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Turbulent flows with suspended, non-spherical particles are common in many natural and 

industrial processes. To identify the effects of anisotropic geometry on particle dynamics, a 

one-way coupled Lagrangian direct numerical simulation solver was written, verified, and 

used to collect data on particles simulated in multiple flows. This thesis explains the methods 

used to develop an anisotropic particle flow solver and explores the behaviors of the 

simulated particles. The dynamics of prolate ellipsoidal particles with aspect ratios between 

1.001 and 25 were simulated in two-dimensional laminar Taylor-Green vortex flow and in a 

three-dimensional turbulent flow. During these simulations particle mass and particle density 

were held constant. The following major trends were identified through simulation. In the 

laminar case, the particles tended to orient in the stream wise direction and settling 

orientation speed correlated with higher aspect ratios. The laminar case also showed minor 

change in translational velocity with changing aspect ratio. Particles with lower aspect ratios 

tended to have a lower average difference between the particle and fluid velocity. The three-

dimensional turbulent flow showed that ellipsoidal particles quickly disperse based on aspect 

ratio but supports the same conclusions as the laminar two-dimensional case where rounder 

particles are traversed the domain faster.  
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1. Introduction 

1.1 Background 

Turbulent flows with suspended, non-spherical particles are common in many natural and 

industrial processes. Some examples include fuel injection and soot emissions from combustion, 

cough droplets dispersed in the air of operating rooms, cloth fibers in industrial manufacturing, 

and pharmaceutical processes (see Fig.1). Some natural processes include modeling of plankton 

in the oceans and pollen in the atmosphere. These processes commonly have elongated rigid fiber 

like particles with anisotropic properties deriving from the non-spherical geometry. Computer 

simulation of these anisotropic particles in turbulent flow can be used to characterize the 

orientation and dynamics of the particles which is necessary for optimizing engineering designs 

for each application.  

 

 

Figure 1: Evolution of droplet particle in a fuel injection process [1]. 

 

An exemplar case of anisotropic particles in turbulent flow is the atomization of fuel within engines 

during the fuel injection process. Figure 1 shows the particle evolution process from concentrated 

fiber shaped jets to finely dispersed droplets. Improved modeling of anisotropic particles can be 
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used to characterize the dispersion of fuel which can be used to inform the design process of fuel 

injectors and combustion chamber geometry. 

 

Despite the common nature of anisotropic particle processes, typical simulations of multiphase 

fluid flows utilize spherical particles with isotropic properties to approximate the behavior of 

anisotropic particles. This reduces simulation certainty and removes the ability to calculate particle 

orientation dynamics. When compared to spherical particles, anisotropic particles exhibit many 

differing behaviors such as their orientation dynamics, concentration dynamics, and rotation 

dynamics because of the effects of anisotropic geometry on hydrodynamic drag and torque. Many 

of the parameters related to modeling anisotropic particles in turbulent flows are still unexplored 

and fluid dynamics is an ongoing field of research. While numerical modeling of spherical particles 

in turbulent flow is common and well understood, there is only a limited body of research regarding 

simulation of anisotropic particles in turbulent flow (see Sec. 1.2) and should be explored further 

[2]. This thesis explains the methods used to develop a solver capable of simulating anisotropic 

particle dynamics in flow with one way coupling to investigate the methods for developing a solver 

to compare the behavior of non-spherical particles to spherical particles in both two-dimensional 

laminar Taylor-Green vortex flow and in turbulent three-dimensional flow to characterize the 

effects of anisotropic geometry on particle dynamics. The simulation particles are coupled one 

way with the fluid effecting the particles only. This simplification is justified through the low 

particle volume ratio. The custom simulation model is verified through time step error 

quantification and validated through comparisons to know behaviors of spherical particles. The 

long-term goal of this work is to develop a robust methodology to simulate many anisotropic 

particles simultaneously in any flow conditions through integration with particle solvers such as 

that ran by the Computational Flow Physics Laboratory [3]. 

 

This paper is organized with the following structure. Section 2 explains the methods used in writing 

the particle dynamics solver by explaining the properties of the particle, flow fields, kinematic and 

dynamic equations of motion, the rotation framework, the program logic, and experimental 

parameters being tested. Section 3 describes some verification for the simulation through 

comparisons to known behaviors of particle dynamics. Section 4 explains the results gathered from 



 

 

the experiment. Section 5 discusses the significance of the findings and proposes possible next 

steps to further this work.  

 

1.2 Literature Review 

Research on particulate flows is largely concentrated on modeling spherical particles due to the 

computational requirements of implementing anisotropic calculations in flow solvers [4]. Despite 

this, research on ellipsoidal particles in fluid flows has been ongoing for several decades. 

