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ABSTRACT
Large-eddy simulation of flow over an open cavity corre-

sponding to the experimental setup of Liu and Katz [1] is per-
formed. The flow Reynolds number based on the cavity length
and the free stream velocity is 170,000. The filtered, incompress-
ible Navier-Stokes equations are solved using a co-located grid
finite-volume solver with the dynamic Smagorinsky model for
subgrid scale closure. The computational grid consists of around
five million grid points with two million points clustered around
the shear layer and the wall-layer over the leading edge is re-
solved. The only input from the experimental data is the mean
velocity profile at the inlet condition. The mean flow is super-
imposed with turbulent velocity fluctuations generated by solv-
ing a forced periodic duct flow at free-stream Reynolds number.
The flow statistics, including mean and rms velocity fields and
pressure coefficients, are compared with the experimental data
to show reasonable agreement. Cavitation inception is investi-
gated using two approaches: (i) a discrete bubble model wherein
the bubble dynamics is computed by solving the Rayleigh-Plesset
and the bubble motion equations using an adaptive time-stepping
procedure, and (ii) a scalar transport model for the liquid vol-
ume fraction with source and sink terms for phase change. The
cavitation inception occurs near the trailing edge similar to that
observed in the experiments. A periodic growth and decay of
bubble size and liquid vapor fraction is observed above the trail-
ing edge owing to local variations in pressure minima. The dy-
namic interactions between traveling vortices in the shear layer
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and the trailing edge affect the value and location of the pressure
minima.

1 INTRODUCTION
The problem of cavitation has been widely studied owing

to its influence on structural vibrations, noise production, ero-
sion of propulsor blades, among others [2]. To device strategies
avoiding cavitation, it is necessary to predict its inception in un-
steady turbulent flows. Rood [3] provides a review of different
mechanisms of cavitation inception emphasizing that cavitation
inception and turbulence are inseparable in many applications.
Therefore, predictive numerical approaches (such as large-eddy
simulations) for turbulent flows in complex flow configurations
are necessary to accurately capture the inception process. How-
ever, modeling cavitation inception and its unsteady evolution in
engineering geometries is a challenging task. Liu and Katz [1]
(henceforth referred to as LK2008) designed a well quantified
experiment on high speed flow over an open cavity which can be
used for detailed validation of the numerical approach in predict-
ing cavitating flows in complex geometries as well as develop-
ment and testing of subgrid scale models.

The cavitation number [σi = (Pre f −Pv)/(0.5ρU2
∞)], where

Pv is the vapor pressure, ρ is fluid density, U∞ is reference ve-
locity, and Pre f is reference pressure value at which cavitation
occurs, has typically been used to predict cavitation inception. If
we assume that inception occurs when the pressure drops below
vapor pressure, then a critical coefficient of pressure can be de-
fined as Cp,min = (Pmin−Pre f )/(0.5ρU2

∞) = −σi, where Pmin is
the minimum pressure within the domain. In turbulent flows, the

1 Copyright c© 2009 by ASME



location and the value of minimum pressure can change dramat-
ically, and thus can affect the inception process. For high-speed
flow over an open cavity LK2008 showed that cavitation incep-
tion occurs above the trailing edge. However, they also observed
a periodic variation in the amount of cavitation due to variations
in pressure fields induced by the turbulent shear flow above the
cavity.

Several numerical studies on cavitation inception have been
performed for gaseous cavitation (i.e. growth of air micro-
bubbles without significant transfer of mass from liquid to the
bubble) [4–11]. A majority of these studies used Reynolds-
averaged Navier Stokes (RANS) models to predict cavitation in-
ception. Recently, large-eddy simulation (LES) has also been
used to study cavitation inception in a flow over a square cylin-
der [12]. A simple algebraic criterion for inception was devel-
oped based on stability of bubble nuclei to show good predictive
capability of the LES methodology.

In the present work, LES of turbulent shear flow developing
past an open cavity is performed to first investigate the predictive
capability of LES with the dynamic Smagorinsky model [13].
Distribution of the coefficient of pressure (mean and rms) is used
to identify cavitation inception regions over the trailing edge of
the cavity and inside the shear layer. Cavitation inception is
also studied by considering two types of models: (i) a discrete-
bubble model (DBM) for gaseous cavitation based on the bubble-
dynamics represented by Rayleigh-Plesset equation, and (ii) a
scalar-transport model typically used for vaporous cavitation (in-
volving phase change) [14,15]. As the first step, the effect of the
gaseous or vapor bubble dynamics on the fluid are neglected; that
is the bubbles are assumed no to significantly affect the flow.

In the following sections, a brief overview of the mathe-
matical formulation for the two models is presented. The dis-
crete bubble model, involves computation and tracking of large
number bubble nuclei and can be expensive. An adaptive time-
stepping scheme is developed and validated for efficient compu-
tation. These models are coupled with an LES solver and the
results obtained are discussed in detail.

2 MATHEMATICAL FORMULATION
In this section, the mathematical formulation for the single-

phase LES and the two-phase flow models are described. The
three-dimensional, incompressible, filtered Navier-Stokes equa-
tions are written as

∂ui

∂xi
= 0 (1)

∂ui

∂t
+

∂uiu j

∂x j
= − 1

ρ`

∂P`

∂xi
+ν`

∂2ui

∂x jx j
−

∂τr
i j

∂x j
, (2)

where τr
i j denotes the anisotropic part of the subgrid-scale stress

tensor, uiu j−uiu j, and the overbar indicates filtered variables, ν`

is the kinematic viscosity and ρ` is the density of the liquid. The
dynamic Smagorinsky model [13] is used for τr

i j.

