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Direct Numerical Simulation of a Low-Reynolds-Number Flat-

Plate Airfoil with a Passively Actuated Trailing-Edge Flap 
 

INTRODUCTION 

Background 

The study of low-Reynolds-number airfoils has gained considerable momentum in recent 

years, due to the increasing use of micro air vehicles (MAVs). MAVs span a wide 

spectrum of sizes, shapes, and capabilities, ranging from military applications to 

children's toys. Understanding the behavior of low-Reynolds-number airfoils is an 

important step in designing more effective MAVs. 

 The Reynolds number  Re  of an airfoil is a dimensionless quantity defined in 

terms of the chord length  c , free-stream velocity  U , and kinematic viscosity    

of the surrounding fluid. The fundamental relationship between these variables is given 

by equation (1). 

 Re
U c


  (1) 

Traditionally, airfoils with Reynolds numbers less than 10
5
 are considered low-Reynolds-

number airfoils [3]. The physical interpretation of the Reynolds number can be thought of 

as the relative importance of inertial forces to viscous forces within the flow. Large 

Reynolds numbers would indicate that the flow is dominated by inertial forces, such as 

momentum. At low Reynolds numbers, viscous forces determine the major flow 

characteristics, and smooth fluid motion is typically observed. 
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Many MAVs utilize simple, flat-plate, airfoils. To achieve reasonable lift at low 

Reynolds numbers, flat-plate airfoils might require high angles of attack. Under these 

conditions, thin airfoils are especially susceptible to flow separation at the leading edge 

which can give rise to dynamic stall. In fact, the term “thin-airfoil stall”, as defined by 

McCullough and Gault [4], is “flow separation at the leading edge with reattachment at a 

point that moves progressively rearward with increasing angle of attack”. This 

“separation bubble” can lead to highly sporadic lift and drag forces on the wing, making 

it difficult to control the aircraft. To mitigate this problem, a leading-edge flap can be 

installed to, effectively, add camber to the wing and delay separation. A study by Drost 

[3] found that the addition of a leading-edge flap can have a positive impact on the lift 

and drag characteristics of thin airfoils. Several cases were studied, both for static and 

oscillating leading-edge flap scenarios. 

A report by Apte [2] investigated the addition of both a leading- and trailing-edge 

flap (separately) on a thin, plunging, airfoil. Results suggest that a passively controlled 

(i.e., spring loaded) flap on the leading or trailing edge of a thin airfoil can help yield 

significant improvements in flight characteristics and may even produce thrust, for the 

case of a trailing-edge flap. 

Objectives 

It is the aim of the present study to expand on the previous work by Apte (above), by 

investigating the effectiveness of a passively actuated trailing-edge flap, at a Reynolds 

number of 1000 (compared to 14700 as studied by both Apte and Drost). Results will be 

analyzed for differences between static flap and passive flap scenarios. Of primary 
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interest would be changes in overall lift and drag coefficients of the airfoil between these 

cases. Figure 1 shows a diagram of a thin airfoil with elliptical leading and trialing edges, 

at an angle of attack    and flap displacement angle   . 

 

Figure 1: Conceptual side-view diagram of a thin airfoil with a trailing-edge flap. U∞ is 

the velocity of the surrounding fluid, α is the pitch angle, θ is the flap displacement angle, 

c is the chord length, and la is the flap length (0.3c). 

Literature Review 

Several numerical simulations of flat airfoils have been conducted in the past. A study by 

Taira and Colonius [5] investigated the effects of three-dimensional flows around low-

aspect-ratio flat-plate wings at Reynolds numbers of 300 and 500. Their findings showed 

that aspect ratio and angle of attack have a large impact on the forces experienced by the 

immersed body. Depending on the aspect ratio and angle of attack, the wake reached one 

of three states: (1) steady, (2) periodic unsteady, or (3) aperiodic unsteady. The aperiodic 
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unsteady situation was caused by strong interactions between the leading-edge, trailing-

edge, and tip vortices. 

Kim and Choi [6] studied the flow around an arbitrarily moving body using an 

immersed boundary method. Their approach was based on a finite volume method with a 

staggered mesh arrangement. Forced motion of a circular cylinder was investigated, as 

well as a freely falling sphere and cube. Results agreed well with previous numerical and 

experimental evidence. 

Uranga et al. [7] worked on predicting the formation of laminar separation 

bubbles and how they relate to flow transition. Implicit Large Eddy Simulations (LES) 

were used along with a high-order Discontinuous Galerkin (DG) method. Their work 

focused on the flow around an SD7003 rectangular wing section at a low angle of attack 

and Reynolds numbers of 10,000 and 60,000. Their findings were in agreement with 

published results, despite the course grid employed in their simulations. 