Previously, rod like particles in turbulent flow have been experimentally analyzed by Parsheh and 

Paschewitz respectively [5, 6]. Parsheh, utilizing high speed imaging and laser-doppler 

velocimetry techniques have verified that the Fokker-Planck type equations are accurate to real 

life experimental results [5]. Likewise, Paschewitz also verified that a rigid rod constitutive 

equation based numerical scheme was accurate to experimental results [6]. Mathematic equations 

for the torques acting on ellipsoidal particles have been derived by Jeffery (1922), Brenner (1963, 

1964), and Harper (1968) [7, 8, 9]. The Jeffery study from 1922 is the foundation of many modern 

ellipsoidal particle research through the derivation of hydrodynamic drag force and torque values 

for particle dynamics in creeping flow. Modern research toward ellipsoidal particles has trended 

toward numerical analysis and experimentation of ellipsoidal flows and has progressed toward 

four way coupling of ellipsoidal particles in turbulent flows. Notable findings include indications 

that fibers typically orient horizontally in atmospheric turbulence and that fiber orientation is more 

effected by fiber diameter than length [10]. Zhang in 2001 did a similar study of particles in 

turbulent channel flow and determined that particles congregate toward wall boundaries and orient 

in the streamwise direction [11]. This paper utilizes the Lagrangian particle dynamics equations 

developed by Brenner, the quaternion rotation framework developed by Zhao, and uses a similar 

computation loop as described by Zhang [8, 10, 11]. Future research in ellipsoidal particles would 

aims to fully resolve the effects of “forcing and boundary conditions, fluid density, fluid viscosity, 

particle size and shape, particle density, and particle concentration” as well as “the particle 

translational and rotational diffusivity, gravitational acceleration, particle deformability, 

collisions, aggregation or fragmentation, non-Newtonian fluid rheology, and electrostatic forces” 

[12]. 

 

 



 

 

2. Methods 

To explore the effects of anisotropic geometry on particle behavior in flow, a solver was written 

using the methods presented in this section.  

 

2.1 Ellipsoidal Particle Model  

This analysis explores the behavior of rigid prolate ellipsoidal particles with equal semi-minor axis 

(see Fig. 2).  

 

 

Figure 2: (Left) Diagram of an oblate spheroid with a larger semi-minor axis than semi-major 

axis. (Right) Diagram of a prolate spheroid with a larger semi-major axis than semi-minor axis 

[13].  

 

The ellipsoid aspect ratio (𝜆) is defined as 𝜆 = 𝑐/𝑎 where 𝑎 is the semi-minor axis and 𝑐 is the 

semi-major axis. The particle is further characterized by 𝜌𝑝, its particle density, which is used to 

calculate the mass of the particle (𝑚). The mass of the particle is calculated by the following 

equation:  

 𝑚 =
4

3
𝜋𝑎2𝑐𝜆𝜌𝑝 (Eq. 1) 

   

This analysis examines ellipsoids with a 𝜌𝑝 of 120 𝑘𝑔/𝑚3 and 𝜆 values between 0.001 and 25 

(see Table 1).   

 



 

 

2.2 Flow Model 

2.2.1 Taylor-Green Vortex Flow 

This work presents data from simulations using two flows. The first flow is Taylor-Green vortex 

flow which is a two-dimensional laminar decaying vortex flow that has an analytical solution in 

time and space (see Fig. 3). It is primarily used for validation of time-accurate problems due to its 

exact solution. The Taylor-Green vortex used in this simulation is defined within a square 

computational grid of length and height equal to 2 𝑚. The solution of the flow used in this thesis 

is as follows: 

 𝑢𝑥(𝑥, 𝑦, 𝑡) =  −cos (𝜋𝑥)sin (𝜋𝑦)𝑒−2𝜋2𝜐𝑡 (Eq. 2) 

 𝑢𝑦(𝑥, 𝑦, 𝑡) =  𝑠𝑖𝑛 (𝜋𝑥)cos (𝜋𝑦)𝑒−2𝜋2𝜐𝑡 (Eq. 3) 

 𝑝(𝑥, 𝑦, 𝑡) =  −0.25[cos(2𝜋𝑥) + cos (2𝜋𝑦)]𝑒−4𝜋2𝜐𝑡 (Eq. 4) 

 𝜐 =  𝜇/𝜌𝑓 (Eq. 5) 

where (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is the particle velocity vector components, (𝑥, 𝑦, 𝑧) is the particle position 

components, t is the time of the simulation, 𝑝 is the pressure, 𝜐 is the kinematic viscosity, 𝜇 is the 

dynamic viscosity, and 𝜌𝑓 is the density of the fluid.  