2.1 Discrete Bubble Model
The discrete-bubble model is based on an Eulerian-

Lagrangian approach. A continuum description is used for the
liquid phase with discrete Lagrangian tracking of the bubbles.
The bubbles are usually treated as spherical point-particles with
models for fluid-bubble interaction forces and bubble-bubble in-
teractions. The bubble growth and collapse is modeled using the
Rayleigh- Plesset equation [6, 11, 16]. Typically, in this type of
discrete bubble model, small-size nuclei are assumed trapped in-
side the fluid. Existing nuclei or microbubbles may contain gas
or vapor or a mixture of both. These nuclei may undergo rapid
changes in size due to local pressure variations and can be used
an an indicator of cavitation inception. The growth and collapse
of bubbles can affect the fluid flow through momentum coupling
as well as through changes in bubble volume; that is through
variations in local bubble and liquid volume fractions (Θb, Θ`)
defined as:

Θb (xcv) =
Nb

∑
b=1

VbG∆ (xcv,xb) ; Θ` = 1−Θb (3)

where G∆ is the interpolation function, Nb is the total number of
bubbles, and the summation is over all bubbles. These changes
in local void fractions can alter the fluid flow and pressure distri-
butions by creating a non-zero velocity divergence:

∇ ·u =− 1
ρ`Θ`

D
Dt

(ρ`Θ`) (4)

where D
Dt is the material derivative with respect to fluid velocity.

A mixture-theory based DBM model accounting for void fraction
variations has been developed [17, 18]. In the present work we
focus on cavitation inception, and do not consider the bubble-
fluid coupling as well as effects of local void fraction variations.
The bubbles are thus simply tracked by solving the following
equations for the position (xb), velocity (ub), and bubble radius
(Rb):

d
dt

(xb) = ub (5)

mb
d
dt

(ub) = ∑Fb (6)

ρ`

[
Rb

d2Rb

dt2 +
3
2

(
dRb

dt

)2
]

= Pb−Pout −
2σ

Rb
− 4µ`

Rb

dRb

dt
(7)

where mb is the mass, ∑Fb is the total force acting on the bubble,
Pb and Pout are the pressures inside and outside of the bubble, σ
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is the surface tension coefficient, and µ` and ρ` are the liquid
viscosity and densities, respectively. To estimate Pb, it is typ-
ically assumed that the bubble contains some contaminant gas
which expands or contracts according to adiabatic or isothermal
processes [19, 20]. The bubble inside pressure consists of con-
tribution from the gas pressure (Pg) and the vapor pressure (Pv).
The gas-pressure is computed as:

Pb = Pv +Pg = Pv +Pg,0

(
Rb,0

Rb

)3η

, (8)

where Pg,0 and Rb,0 are the reference partial pressure and bub-
ble radius, respectively. For isothermal bubble expansion η = 1
whereas for an adiabatic expansion, η = cp/cv (the ratio of spe-
cific heats of the gas at constant pressure and volume). The out-
side pressure Pout is taken as the pressure field interpolated to
the bubble center location. Chahine and co-workers [5, 6] have
shown that bubble surface-averaged pressure (SAP) provides a
better representation of the outside pressure. The net force act-
ing on each individual bubble is given as [4]:

∑Fb = FG +FP +FD +FL +FAM +Fcoll +FṘb
(9)

where FG = (ρb − ρ`)Vbg is the gravitational force, FP =
−Vb∇P is the pressure force due to far-field pressure gradi-
ents, FD = − 1

2CDρ`πR2
b|ub − u`|(ub − u`) is the drag force,

FL = −CLρ`Vb(ub − u`) × ∇ × u` is the lift force, FAM =
− 1

2 ρ`Vb

(
Dub
Dt −

Du`
Dt

)
is the added mass force, and Fcoll is the

inter-bubble or bubble-wall collision forces. The force FṘb
=

−4ρ`πR2
b(ub−u`)

dRb
dt represents momentum transfer due to vari-

ations in bubble size. Here, Vb and Rb are the bubble volume and
radius, the subscripts ‘b’ and ‘g’ correspond to the bubble and
the fluid, respectively. Inter-bubble and bubble-wall interaction
forces are computed using the standard collision models typi-
cally used in the discrete element method [18]. Several differ-
ent models for the drag (CD) and lift (CL) coefficients have been
proposed that account for bubble deformation and variations in
bubble Reynolds numbers (Reb = ρ`|ub−u`|2Rb/µ`) [21]. The
drag coefficient used in this study is given as:

CD =
16
Reb

(1+0.15Re0.687
b ).

The bubble dynamics is mainly governed by the outside pres-
sure changes. In low pressure regions, the bubble size can vary
rapidly and the Rayleigh-Plesset equations become very stiff. An
adaptive time stepping algorithm is needed to efficiently solve
for several bubble trajectories and still keep the overall computa-
tional time small [17].

2.2 Scalar Transport Model
Eulerian-Eulerian two-phase models are also commonly em-

ployed in cavitation studies [14, 15, 22, 23]. These models usu-
ally are important for vaporous-cavitation where a large region
of the fluid phase consists of a compressible vapor cavity. These
models involve actual phase transition in regions where the lo-
cal pressure drops below the vapor pressure. A scalar transport
equation is solved for the conservation of liquid volume fraction
(Θ`). The creation and destruction of the liquid mass is modeled
through source and sink terms in the scalar transport model:

∂Θ`

∂t
+∇ · (Θ`~u) = ṁ+ + ṁ−, (10)

where the source terms ṁ− and ṁ+ represent the destruction
(evaporation) and production (condensation) of the liquid. They
are both functions of the local and vapor pressures:

ṁ− =
Cdestρ` min(P̀ −Pv,0)Θ`

ρv (0.5ρLU2
∞) t∞

(11)

ṁ+ =
Cprod max(P̀ −Pv,0)(1−Θ`)

(0.5ρ`U2
∞) t∞

, (12)

where Cdest and Cprod represent the empirical constants and t∞
is the characteristic time-scale associated with the flow. In this
work, Cdest and Cprod are set to 1.0 and 80, respectively, based on
similar values used by Senocak & Shyy [24]. The time scale is
set equal to the flow-through time based on the cavity length (L)
and the mean flow velocity in the duct (U∞).

The production of the vapor leads to local changes in the
mixture density, ρm = ρ`Θ` + ρv(1−Θ`) where ρv is the va-
por density. The vapor phase is compressible whereas the liq-
uid phase is purely incompressible. This again leads to variable
density Navier-Stokes equations with strong coupling between
the pressure-velocity-density [15]. To compare with the dis-
crete bubble model, in the present work, we do not consider the
pressure-velocity-density coupling. Instead the dynamics of va-
por production and destruction is simulated in a passive manner
similar to the ‘one-way’ coupling approach used in the discrete
bubble model. The effect of pressure-velocity-density coupling
(in the scalar-transport model) and the void fraction variations
(in the discrete bubble model) on cavitation will be investigated
in the future.

