akiki et al. (2017a,b)
showed the significant deviation in the drag force of each individual particle when
situated in a dense pack. Such an effect, that is currently ignored, could be added to
the estimation of the drag force to improve the accuracy of the EL-PP approaches.

Moreover, Maxey & Riley (1983) derived all possible forces acting on a sphere
in the Stokes regime, among which the history effect and the undisturbed forces are
usually ignored in the EL-PP simulations. The latter, which is the force that would
exist in the undisturbed fluid flow if the particles was not present, could become
important for flows with low density ratio such as sediment transport. However,
without recovering the undisturbed fluid velocity and analogous to other forces,
this force would have been computed based on the erroneous disturbed field which
could have produced incorrect predictions and potentially negligible effect. Upon
having the current correction scheme, however, one could quantify the accurate
contribution of this force in comparison with other forces, particularly with the
dominant steady state drag force.

The present formulation can help better understand and revisit some of the
underlying physics involved in the particle-laden flows. Of importance is the pref-
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erential concentration and clustering of particles for which most of the studies have
been performed using one-way coupled PP approaches, owing to the dilute concen-
tration of particles in these flows. However, the local interaction of particles and
turbulence in the preferentially concentrated regions might be strong enough that
the two-way coupled simulations become necessary to be performed. Neverthe-
less, as explained in Chapters 3 and 4, the predictions of the uncorrected two-way
coupled PP approach could become incorrect or identical to the one-way coupled
results (similar to the channel results of Chapter 4), hence researchers would rely
on one-way coupled predictions for analysis of these flows. With the corrected two-
way coupled PP approach, it is conjectured that more accurate observations will
be obtained for the studies of the clustering of particles. Similarly, turbophoresis,
that is the tendency of particles to accumulate near the wall in the wall-bounded
flows, can be revisited using the present two-way coupled formulation. Energy
harvesting (Kamrani Fard et al., 2019; Esmaeilzadeh & Alam, 2019; Siala et al.,
2020) and effect of particles in this context could be explored further using the
developed formulation in this dissertation. In addition, the present methodology
can be applied for investigations in the field of oil recovery (Esmaeilzadeh et al.,
2019, 2020).

Rotation of particles might have significant effect on the background flow in the
areas wherein particles are larger than the local grid resolutions (fluid length scale).
Such configuration occurs in the near wall region of the channel flow simulations or
near the nozzle in jet in cross flows. Andersson et al. (2012) developed a method for
capturing the rotation effect of particles on the background flow. In their model,
the divergence of the particles’ torque is added to the momentum equation in each
direction through a source term, analogous to the force effect of particles on the
fluid flow. Such a simplified force-wise model does not necessarily capture the
rotation effect of the particles. One can develop a model that measures the torque
of each particle and based on that, adds a distribution of forces to the adjacent
computational cells so that these forces produce the same torque as the particle
would do in reality. Such a model, however, requires particles to be either on the
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same size of or larger than the computational cell. How much such a model captures
the rotation effect of particles on the background flow and how significantly this
effect alters the results are open questions for the future investigations.

Finally, in this dissertation we only considered cold particle-laden flows wherein
the temperature difference between phases was negligible to have any inter-phase
heat transfer. For heated particle-laden flows such as solar receivers (Pouransari
& Mani, 2017), fluidized bed reactors, volcanic plumes, and combustion-triggered
soot formation, among others, an energy exchange between phases happens due
to the temperature difference between phases. Thus, the energy equation for both
fluid and particle phases must be solved in addition to the momentum equations.
For two-way energy coupled simulations, the inter-phase energy exchange is mod-
eled by adding the particles’ heat flux to the fluid energy equation through a heat
flux source term. This source term disturbs the fluid temperature at the location
of particles and using such a disturbed temperature field for estimating the parti-
cle’s heat in the next time step will produces erroneous results, owing to the fact
that the closure models for heat transfer depend on the undisturbed fluid tem-
perature. Analogous to the velocity correction scheme, a temperature correction
scheme is required to capture the disturbance created in the temperature field in
order to recover the undisturbed fluid temperature. Such a model can be based
upon the formulation developed in this dissertation using the same concept. The
disturbance created in the computational cell due to the particle’s heat flux can be
obtained by treating the computational cell as a solid object that is subject to the
particle’s heat flux. Using the lumped assumption for such an object, one can write
the energy balance equation for this object and find the temperature created by
the particle’s heat. Then, this temperature is the disturbance created in the tem-
perature field that is missing in the standard two-way energy coupled simulations.
Upon predicting this disturbance, it will be added to the disturbed field (that is
available in the computation) in order to recover the undisturbed field. Analo-
gous to Chapter 3, wall effects on the temperature disturbance can be developed
as well. Developing such a temperature correction scheme along with the present
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velocity correction scheme will certainly open up further investigations in the field
and improve the state-of-the-art of the modeling of the heated particle-laden flows.
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