 

 

Figure 3: Instantaneous fluid velocity magnitude plot for 2D Taylor-Green vortex flow in a 25 x 

25 grid with axis of length 2 𝑚.  



 

 

2.2.2 3D Isotropic Turbulence Flow Field  

The second flow used in each simulation is a three-dimensional turbulent flow and is pictured in 

Figure 4. The second flow is used to test the solver for ellipsoid particles in turbulent flow with 

calculations made in three dimensions. The turbulent three-dimensional flow is generated by 

taking a snapshot of three-dimensional isotropic turbulence at a single point in time. The data is 

stored on a coarse 643 grid with equal spacing and side lengths of  2𝜋 𝑚. The flow has a 

Komogorov scale of 0.05. The fluid has a 𝜌𝑓  =  1 𝑘𝑔/𝑚3 and a 𝜇 = 0.0200008 𝑃𝑎 − 𝑠. 

 

 

Figure 4: Instantaneous fluid velocity magnitude plot (indicated by color) for 3D turbulent flow 

in a 63 x 63 x 63 coarse grid with volume of 2𝜋 𝑚3. Lighter colors denote greater fluid velocity 

magnitude.  

 

The Eulerian fluid dynamics are governed by the continuity and Navier-Stokes equations, written 

for incompressible, isothermal, and Newtonian fluid.  

 ∇ ∙ 𝑢 = 0 (Eq. 6) 

 𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ ∇𝑢 = 𝑣∇2𝑢 −

1

𝜌𝑓
∇𝑃 (Eq. 7) 

   



 

 

2.3 Kinematics + Dynamics Methods 

The translational motion of the particles is calculated using Newton’s second law: 

 
∑ 𝐹 = 𝑚

𝑑𝑢𝑝

𝑑𝑡
 (Eq. 8) 

where ∑ 𝐹 is a sum of the two significant hydrodynamic forces acting on the particle which are 

drag and gravity. The hydrodynamic drag force affecting the ellipsoid particles was evaluated by 

Brenner under creeping flow conditions as  

 𝐹𝑑𝑟𝑎𝑔 = 𝜇 𝑓𝜋𝑎𝐾(𝑢𝑓@𝑝 − 𝑢) (Eq. 9) 

where 𝐹𝑑𝑟𝑎𝑔 is the hydrodynamic drag force and 𝐾 is the resistance tensor evaluated in world space 

and 𝑢𝑓@𝑝 is the particle velocity vector evaluated at the centroid of the particle [7]. The resistance 

tensor is converted to world space using the following equation:  

 𝐾 = (𝑞(𝑞𝐾𝑏𝑞−1)𝑇𝑞−1)𝑇 (Eq. 10) 

 

𝐾𝑏 = [

𝐾𝑥𝑥
𝑏 0 0

0 𝐾𝑦𝑦
𝑏 0

0 0 𝐾𝑧𝑧
𝑏

] (Eq. 11) 

where 𝑞 is the quaternion of the particle (see section 2.3.1) and 𝑲𝑏 is the resistance tensor evaluated 

in body space with the following components: 

 
𝐾𝑥𝑥

𝑏 =
8(𝜆2 − 1)3/2

(2𝜆2 − 1)𝑙𝑛(𝜆 + √𝜆2 − 1) − 𝜆(√𝜆2 − 1)
 

(Eq. 12) 

 
𝐾𝑦𝑦

𝑏 = 𝐾𝑧𝑧
𝑏 =

16(𝜆2 − 1)3/2

(2𝜆2 − 3)𝑙𝑛(𝜆 + √𝜆2 − 1) + 𝜆(√𝜆2 − 1)
 (Eq. 13) 

 

The second component of ∑ 𝑭 is the gravity force which is calculated by: 

 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = (𝜌𝑝 − 𝜌𝑓) ∗ 𝑚 ∗ 𝑔 (Eq. 14) 

where 𝒈 is an acceleration vector with a z component of −9.81 𝑚/𝑠. 

 

The angular acceleration of the ellipsoidal particles comes from hydrodynamic torques applied to 

the particle. To calculate this, the acceleration of angular momentum equation of particles is used: 

 �̇�𝑏 = (𝐼𝑏)−1(𝑁𝑏 − 𝜔𝑏 × 𝐼𝑏𝜔𝑏) (Eq. 15) 

where �̇�𝑏 is the angular acceleration of the particle in body space, 𝜔𝑏 is the angular velocity of 

the particle, 𝐼𝑏is the inertia tensor of the particle, and 𝑁𝑏 is the total torque acting on the particle.  