3 COMPUTATIONAL APPROACH
An energy-conserving scheme for unstructured, arbitrarily

shaped grid elements is used to solve the fluid-phase equa-
tions [25–27]. The velocity and pressure are stored at the cen-
troids of the volumes. The cell-centered velocities are advanced
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in a predictor step such that the kinetic energy is conserved. The
predicted velocities are interpolated to the faces and then pro-
jected. Projection yields the pressure potential at the cell-centers,
and its gradient is used to correct the cell and face-normal veloci-
ties. A novel discretization scheme for the pressure gradient was
developed by Mahesh et al. [25] to provide robustness without
numerical dissipation on grids with rapidly varying elements.
This algorithm was found to be imperative to perform LES at
high Reynolds number in complex flows. A numerical solver
based on this approach was developed and shown to give very
good results for both simple [28] and complex geometries [27]
and is used in the present study.

Scalar Transport: For the scalar-transport model, a scalar
field is advected according to equation 10 using a third-order
weighted, essentially non-oscillatory (WENO) scheme. The
source terms in the scalar transport equation are treated explic-
itly, whereas the advection terms are treated implicitly. Com-
putation of the scalar transport equation is less expensive and
straight-forward to implement.

Discrete Bubble Model: In presence of large variations in
the outside pressure, the bubble radius (Rb) and dRb

dt can change
rapidly. Use of a simple explicit scheme with very small time-
step can be prohibitively expensive even for a single bubble com-
putation. An adaptive time-stepping strategy is necessary such
that the bubble collapse and rapid expansion regions utilize small
time-steps, but a much larger time-step can be used for relatively
slow variations in bubble radius. An adaptive time step algo-
rithm using the stability criteria of the solution is developed. The
stability criterion is based on the eigenvalues of the ODE (equa-
tion 5). The equation for bubble radius variations can be cast into
two first order ODEs [11]:

dRb

dt
= y;

dy
dt

=− 3y2

2Rb
+

Pb−Pout −2σ/Rb

ρ`Rb
− 4µ`y

ρ`R2
b
. (13)

This can be written in a matrix notation [X ]′ = [F ] where [X ]′

and [F ] are 2× 1 matrices. Following the above notation, for
example, the forward Euler discretization is given by

[X ]n+1 = [X ]n +h[F ]n = (1+h[J]n)[X ]n (14)

where h is the step size, n and n + 1 denote the current and next
time steps, respectively, [J]n is the Jacobian evaluated at time tn.
The above algebraic system of equations can be diagonalized:

[Z]n+1 = [λ]n[Z]n (15)

where λ is the matrix of eigenvalues (λ1 = and λ2) associated
with Rb and dRb/dt, respectively. The solution of equation 15
is of the form: Zn

1 = eλ1Z0
1 and Zn

2 = eλ2Z0
2 . The adaptive time-

stepping strategy here is therefore, to keep the magnitude of λ1

and λ2 close to 1. This λ calculation is used to correct the time
step if its deviation from 1 is more than 5%. This strategy is
found to be very effective especially in the case of rapid pressure
variations. Extensive tests on accuracy and robustness of the nu-
merical algorithm were performed [17]. A sample test case is
discussed here.

Robustness of the Adaptive Time-Stepping: To test the
adaptive time-stepping approach, a numerical test case is con-
sidered wherein the external pressure is specified as a function
of time and the bubble radius is computed using the Rayleigh-
Plesset equation. This test case was first used by Qin et al. [11]
in their work on simulating cavitating bubbles in a convergent
divergent nozzle. Figure 1a shows an imposed pressure variation
to a stationary bubble. The fluid properties are those for water
(ρ` = 1000 kg/m3, µ` = 0.798× 10−3 kg/ms, σ = 0.072 N/m,
pv = 0.00424 MPa). A bubble of initial radius (Rb,0 = 100 µm,
dRb,0/dt = 0) is subjected to the outside pressure variation
shown in figure 1a. The bubble undergoes growth and collapse
as the outside pressure decreases and increases with time. Rapid
accelerations and variations in bubble radius are observed.

This test case is challenging for a numerical scheme based
on constant time-steps mainly because of a rapid change in out-
side pressure over a short period of time (outside pressure de-
creases from 120 kPa to around −10 kPa over 5 µs). For an
explicit Euler scheme, for example, a constant time-step on the
order of 10−17 s would be required to capture the bubble growth
and collapse and maintain a stable solution. Multiple periods
of bubble oscillation would be prohibitively expensive for such
an approach and adaptive time-stepping is essential. Figure 1b
shows the solution obtained from the adaptive time-stepping.
Also shown are the temporal variations in the eigenvalues λ1 and
λ2 of the the coupled system of equations 13. Deviation of these
eigenvalues from a value of unity correspond to rapid growth or
decay period of the bubble and are good indicators for adaptive
time-stepping. The time-step is thus changed if the eigenvalues
depart from the unity value by 5% or more. With this approach
stable solutions are obtained for much higher time-steps and mul-
tiple periods of bubble oscillation can be easily computed. Fig-
ure 1c shows that only around 2000 iterations are required to
compute five periods of bubble oscillation for this test case with
very large pressure variations. A time-step refinement study pro-
vided little variations in the predictions.

Sub-cycling of Bubble Transport Equations: The time-step
for discrete bubble model (δtbub) obtained based on the above
adaptive strategy is compared with the flow-solver time-step
(δtsolver). A sub-cycling procedure is used, wherein the bubble
time-step is maintained five-times smaller than the flow-solver
time-step, and the bubble dynamics equations are solved repeat-
edly until we reach one δtsolver. Accordingly, the actual time-step

4 Copyright c© 2009 by ASME



(a) Imposed outside pressure

(b) R(t), λ1(t), λ2(t)

(c) Number of iterations

Figure 1: A numerical test case to study the effectiveness of the
adaptive time-stepping algorithm: (a) time variation of the im-
posed outside pressure; (b) time variations of bubble radius (Rb)
and eigenvalues (λ1, λ2), (c) bubble size variations with respect
to the number of iterations.

for bubble dynamics is then obtained as:

δt = min(δtbub,
δtsolver

5.0
) (16)

For the bubble position and the velocity field the same time-steps
are used. The bubble position and velocity fields are updated
using a third-order Runge-Kutta scheme; the bubbles are duly
transferred across processors as their positions are updated.