 

 

The superscript b denotes variables evaluated in the body space (see Section 2.3.1). The inertia 

tensor of prolate spheroids in body space is calculated using the following equations: 

 

𝐼𝑏 = [

𝐼𝑥𝑥
𝑏 0 0

0 𝐼𝑦𝑦
𝑏 0

0 0 𝐼𝑧𝑧
𝑏

] (Eq. 16) 

 
𝐼𝑥𝑥

𝑏 =
2𝑚𝑎2

5
 (Eq. 17) 

 
𝐼𝑦𝑦

𝑏 = 𝐼𝑧𝑧
𝑏 =

(1 + 𝜆2)𝑚𝑎2

5
 (Eq. 18) 

 

The total torque acting on the particle is calculated by: 

 

𝑁𝑏 = [

𝑁𝑥
𝑏,ℎ

𝑁𝑦
𝑏,ℎ

𝑁𝑧
𝑏,ℎ

] (Eq. 19) 

 
𝑁𝑥

𝑏,ℎ =
32𝜋𝜇 𝑓𝑎3𝜆

3(𝛼2 + 𝛼3)
(Ω𝑧𝑦

𝑏 − 𝜔𝑥
𝑏) (Eq. 20) 

 
𝑁𝑦

𝑏,ℎ =
16𝜋𝜇 𝑓𝑎3𝜆

3(𝛼3 + 𝜆2𝛼1)
((1 − 𝜆2)𝑆𝑥𝑧

𝑏 + (1 + 𝜆2)(Ω𝑥𝑧
𝑏 − 𝜔𝑦

𝑏)) (Eq. 21) 

 
𝑁𝑧

𝑏,ℎ =
16𝜋𝜇 𝑓𝑎3𝜆

3(𝛼2 + 𝜆2𝛼1)
((1 − 𝜆2)𝑆𝑦𝑥

𝑏 + (1 + 𝜆2)(Ω𝑦𝑥
𝑏 − 𝜔𝑧

𝑏)) (Eq. 22) 

where the 𝑆𝑖,𝑗
𝑏 and Ω𝑖,𝑗

𝑏 represent the fluid strain rate tensor and the rotation tensor in body space. 

They are calculated using the following:  

 
𝑆𝑖,𝑗

𝑏 =
1

2
(
𝜕𝑢𝑖

𝑓𝑏

𝜕𝑥𝑗
+

𝜕𝑢𝑗
𝑓𝑏

𝜕𝑥𝑗
) (Eq. 23) 

 
Ω𝑖,𝑗

𝑏 =
1

2
(
𝜕𝑢𝑖

𝑓𝑏

𝜕𝑥𝑗
−

𝜕𝑢𝑗
𝑓𝑏

𝜕𝑥𝑗
) (Eq. 24) 

   

The constants 𝛼1, 𝛼2, and 𝛼3 are defined by: 

 
𝛼1 = −

2

𝜆2 − 1
−

𝜆

(𝜆2 − 1)3/2
𝑙𝑛[

𝜆 − (𝜆2 − 1)1/2

𝜆 + (𝜆2 − 1)1/2
] (Eq. 25) 

 
𝛼2 = 𝛼3 =

2

𝜆2 − 1
+

𝜆

2(𝜆2 − 1)3/2
𝑙𝑛[

𝜆 − (𝜆2 − 1)1/2

𝜆 + (𝜆2 − 1)1/2
] (Eq. 26) 



 

 

2.3.1 Rotation Framework 

To capture the Lagrangian motion of each particle two primary coordinate systems are used. The 

body space coordinate axis and the world space coordinate axis are presented in Figure 5 alongside 

an illustration of the Euler axis used to calculate the quaternion of each particle. 

  

 

Figure 5: Clockwise from top left: Diagram of a prolate ellipsoid particle labeled with the inertial 

frame of reference (�̂̂�, �̂̂�, �̂̂�) and the body frame of reference (�̂�, �̂�, �̂�) which is aligned to the 

semimajor axis of the ellipsoid and centered at the particle centroid. The Euler angles between the 

inertial and body frame of reference are shown in the top right. The world frame of reference 

(𝑥, 𝑦, 𝑧) is show in the bottom left. The Euler’s four parameters which are used to derive quaternion 

components is shown on the bottom right [14].  

 

The inertial frame of reference is always aligned with the world frame of reference and centered 

at the particle centroid. The body frame of reference is aligned to the semimajor axis of the 

ellipsoid and centered at the particle centroid. The world frame of reference is fixed to the domain. 