4 NUMERICAL SETUP
The numerical setup consists of a straight ducted channel

with a nearly square cavity in the central region as shown in fig-
ure 2. To keep the computational size small, we only simulate up
to the half duct height. Emphasis is placed on the shear layer and
the leading and trailing edges of the cavity, with refined grids in
these regions. The computational domain includes the cavity and
the duct flow which starts at−12.4 mm before the cavity leading
edge and ends at 32 mm after the trailing edge.

(a) 3D View

(b) Symmetry Plane

Figure 2: Computational domain and grid: (a) three-dimensional
domain with Cartesian grid, (b) refined grids (dimensions shown
are in mm) are used in the shear layer and near the cavity leading
and trailing edges. A zoomed-in view of the grid near the trailing
edge is shown in wall co-ordinates.
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Table 1 gives the details of the computational domain size
and the grid resolutions. The grid elements are mainly Cartesian
hexahedra with refined regions in the leading edge and near wall
regions. The wall-layers in the leading and trailing edges are
resolved.

Table 1: Computational domain and grid size (+ denotes wall
units).

Cavity size 38.1×30×50.8 mm3

Channel size 92.4×20×50.8 mm3

∆xmin = ∆ymin 1.9 µm

∆x+
min = ∆y+

min 1.1

∆z & ∆z+ 500 µm, 208

Cavity length L 38.1 mm

Total grid points 5 million

Reynolds number ReL = 170,000

Average inflow velocity U∞ = 5 m/s

Simulation time step δtsolver = 10−4 ms

Vapor pressure Pv = 2.337 kPa

4.1 Boundary Conditions
In the present simulation, the wall layers are resolved, and

no-slip conditions are applied at all walls. A convective outflow
boundary condition is applied at the outlet. In the experimental
setup, the upstream region of the duct consists of a convergent
section near the bottom wall and the flow is tripped using thirteen
notches to create turbulence [1]. The divergent section is not sim-
ulated in the present study. Instead, it is assumed that the flow is
fully developed and the experimentally measured mean velocity
field in the symmetry plane is used to specify the inlet conditions.
To create proper turbulence structures, a separate periodic flow
in a duct is simulated at the desired mass-flow rate and Reynolds
number using a body-force technique [29]. The Reynolds num-
ber based on the friction velocity for the inflow duct is very high
(Reτ = 7500). We perform a highly resolved LES of a periodic
duct flow on 180× 256× 144 grid points with the resolution of
∆x+ = 64, ∆z+ = 42, and ∆y+

min = 0.835, ∆y+
max = 85 (where the

superscript ‘+’ denotes wall variables). Figure 3 shows the com-
parison of the vertical variations of mean and rms axial velocity
field in the symmetry plane with the experimentally measured
inlet flow. A reasonable agreement is obtained for the rms fluc-
tuations; however, the mean flow shows much higher shear in
the experiment than those obtained from the simulations. In the
experiments, there was also a significant amount of vertical ve-

locity in the downward direction, possibly obtained because of
the convergent section in the upstream part of the duct. To match
the mean flow with the experimental data, we use the mean flow
field from the experiments and the instantaneous velocity fluctu-
ations from the periodic duct flow as inlet boundary condition:

uinflow
i = (uperiodic duct

i −uperiodic duct
i )+uexperiment

i , (17)

where ( ) in the above expression denotes time-averaged quan-
tity. The superscript ‘periodic duct’ stands for flow field from
the highly resolved periodic duct flow. This inflow data over sev-
eral flow through times is generated a priori and read at each
time step to specify the velocity components at the inlet. This
technique ensures that the fluctuating velocity field at the inlet
section is divergence-free. Later, we show the effectiveness of
the inflow velocity fluctuations in predicting the flow statistics
downstream. In order to obtain good predictions from the LES
computation, an accurate estimation of the inflow conditions is
necessary. With this approach, the inflow conditions are bet-
ter represented in the computations. The predictive capability
of LES can now be tested by comparing the flow features and
turbulence statistics with the experimental data.

(a) Mean Axial Velocity (b) RMS Axial Velocity

Figure 3: Comparison of vertical variations of mean and rms
axial velocity fields in the inflow section (obtained from a stand-
alone LES computation of a periodic duct flow) with the exper-
imental data [1]. For inlet conditions, we use the mean velocity
profiles from the experiments and fluctuating velocity field from
the periodic duct flow.

5 NUMERICAL RESULTS
We first compare the flow statistics obtained from the simu-

lation, including mean and rms values of the flow field, to those
reported in LK2008. Inception studies based on discrete bubble
and scalar transport models are performed next. Detailed com-
parisons of flow statistics between LES and experimental data
are presented.
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5.1 Leading Edge
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(f) x/L = 0.32, RMS

Figure 4: Comparison of vertical variations of stream-wise fluc-
tuations near the leading edge with (solid lines) and without
(dashed lines) inflow fluctuations with the experiment data of
LK2008 (symbols).

Figure 4 shows comparison of the vertical variations in the
mean and rms axial velocity field near the leading edge with the
data of LK2008. LES predictions with and without inlet veloc-
ity fluctuations are shown at three different locations. The mean
flowfield is reasonably well predicted by both computations. It is
slightly better predicted when only the experimental mean flow
was used (without any fluctuations). However, the rms velocity
fields are much better represented by LES with inlet flow fluctua-

tions. Specifically, the rms fluctuations disappear away from the
wall in the absence of imposed inflow fluctuations. The exper-
imental data as well as LES with inflow fluctuations show sub-
stantial turbulence further away from the wall. The distribution
of the rms velocity fields are also better predicted by the LES
with inflow fluctuations. It was observed that with no fluctua-
tions at the inlet, flow structures above the shear layer generally
predicted very low levels of turbulence. Accurate characteriza-
tion of the inlet flow fluctuations are thus found to be important.
An LES simulation inclusive of the upstream divergent section
at the bottom wall of the duct may provide even better inflow
conditions.

5.2 Trailing Edge
Contour plots of the normalized mean axial velocity (u/U∞)

and vertical velocity (v/U∞) are presented in figure 5. Also
shown are the distribution of axial velocity in the vertical di-
rection near the trailing edge compared to the data of LK2008.
The distribution of the mean velocity field is very similar to that
shown by LK2008. It is observed from the mean streamtraces
that the shear layer impinges the trailing edge slightly below the
corner. The LES results predict the behavior of the mean ax-
ial velocity reasonably well above the trailing edge. Upstream
of the trailing edge (inside the cavity), the experimental data in-
dicates slightly lower axial velocity than those predicted by the
LES (x/L = 0.8,0.9). A more refined grid in the axial direction
over the entire shear layer may be necessary to capture the high
shear in this region.

The distribution of the mean pressure near the trailing edge
is shown in figure 6. Also shown are locations of eight probes
(p1–p8) at which the pressure signal is further analyzed. The
following two features also observed in the experiments are ac-
curately predicted: (i) a high-pressure region just upstream of the
trailing edge (corner in the present 2D plane) which extends into
the cavity, and (ii) a low pressure region above the trailing edge.
The high pressure region just upstream of the trailing edge oc-
curs basically due to the impingement of the shear layer onto to
the trailing edge, creating a stagnation point slightly below the
edge. The flow then has to turn and go around, creating a low
pressure region above the trailing edge. The shape of contours of
the mean Cp are similar to those observed in the experiments.

The probability distribution functions (PDFs) of the fluctu-
ations in pressure coefficient (C′p) at the eight probes are shown
in figure 7a-h. The corresponding mean and rms values of Cp
are also quoted. Probes p1 and p2 are slightly upstream of the
trailing edge, probes p3 and p4 are in the shear layer, and probes
p5–p8 are downstream of the trailing edge. Based on the mean
values of Cp and PDFs of C′p, cavitation is likely to occur inside
the shear layer for a cavitation index of σi ≤∼ 0.43 (for exam-
ple, for probe p3, Cp = −0.13 with a PDF tail of around −0.3).
LK2008 also observed cavitation inside the shear layer for sim-
ilar inception index. The mean statistics were collected over 4
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(a) u/U∞

(b) v/U∞

(c) u/U∞

Figure 5: Contours of time-averaged velocity fields near the trail-
ing edge: (a) mean axial velocity field, (b) mean vertical velocity
field together with streamlines, (c) vertical variation of mean ax-
ial velocity with the experimental data of LK2008.

flow through times (that is over around 33 ms where one flow
through time is taken to be approximately L/U∞ ∼ 7.7 ms. This
is rendered sufficient time for the shear-layer statistics.

The probes (p5–p8) above the trailing edge (downstream of
the corner) show low values of Cp together with a broader spec-
trum of C′p. Inception first occurs inside these regions as also
noted by LK2008. It is observed that in the present simulations,
the absolute values of mean pressure coefficient (|Cp|) at some
points above the trailing edge (i.e. probes p5–p8) were generally
higher and the rms values (Cp,rms) were lower compared to the
experimental data. For example, at probe p6, Cp = −0.63 and
Cp,rms = 0.3 providing an inception index of σi = 0.93. LK2008

Figure 6: Time-averaged contours of pressure coefficient (Cp)
near the trailing edge.
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Figure 7: Probability distribution functions for C′p at the eight
probe locations (p1–p8) shown in Figure 6.

also reported inception index of σi = 0.9; however, generally
showed lower mean Cp and higher C′p above the trailing edge.
In LES, the PDFs of C′p showed larger negative tails. If instan-
taneous values of Cp are used as criterion for inception, these
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distributions indicate that inception above the trailing may occur
at even higher σi values. In experiments, the pressure signal was
deduced based on the material acceleration Du/Dt by neglect-
ing the viscous effects [30]. In LES, near the trailing edge, the
viscous effects may be small; however, the subgrid-scale stresses
can be large influencing the filtered pressure field as:

− 1
ρ`

∇P =
Du
Dt
−

∂τr
i j

∂x j
. (18)

It is conjectured that local variations in subgrid-scale stresses and
subgrid viscosity obtained from the dynamic model may affect
the filtered pressure field resulting in lower pressure values in a
small region above the trailing edge. However, away from the
trailing edge, the pressure coefficients were well predicted com-
pared to the experiments. The variations in Cp values above the
trailing edge were related to the impacting of shear layer vortices
on the trailing edge and is discussed below.

5.3 Instantaneous Flow Field
Figure 8 shows the instantaneous plots of Cp = (P −

P∞)/(0.5ρU2
∞) in the symmetry plane (z = 0) together with in-

stantaneous streamlines obtained by removing 0.5U∞ from the
axial velocity field. Low pressure regions within the shear layer
and corresponding vortical structures are clearly visible. The
two snapshots (8a,b) correspond to higher and lower pressures
just above the trailing edge corner (x/L = 1.01, y/L = 0.0035,
z/L = 0). The instantaneous Cp signal at this location is also
shown in figure 8d. The vortical structures in the shear layer
generated from the leading edge separation travel downstream
and interact with the trailing edge causing significant changes in
the Cp values above the trailing edge. Liu and Katz [1] showed
similar vortex structures and argued that there is a strong correla-
tion between the traveling vortices and the trailing edge, causing
flow-induced Cp fluctuations. We observed similar interactions
between the traveling vortices and the trailing edge. Based on
the signal shown in figure 8d, the Cp value varies over a wide
range of −0.01 to −2. The Cp values also showed variations
in the spanwise directions suggesting that the impact location of
the vortex cores on the trailing edge (and the stagnation point)
move in and out of the plane (in spanwise directions). Based on
the mean and rms values of the pressure coefficient at neighbor-
ing points (Cp ∼ −0.639, Cp,rms ∼ 0.29), the inception index is
approximately σi ∼ 0.93.

5.4 Cavitation Inception
We consider two different approaches to investigate the na-

ture of cavitation near the trailing edge and inside the shear lay-
ers: (i) a discrete bubble model and (ii) a scalar transport model.
In the discrete bubble model, it is assumed that water contains
abundant nuclei of dissolved gas which can undergo rapid size

(a) t = 53 ms

(b) t = 55 ms

(c) t = 65 ms

(d) Cp(t)
Figure 8: Instantaneous pressure contours and stream traces
(based on removing 0.5U∞ from the streamwise velocity):(a)
t = 53 ms (high pressure above the trailing edge), (b) t = 55 ms
(low pressure above the trailing edge), (c) t = 65 ms, (d) Cp(t)
at a probe above the trailing edge (x/L = 1.01, y/L = 0.0035,
z/L = 0).