The four Euler parameters are derived from the Euler angles and is seen in the bottom right of 

Figure 5 where the quaternion components are constrained by definition as: 

 𝜀1
2 + 𝜀2

2 + 𝜀3
2 + 𝜂2 = 1 (Eq. 27) 



 

 

The transformation between the co-moving body frame of reference to the world frame of 

reference is given by the linear relations below: 

Vector: 𝑥 = 𝐴−1𝑥𝑏 (Eq. 28) 

Matrix: 𝑋 = 𝐴−1𝑋𝑏𝐴 (Eq. 29) 

where 𝐴 is the transformation matrix. It is derived from the quaternion components: 

 

𝐴 = [

1 − 2(𝜀2
2 + 𝜀3

2) 2(𝜀1𝜀2 + 𝜀3𝜂) 2(𝜀1𝜀3 + 𝜀2𝜂)

2(𝜀1𝜀2 + 𝜀3𝜂) 1 − 2(𝜀3
2 + 𝜀1

2) 2(𝜀2𝜀3 + 𝜀1𝜂)

2(𝜀1𝜀3 + 𝜀2𝜂) 2(𝜀3𝜀2 − 𝜀1𝜂) 1 − 2(𝜀1
2 + 𝜀2

2)

] (Eq. 30) 

   

After each integration of a quaternion, it is renormalized to unity through the following equation:  

 𝜀𝑖 =
𝜀𝑖

√𝜀𝟏
𝟐 + 𝜀𝟐

𝟐 + 𝜀𝟑
𝟐 + 𝜂𝟐

 
(Eq. 31) 

   

Quaternions have the benefit of avoiding gimbal lock, faster computation time, and nonsingular 

representation (Zhao).  

 

2.4 Simulation Program 

A computer program was developed and written in MATLAB software to solve for the translation 

and rotation of an ellipsoidal particle under a customizable set of flow and particle parameters. 

The two explored flows include the Taylor-Green vortex flow which has an analytical solution as 

well as a fixed turbulent flow. The dynamics of the particles were calculated through the following 

major steps: 

1. Initial particle parameters and fluid parameters are set manually to model the desired 

system. The computational domain is also set during this step with the desired domain in 

the Taylor-Green vortex flow. The computational domain in the turbulent three-

dimensional flow is set as 633.  

2. Initial particle position, orientation, velocity, and angular velocity are specified.  

3. The quaternion for the particle is then calculated from the orientation using the function 

eul2quat() [15]. 



 

 

4. The fluid velocity at the particle centroid and velocity gradient tensor at the particle 

centroid are calculated analytically in the Taylor-Green vortex flow and with central 

differencing in the three-dimensional turbulent flow. 

5. The program then utilizes the quaternion and Equation 29 to generate rotation matrices for 

the fluid velocity gradient tensor and fluid velocity vector to generate resistance and 

velocity gradient matrices (Eq. 22-23) in the body frame of reference. 

6. Newton’s second equation of motion and the hydrodynamic torque and drag equations are 

integrated using an implicit forward Euler scheme over the timestep to determine the 

updated position and orientation of the particles.  

7. The simulation returns to step three after recalculating the updated quaternion and position 

and loops until the simulation is terminated. 

8. Data sets are saved after simulation runs to generate Figures 7-14.  

 

2.5 Experiment Parameters 

To determine the effects of anisotropic geometry on particle dynamics, simulations were 

conducted for particles with parameters from Table 1.   

 

Table 1: Particle parameters for each particle type simulated. Particle aspect ratio was the primary 

experimental variable and was normalized across an equal mass of 5 𝜇𝑔 . 𝜌𝑝 is also held constant 

at 120 kg/m^3. 

Shape Mass 

(kg) 

𝝀 Semi-major axis (𝝁m) Semi-minor axis (𝝁m) 

Sphere 5*10-9 1.001 215.2 215.0 

Ellipsoid 5*10-9 1.5 281.9 187.9 

Ellipsoid 5*10-9 3 447.3 149.1 

Ellipsoid 5*10-9 5 629.0 125.8 

Ellipsoid 5*10-9 10 998.2 99.8 

Ellipsoid 5*10-9 25 1838.8 73.6 

 

For each of the parameters in Table 1 a simulation was ran for the Taylor-Green vortex flow and 

the three-dimensional turbulent flow. The Lagrangian simulation recorded all data from each time 



 

 

step. 𝜆 = 𝟏. 𝟎𝟎𝟏 was selected rather than 𝜆 = 𝟏 to use the same equation set and to avoid running 

into unity errors. An aspect ratio of 1.001 is a frequently used value in the literature in regard to 

representing a sphere like object [11].  