9 Copyright c© 2009 by ASME



variations indicating occurrence of cavitation. In the scalar trans-
port model, actual phase change is simulated by modeling rates
of evaporation and condensation based on the local pressure field
compared to the vapor pressure. Results obtained from both
models are presented below.

Scalar Transport Model: For the scalar-transport model, a trans-
port equation for liquid volume fraction (equation 10) is solved
as described earlier. The source and sink terms in the trans-
port equation are proportional to the difference between the local
pressure and the vapor pressure as well as the amount of liquid
present in a given control volume. Typically, if the local pressure
drops below the vapor pressure, the liquid evaporates creating
vapor. In the present work, the local pressure field was defined
relative to the pressure field above the leading edge of the cavity
(P∞). Similarly to the experiments, the absolute value of P∞ was
reduced starting with one atmosphere. The vapor pressure was
assumed to be Pv = 2.337 kPa. Early sites of cavitation occurred
above the trailing edge where the pressure minima occurs. Small
amounts of vapor were created in this region with vapor fractions
on the order of 0.01 for a cavitation index of σi = 0.9. Further
reduction in P∞ resulted in increased cavitation above the trailing
edge.

Figure 9 shows the temporal evolution of the vapor fractions
(φ = 1−Θ`) above the cavity trailing edge when the upstream
pressure (P∞) was set based on the inception index of σi = 0.4. In
the experiments, vigorous cavitation was observed at this level.
A top view is shown with a slice at distance y = 0.01 mm in the
wall-normal direction. Periodic occurrence and disappearance of
vapor fraction structures above the trailing edge are clearly vis-
ible (dark regions show large vapor fraction). A time trace of
instantaneous φ and Cp are plotted in figure 10. The frequency of
the growth and decay of vapor fraction is observed to be around
300 Hz for the present case with U∞ = 5 m/s. As can be seen
from the contour plots and the time traces, periodic occurrence
and disappearance of cavitation is predicted similar to that ob-
served in experiments. This indicates that this periodic cavitation
phenomenon is associated with the pressure variations above the
trailing edge. The pressure variations are mainly caused by the
shear-layer eddies impinging on the the cavity trailing edge (see
figures 8). In the present work, we do not have pressure-velocity-
density coupling, which may become important when heavy cav-
itation occurs (for the case of σi ≤ 0.4). However, the features
associated with periodic growth and decay of the vapor fraction
above the trailing edge are captured.

Discrete Bubble Model: We also performed cavitation inception
studies using the discrete bubble model (DBM) with adaptive
time-stepping as described earlier. The gas content in the liquid
was assumed to be small (initial gas void fraction was assumed
to be 10−5). It is important for the bubble nuclei to pass through
the small pressure regions above the cavity (‘window of oppor-

(a) t = 52.7 ms (b) t = 52.9 ms

(c) t = 53.4 ms (d) t = 53.6 ms

(e) t = 54.4 ms (f) t = 54.7 ms

(g) t = 55.5 ms (h) t = 55.8 ms

Figure 9: Evolution of liquid vapor fraction (φ = 1−Θ`) above
the trailing edge as predicted by the scalar transport model. Pe-
riodic growth and decay of the local vapor fraction is correlated
with the variations in Cp just above the trailing edge.
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Figure 10: Time evolution of vapor fraction and Cp just above
the trailing edge at~x = (38.1,0.01,0.0) for σi = 0.4.

Figure 11: Temporal evolution of bubble distribution (initial size
50 µm) on the shear layer (side view) for σi = 0.4.

tunity’ to get drawn into low pressure regions and cavitate) [6].
Accordingly, air nuclei were distributed evenly in a small band
around the shear layer. The bubbles were initially injected over a

small region in stream-wise direction and in a band of 10 mm in
the mid section of flow span. In order to keep the number of bub-
bles constant in the domain, bubbles were continuously injected
near the leading edge and removed farther away from the trailing
edge. To analyze the sensitivity of the initial bubble size to cav-
itation inception, detailed PDF analysis (following the works of
Cerutti et al. [8] and Kim et al. [9]) was performed by collecting
data over 1.8 flow through time based on the cavity length and
the free-stream velocity.

Table 2: Case studies to analyze cavitation inception using the
Discrete Bubble Model.

Case Figure dinitial σi

Symbol (µm)

C1 square 10 0.4

C2 triangle 50 0.4

C3 circle 100 0.4

C4 diamond 50 0.9

C5 circle (filled) 50 1.4

Figure 11 shows the temporal evolution of bubble locations
inside the shear layer and above the trailing edge. The size of
the scatter symbols is scaled with respect to the size of the bub-
ble. Accordingly, large size bubbles are obtained near the trailing
edge. The initial pressure inside the bubble was set based on an
equilibrium radius corresponding to the radius of the nuclei and
its location in the domain. Using the Rayleigh-Plesset equations
(13), at equilibrium conditions, the pressure inside the bubble can
be obtained as: Pb = Pout +2σ/Rb (σ is the surface tension coef-
ficient). The bubbles are then advected using the adaptive time-
stepping described earlier with ‘one-way’ coupling (bubbles do
not affect the flow). On an average, approximately 50,000 bub-
ble trajectories are tracked at each instant. In order to gain bet-
ter understanding of how different parameters such as the initial
bubble size and cavitation index σi affect the inception and the
behavior of bubbles, three different initial bubble sizes (10, 50,
and 100 µm) were considered with a constant cavitation index
(σi = 0.4). In addition, three different cavitation indices (0.4,
0.9, and 1.4) were examined on a certain initial bubble diameter
(dinit = 50 µm). Table 2 shows different diameters and cavitation
indices used in the present study.

Figure 12 shows instantaneous snapshots (a top view) of
bubbles just in the the shear layer and above the trailing edge
(only a few bubbles are shown for clarity). The bubble size is
scaled according to their diameter; thus bubbles with large radius
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(a) σi = 0.4

(b) σi = 0.9

Figure 12: Top view of the instantaneous snapshot of bubbles
above in the shear layer and near the trailing edge: (a) absolute
value of outside pressure based on σi = 0.4, (b) outside pressure
based on σi = 0.9.

appear more prominently. The two sets of snapshots correspond
to different values of P∞ (set based on the cavitation index (σi) of
0.4 and 0.9). For σi = 0.4 large size bubbles are readily observed
near the trailing edge. As shown later, rapid variation in bubble
size occurs near the trailing edge. As shown later, for this in-
ception index, bubbles inside the shear layer also showed growth
in their size. For higher pressure at the upstream (σi = 0.9; fig-
ure 12b), bubbles cavitate near the trailing edge; however, little
change in size of the bubbles was observed inside the shear lay-
ers.

Data Sampling: To analyze the effect of various model pa-
rameters, we collected probability distribution functions (PDFs)
of number of bubbles based on their growth ratio d/dinitial, the
pressure coefficient Cp, and the vorticity ω at bubble position.
Three different initial bubble sizes were considered (cases C1,
C2, C3), and for initial bubbles of 50 µm the cavitation in-
dex was varied (σi = 0.4, 0.9, and 1.4) in cases C2, C4, and
C5. In addition, we looked at different regions in the flow (la-
beled as zones as shown in figure 11. The criteria for the loca-
tion are −5mm < y < 5mm in three different zones in stream-
wise direction: −2mm < x < 25mm, 25mm < x < 38mm, and
38mm < x < 45mm, which are being referred to as zone 1, 2,
and 3. We have also performed conditional sampling on the pa-
rameters based on bubble growth ratio ( d/dinitial ), and location.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Effect of cavitation index σi on the PDFs and av-
erage number of bubbles (Nb) sampled based on the growth ra-
tio (d/dinitial) and pressure coefficient Cp for case C2 (triangle
symbols), C4 (diamond symbols), and C5 (filled circles): (a,b)
PDF of all bubbles over the region of interest; (c,d) bubbles in
zone 1; (e,f) bubbles in zone 2, and (g,h) bubbles in zone 3.
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For the growth ratio condition we defined three different zones of
d/dinitial < 0.8, 0.8 < d/dinitial < 1.25, and 1.25 < d/dinitial,
referred to as small, medium, and large. For the PDF calcu-
lations, data spans (minimum to maximum of each parameter)
have been divided into 41 different bins which are distributed
logarithmically for diameter and linearly for pressure and vortic-
ity. Samples collected over several instantaneous snapshots were
averaged and these results are discussed below.

Effect of Cavitation Index: Figure 13 shows the effect of
cavitation index on the PDFs and number of bubbles sampled
based on the bubble growth ratio (d/dinitial) and the pressure at
the bubble location in various regions of the shear layer and the
trailing edge. These plots are obtained with fixed initial bubble
size of 50 µm. In figure 13(a) we observe that a majority of the
bubbles retain their original size and are mostly insensitive to
pressure variations (d/dinitial ∼ 1). With lower cavitation index
(σi = 0.4), the maximum bubble growth ratio is higher, and a
small number of very large bubbles are observed near the trailing
edge (giving rise to cavities on the order of 0.1-0.5 cm). This
is due to the effect of lower pressure on the bubbles compared
to the cases with σi = 0.9 and 1.4. The other important differ-
ence is on the left tail of PDF (collapse region) where the PDF of
growth ratio is almost an order of magnitude larger for σi = 0.9
compared to σi = 0.4. This again indicates violent cavitation for
lower cavitation index. Next we consider the behavior of bubbles
in different regions of the flow: near the leading edge (zone 1),
in the mid-section (zone 2) and over the trailing edge (zone 3).
Figures 13c-h show average number of bubbles sampled based
on the growth ratio and Cp values. In zones 1 and 2 (i.e. inside
the shear layer), their is small change in the average number of
bubbles versus a certain growth ratio for different cavitation in-
dices; however, for σi = 0.4 more variation in bubble sizes were
observed in both zones (figures 13(c),13(e)). Near the trailing
edge, large differences in the number of bubbles with the same
growth ratio are observed (figure 13(g)). For the lowest σi (C2),
number of large bubbles observed near the trailing edge is at least
an order of magnitude more than other cases (C4 and C5). The
highest cavitation index nearly shows no cavitation above trailing
edge.

Figure 13(b) shows the PDF of Cp at bubble locations for
cases C2, C4, and C5 over the entire region of interest. Changing
σi doesn’t change the PDF curves sampled based on Cp apprecia-
bly; implying that the location of bubbles is not significantly af-
fected by varying σi. This can also be observed in the snapshots
of bubbles in figure 12. Figures 13(d), 13(f), and 13(h) show
the average number of bubbles sampled based on Cp in zones 1
(near leading edge), 2 (mid section), and 3 (near trailing edge),
respectively. Noticeable number of bubbles are observed in the
range of −1 ≤Cp ≤ 1. This is consistent with the experiments,
wherein Liu and Katz [1] predicted cavitation inception occurs
at σi = 0.9. These plots also indicate presence of large number
of bubbles in the low pressure region for σi = 0.4. Based on the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Effect of initial bubble size on the PDFs and average
number of bubbles sampled based on growth ratio (d/dinitial
) and pressure coefficient Cp at bubble location for cases C1
(10 µm square symbols), C2 (50 µm triangle symbols), and C3
(100 µm circle symbols): (a,b) PDF for all bubbles over the re-
gion of interest; (c,d) bubbles in zone 1; (e,f) bubbles in zone 2,
and (g,h) bubbles in zone 3.
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growth ratios, these are typically larger size bubbles which get
attracted toward the low pressure region.

(a) (b)

Figure 15: Average number of conditionally sampled bub-
bles based on pressure coefficient at bubble location for case
C1 (square), C2 (triangle), and C3 (circle): (a) medium size
group (0.8 < d/dinitial < 1.25), (b) large size group (1.25 <
d/dinitial).