 

In the Taylor-Green vortex flow simulations, the particle began at the arbitrary starting position of 

x = 0.2 and y = 0.2. In the three-dimensional turbulent flow simulations. The particle began at the 

starting position of x = 1, y = 0, and z = 0. In both cases, the particles had an initial velocity 

matching the fluid velocity at the centroid, no angular velocity, and initial orientation of 0 rad in 

all Euler angle directions. The simulation ran until the particle reached a steady state within the 

flows. The flows had the same fluid parameters as described in Section 2.2.2.  

 

3. Verification 

To verify the time step error behavior of the simulation, the scheme was run for a particle of 𝜆 = 3 

and 𝜌𝒑 = 120 for the ellipsoidal particle in the Taylor-Green vortex flow. The root mean square 

error of the resting point of the ellipsoidal particle is calculated for time steps between 0.0025 and 

0.0000375 and plotted on a logarithmic plot to verify if the error quantification is first order.  

 

 

Figure 6: Figure showing the absolute error in average absolute deviation from true location for 

different time steps. First order error behavior is expected and verified in this figure with linear 

error.  



 

 

 Figure 6 confirms the first order error where absolute error of particle position is linear with 

timestep increase and was used to determine the applicable timestep in the simulations ran for the 

data presented in Section 4.  

 

3.1 Validation 

To determine the validity of the solver, simple test cases were used and compared to known 

behaviors. The first behavior tested was a sphere dropping through still viscous fluid under gravity. 

The terminal velocity reached in the simulation was computer to an analytical equation. The 

terminal velocity behavior of the sphere was calculated using the following equation: 

 
𝑣 =

2

9

(𝜌𝑝 − 𝜌𝑓)

𝜇
𝑔𝑅2 

(Eq. 32) 

 

As the governing equations are the same between Equation 32 and the solver, the terminal velocity 

reached was identical. However, there was only very slight change in the time to reach terminal 

velocity due to the truncation error resulting from the first order approximation. Additionally, the 

solver also simulated spheres of varying diameters to validate that terminal velocity decreased at 

a square rate with an increase of radius.   

 

4. Results & Discussion 

Section 4 presents data produced by the solver simulating particles with parameters from Table 1 

in both Taylor-Green vortex flow and the turbulent three-dimensional flow pictured in Figure 4. 

The two-dimensional laminar Taylor-Green vortex flow is presented first as it provides a simpler 

case to draw conclusions from. The three-dimensional turbulent flow simulation results are 

presented in section 4.2. In each section the velocity dynamics and orientation dynamics of 

particles of different aspect ratios are presented and discussed.  

 

4.1 Taylor-Green Vortex Flow 

Figure 7 through Figure 14 are generated by placing a single particle with one of the parameter 

cases from Table 1. In each simulation, the steps from section 2.5 were ran to collect data for a 

particle starting at the starting position of x = 0.2 and y = 0.2. The simulation ran until the particle 

reached a steady state within the flow.  



 

 

4.1.1 Translation Dynamics 

For each particle case presented in Table 1 the velocity of the particle in the x and y directions was 

calculated. The magnitude of the particle velocity during the first five seconds of the flow is 

presented in Figure 7. 

 

 

Figure 7: Average velocity magnitude for ellipsoidal particles in Taylor-Green vortex flow with 

aspect ratios from Table 1. 

 

Each of the plotted velocity magnitudes for the particles followed a similar trajectory that began 

at the local fluid velocity and decayed as described in the Taylor-Green vortex flow equations. The 

decay of the particle velocities is not constant and has identifiable points where the slope of 

velocity decrease changes. This is explained by two phenomena. The first behavior is the particle 

moving towards the outer part of the vortex due to the uneven centripetal and centrifugal forces 

placed on the particle flow at its initial position and velocity. As the forces are balanced through 

particle mass primarily, the particles having the same overall translational behavior is expected. In 

addition, this movement to the outer part of the vortex may explain the shape of the decay in 

velocity magnitude. The second substantial force resulting in this behavior is the initial rotation of 

the particle. During the initial phase of the simulation the major axis of the prolate ellipsoid rotates 

to better align with the stream wise direction to equalize the hydrodynamic torques placed on the 



 

 

particle. The varying change in orientation of the particle relative to the streamwise direction 

results in slight variations to the particle velocity magnitude which explains the minor differences 

between the six particle aspect ratios simulated. Figure 8 presents the difference in velocity 

between each of the particles more clearly by comparing the difference between particle velocity 

magnitudes and fluid velocity magnitudes. 