Effect of Initial Bubble Size: The effect of initial bubble size
is shown in figures 14. In these figures we also look at PDFs
of growth ratio and Cp for cases C1, C2, and C3 over the entire
region (figure 14a,b). The average number of bubbles sampled
according to their growth ratio and Cp are also shown in three
different zones (figure 14c-h)

Figure 14(a) shows that the smaller bubbles (10 micron) are
less sensitive to growth. A majority of them grow to about 3-4
times their original size, whereas a very few become 100 times
larger. This may be attributed to the fact that smaller bubbles tend
to travel with the flow (low Stokes number), and may not get en-
trained into lower pressure region quickly. Larger bubbles (50
and 100 microns) can grow to very large size (10-100 times the
initial size). Based on the growth ratio, 50 and 100 micron bub-
bles seem to be entrained in the low pressure regions in the shear
layer (zones 1 and 2) and show some growth (less than twice the
initial size) in these regions for σi = 0.4. Near the trailing edge,
however, rapid growth in size is observed for these bubbles; some
growing up to 50 times their original size. Correspondingly, they
create cavities on the order of 0.5 cm also observed in the exper-
iments.

Conditional Sampling and Bubble Distributions: To further
characterize the sensitivity of the bubbles to imposed pressure
variations, the bubbles were sampled into three groups based
on their growth ratio: small (d/dinitial < 0.8), medium (0.8 <
d/dinitial < 1.25), and large (1.25 < d/dinitial) bubbles. Bub-
bles from each group were then conditionally sampled to ob-
tain PDFs and average number of bubbles based on Cp (fig-
ure 15) and vorticity ω distributions (not shown). Figures 15a,b
show that bubbles with initial size 10 micron tend to grow into

medium group (i.e. 0.8 < d/dinitial < 1.25), whereas larger
initial size bubbles (50 and 100 micron) exhibit large growth
(1.25 < d/dinitial). This indicates that bubbles with initial size in
the range of 50-100 microns are capable predicting visible cavi-
tation. Similar conclusions were drawn for plots based on vortic-
ity distribution (not shown for space). This indicates that small
initial size bubbles although sensitive to pressure fluctuations, do
not tend to cluster in regions of high vorticity or low pressure. To
predict cavitation inception, initial bubble sizes on the order of
50-100 micron are best suited for this flow as they tend to cluster
in low pressure regions and thus can grow to large sizes.

(a) y = 0.2 mm, σi = 0.8

(b) y = 0.1 mm, σi = 0.1

Figure 16: Temporal evolution of bubble radius (normalized by
initial radius) and outside pressure coefficient (Cp) seen by the
bubbles for two sample trajectories of bubbles released near the
leading edge. The upstream pressure level is set based on σi =
0.8 for the top panel and σi = 0.1 for the bottom panel: (a) bubble
released at y = 0.2 mm, (b) released at y = 0.1 mm from the
leading edge surface.

Bubble Trajectories: We monitored trajectories of some
bubbles that were released near the leading edge. Figure 16
shows the variations in the outside pressure signal (Cp) and the
corresponding changes in the bubble radius (Rb) experienced by
the bubble as it moves from its injection location. Two sample
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bubble trajectories are shown for bubbles released close to the
leading edge in the wall-normal direction. The first trajectory
(figure 16a) is for outside pressure set based on the cavitation
index of 0.8. The bubbles show rapid variations in their size as
they encounter the trailing edge low pressure region. The second
trajectory (figure 16b) corresponds to bubble dynamics with a
much lower upstream pressure (σi = 0.1). This shows cavitation
occurring in the shear layer.

6 CONCLUSIONS
We performed LES of turbulent flow over an open cavity

corresponding to the experimental setup of Liu and Katz [1] at
the flow Reynolds number of 170,000. The filtered, incompress-
ible Navier-Stokes equations were solved using a co-located grid
finite-volume solver [27] with the dynamic Smagorinsky model
on a five million grid with mainly Cartesian hexahedral elements.
The mean flowfield at the inlet section is specified from the ex-
perimental data in the symmetry plane, whereas, turbulent fluc-
tuations were imposed at the inflow based on resolved computa-
tion of a periodic duct flow keeping the mass-flow rate and the
Reynolds number the same. The flow statistics, including mean
and rms velocity fields showed reasonable agreement with the
experimental data near the leading and the trailing edges. The
mean pressure distribution shows two distinct features near the
trailing edge: (i) a high-pressure region just upstream of the trail-
ing edge which extends slightly into the cavity, and (ii) a low
pressure region above the trailing edge. The high pressure region
just upstream of the trailing edge occurs mainly due to the im-
pingement of the shear layer onto to the trailing edge, creating a
stagnation point inside the cavity. The flow then has to turn and
go around the trailing edge creating a low pressure region above
the trailing edge. The shape of contours of the mean Cp were
very similar to those observed in the experiments and predicted
that cavitation inception occurs just above the trailing edge in the
low pressure region. Variations in local Cp values above the trail-
ing edge were also investigated and showed correlations with the
impingement of the shear layer vortices onto the trailing edge.

Cavitation inception was investigated using two approaches:
(i) a discrete bubble model for gaseous cavitation wherein the
bubble dynamics is computed by solving the Rayleigh-Plesset
and the bubble motion equations using an adaptive time-stepping
procedure, and (ii) a scalar transport based model for the liquid
volume fraction with source and sink terms for phase change cor-
responding to vaporous cavitation. In both models, the effect of
bubbles or vapor on the flowfield was neglected. Simulations
with different values of the outside pressure were performed by
changing the cavitation index (σi). Both models predicted that
inception occurs above the trailing edge. For σi < 0.4, heavy
cavitation was observed above the trailing edge. The scalar trans-
port model predicted periodic growth and decay of the liquid va-
por fraction above the trailing edge owing to local variations in

pressure minima. The frequency of this variation was on the or-
der of 300 Hz similar to those observed in the experiments. The
discrete bubble model captures the subgrid dynamics of bubbles
and also showed cavitation inception occurring above the trailing
edge. For low σi, rapid variations in bubble sizes were also ob-
served within the shear layer. Sensitivity of the model parameters
was investigated in case of the discrete bubble model by varying
the initial size of the bubbles and by changing the cavitation in-
dex. It was found that bubbles with initial sizes on the order of
50-100 micron tend to cluster in low pressure regions and exhibit
rapid growth. By examining the probablity distribution functions
and average number of bubbles, the inception index of 0.9 agrees
well with the experimental data.
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