 

 

Figure 8: The difference between the velocity magnitude of the particle and the fluid velocity at 

the particle centroid.  

 

The data presented in Figure 8 shows that between the particle and the fluid there was some 

differential velocity before settling after rotation had largely stopped. Each of the different aspect 

ratio particles showed a unique difference for each time point. Generally, the trend shows that 

higher aspect ratio particles were quicker to reach the steady state fluid velocity than the lower 

aspect ratio particles. This can be explained by the longer moment arms of the particle major axis 

being affected more strongly by hydrodynamic torque to shed angular velocity more quickly than 

the lower aspect ratio particles. Of the six particle aspect ratios simulated, the particle with 𝜆 = 3 

had the greatest velocity differential. Between the 𝜆 = 3 and 𝜆 = 1.001 particle there was a 



 

 

reduction in peak velocity differential indicating that the specific particle and fluid parameters 

result in a particle with an aspect ratio between 1.5 and 5 having the greatest velocity differential.  

 

4.1.2 Orientation Dynamics 

In this section the orientation dynamics from the same simulation as ran in Section 4.1.1 are 

presented. Figure 9 presents the angular velocity of each of the six particles placed in the Taylor-

Green vortex flow.  

 

 

Figure 9: Average angular velocity for ellipsoidal particles in Taylor-Green vortex flow with 

parameters presented in Table 1. 

 

The results presented in figure 9 indicate that the average angular acceleration correlated with 

aspect ratio. The 𝜆 = 25 particle has the greatest peak angular velocity when all particles start at 

the same initial position, orientation, velocity, and angular velocity. The 𝜆 = 1.001 particle 

exhibits almost no change in angular velocity and is a result of the nearly spherical shape not being 

affected by the hydrodynamic torque. There is some angular velocity in the 𝜆 = 1.001 particle 

likely because of the shear forces acting on the sides of the particle. This positive correlation 

between aspect ratio and angular acceleration magnitude is a result of the larger moment arms at 

equivalent masses for higher aspect ratio particles. These moment arms increase the effects of 



 

 

hydrodynamic torque relative to the moment of inertia for each particle. The positional values for 

each of the particles during the simulations is presented in Figure 10.  

 

 

Figure 10: Absolute value of the particle direction cosine between the semimajor axis and world 

z axis as seen in Figure 1 for ellipsoidal particles in Taylor-Green vortex flow with parameters 

presented in Table 1.  

 

The results presented in Figure 10 reinforce the discussion points from the prior paragraph as the 

higher aspect ratio particles have a faster rate of angle change during each simulation. The 𝜆 =

1.001 particle exhibits different behavior here due to the minimal hydrodynamic torque. 

Additionally, the slowing rate of angular velocity over time for all the particles seen in Figure 10 

is also reflected in Figure X by the direction cosine flattening out over time.  

 

4.1.3 Particle Energy  

The velocity data presented in Figure 7 and Figure 9 was combined to find the total kinetic energy 

of the particle in each simulation and is presented in Figure11.  

 



 

 

 

Figure 11: The total kinetic energy of each particle over time with differing aspect ratios when 

placed in Taylor-Green vortex flow.  

 

The total kinetic energy was calculated using the following two equations: 

 
𝐾. 𝐸. =

1

2
𝑚𝑣𝑝

2 +
1

2
𝐼𝑝 ∗ 𝜔2 

(Eq. 33) 

where,  

 
𝐼𝑝 =

1

5
𝑚(𝑎2 ∗ 𝑐2) 

(Eq. 34) 

   

The data presented in Figure 11 further supports the explanation of particle aspect ratio having 

minimal affect on translational behavior when the particle has equivalent masses. While there is 

some variance between particles in total kinetic energy due to the rotational component, the 

majority of kinetic energy comes from the particles translational motion and closely mirrors the 

change in particle translational velocity.  

 

4.2 Turbulent Flow Dynamics 

Section 4.2 presents the dynamics data for the solver simulating ellipsoidal particles of varying 

aspect ratios in the three-dimensional turbulent flow presented in Figure 4. The same procedure 

was used, as in Section 4.1, where a single particle was placed in the flow and tracked. Each 



 

 

particle started with no initial velocity or angular velocity and began at the position of x, y, z = 0, 

0, 0. The simulation ran until the particle reached the domain boundary. Particle translational 

velocity data and overall kinetic energy were calculated and are presented in Figure 12 through 

Figure 14. The orientation dynamics figures are not present as they quickly diverge and do not 

offer conclusions to draw from. This is likely due to the coarse grid size of 63 units on each axis 

with the particles quickly changing rotation rates too quickly. To get useful conclusions, a different 

analysis would be needed for the particles in 3D flow where many particles are simulated, and 

statistics are collected using nondimensional analysis. The velocity magnitude was calculated and 

is presented in Figure 12.  

 

 

Figure 12: Average velocity magnitude for ellipsoidal particles in three-dimensional turbulent 

flow with aspect ratios from Table 1. 

 

The velocity data presented in Figure 12 shows that while the particles begin with the same velocity 

and trajectory, they quickly begin to deviate within 0.5 seconds. This behavior is expected as the 

turbulent three-dimensional flow has significantly different shear forces acting on a particle based 

on its location. Slight changes in position in the three-dimensional domain have significantly 



 

 

different velocity values and velocity gradients. The smaller aspect ratio particles are seen in this 

figure to be able to traverse the domain at a faster velocity overall then the particles with higher 

aspect ratios. This could be explained by the higher local velocity differentials in the fluid 

presented in Figure 13. This figure shows that like in Figure 8 the particles with higher aspect 

ratios are less affected by the velocity of the fluid at the center of the particle and had more relative 

hydrodynamic torque effects.  

  

 

Figure 13: The difference between the velocity magnitude of the particle and the fluid velocity at 

the particle centroid.  

 

The differential velocity between the fluid and particle shows messier data which gives insight on 

the effects of the coarse grid size on the particle and the single order central differencing formula 

used to calculate the velocity and velocity derivates at each particle centroid. The kinetic energy 

over time for each particle was also plotted in Figure 14. 

 



 

 

 

Figure 14: The total kinetic energy of each particle over time with differing aspect ratios when 

placed in Taylor-Green vortex flow.  

 

The kinetic energy of the particle mirrors the velocity data closely with a key difference being the 

particle with the aspect ratio of 25 having a lower relative energy throughout the data set than the 

other particles. This could be due to the 𝜆 = 25 particle having a lower average velocity than the 

other particles thus a lower average angular velocity. The angular velocity seems to be higher when 

the particle is moving faster translationally.  

 

5. Conclusion 

In this thesis, the rationale and methods used to create a solver for simulating anisotropic 

ellipsoidal particles suspended in flows was presented. The kinematics and dynamics equations, 

as well as the solver logic was explained to show how the Lagrangian tracking of particles was 

possible. Data collected from the solver simulating particles of varying aspect ratios was then 

presented for both a two-dimensional laminar flow and three-dimensional turbulent flow to show 

its capabilities. Overall, the solver can successfully simulate anisotropic particles in varying fluid 

flow and particle parameters resulting in meeting the research objective of this work. The 

simulations ran in the solver resulted in notable takeaways that should be further substantiated in 

the future. The simulations showed that in the laminar case, the particles tended to orient in the 



 

 

stream wise direction and that settling orientation speed correlated with higher aspect ratios. This 

was explained to be due to the greater hydrodynamic torques acting on the particle due to the 

greater moment arms of large major axis particles. This behavior is also reflected in the kinetic 

energy graphs of the three-dimensional turbulent flow simulation. For the translational behavior 

of the particles, the laminar case showed only minor change in translational velocity with changing 

aspect ratio. Particles with lower aspect ratios tended to have a lower average difference between 

the particle and fluid velocity. This can be explained through the greater surface area to mass ratio 

of the particle thus being more affected by the viscous forces of the fluid and thus slowing down 

faster with less inertial affects. The three-dimensional turbulent flow showed that ellipsoidal 

particles can quickly divert based on aspect ratio but loosely supports the same conclusions as the 

laminar 2D case where rounder particles are able to traverse the domain faster.  

 

5.1 Next Steps 

The solver presented in this work can be used to further explore anisotropic particle behavior by 

comparing particles of different parameters such as particle density to fluid density ratio, oblate 

ellipsoids, higher aspect ratios, and intermediate aspect ratios. In addition, other flows can be used 

when analyzing particles. The solver could be improved by adding capabilities to simulate flows 

with rigid boundary conditions such as channel flow. The solver can also be improved by moving 

to two-way coupling (fluid affects particles, particles affect fluid) or four-way coupling (domain 

boundary affects particles, particles affect particles). In addition, the accuracy of the current solver 

can be improved at the cost of computational expense by moving to higher order Runge-Kutta 

methods and differencing equations than the forward Euler and central differencing methods used 

in this simulation. Finally, to draw more conclusive data from the turbulent three-dimensional flow 

it would be possible to simulate many more particles with the same particle parameters and to 

collect statistics rather than drink individual particle trajectories.  
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