Alonso et al. [8] presented “an implicit approach to the solution of the unsteady 

two-dimensional Navier-Stokes equations”, wherein coupled, implicit, non-linear 

equations were solved iteratively. Results were obtained for the unsteady vortex shedding 

behind a circular cylinder and for a pitching NACA 64A010 airfoil. 

The hovering aerodynamics of flexible flapping wings at resonance were 

simulated in three dimensions by Masoud and Alexeev [9] via a hybrid computational 

approach which combined the lattice Boltzmann model (LBM) and the lattice spring 

model (LSM) for the dynamics of incompressible viscous fluids and the mechanics of 

elastic solids, respectively. Simulations showed that large amplitude sinusoidal 
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oscillations drastically improved the aerodynamic efficiency of flexible wings at low 

Reynolds numbers. 

Measurements by Broeren and Bragg [10] showed a correlation between the 

airfoil stall type, as defined by McCullough and Gault [4], and the low frequency 

oscillation of a LRN-1007 airfoil at a Reynolds number of 300,000. The measurements 

showed an interaction between the leading-edge separation bubble and the trailing-edge 

separation as the airfoil oscillates in and out of stall. 

Visbal et al. [11] employed a high-fidelity, implicit, large eddy simulation 

approach to investigate several aspects of the complex flow physics encountered by 

MAVs. The boundary layer transition of a stationary SD7003 airfoil at Reynolds numbers 

of 10
4
-10

5
 and pitch angles of 2˚-14˚were investigated, as well as the unsteady low-

Reynolds-number flow past a plunging airfoil. 

The study by Drost [3], which was an earlier project conducted under the 

mentorship of Apte, simulated the flow around a thin airfoil with a movable leading-edge 

flap. Direct Numerical Simulation (DNS) was used to fully resolve the flow 

characteristics around the airfoil, using a fictitious domain approach to represent the 

airfoil surface. Simulations were conducted at a Reynolds number of 14700, and an angle 

of attack of 20˚. The lift and drag forces on the wing were analyzed for several 

frequencies of forced flap oscillation. The fluid forces were found to be highly dependent 

on the vortex shedding at the leading edge, and consequently the oscillatory motion of the 

flap.  Lift and drag forces became more predictable with the use of a leading-edge flap. 

Lastly, the recent work by Apte [2] suggests that a trailing-edge flap also has the 

potential to produce beneficial results for the lift and drag of a thin airfoil. Flow over a 
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plunging airfoil at 10 Hz and 5˚ angle of attack was studied, along with other 

configurations that included a leading-edge flap. Regarding the simulations of a passive 

trailing-edge flap, it was found that spring natural frequencies (of the spring-flap system) 

higher than the plunging frequency of the airfoil lead to a net increase in thrust. As noted 

in the objectives section, these simulations were conducted at Re=14700. The present 

study aims to conduct similar trials at a Reynolds number of only 1000.  
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METHODOLOGY 

Numerical Scheme 

To solve the fluid structure interaction problem, a second-order fictitious domain 

approach by Apte et al. [1] was employed on a fixed Cartesian grid. In this approach, the 

entire fluid-particle domain is assumed to be an incompressible, yet variable density 

fluid. Inside the “rigid body” region, the fluid is constrained to undergo rigid body 

motion, while the fluid outside is constrained to be divergence-free. Since the rigid body 

is undergoing translational and rotational motions, a method of tracking which control 

volumes (CVs) are inside of the body is required. This is done using a hybrid Lagrangian-

Eulerian (HLE) method, wherein material points on the surface of the object are tracked 

at each time step. The material points start at user-defined locations on the grid, and are 

then either subjected to user defined velocity constraints (forced plunging on main 

portion of wing), or allowed to respond passively to the surrounding fluid forces (tail flap 

passive motion). In both cases, the CVs that happen to contain the material points are 

tagged as the material boundary. 

The flow variables, such as pressure, density, etc., are stored at the CV centers, 

with the exception of the face-normal velocities, which are stored at the center of the cell 

faces [1]. The storage variables are staggered in time, such that the velocities and forces 

are stored at each times step, but pressure, density, and volume fraction are taken at each 

half time step. A temporally staggered grid arrangement, such as this, provides the benefit 

of a symmetric discretization, which helps to conserve properties within the numerical 

scheme. 
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Governing Equations 

The mathematical model used to approximate the behavior of the flap is a second-order 

ordinary differential equation for a spring-mounted compound pendulum. The free-body 

diagram depicting this situation is illustrated in Figure 2. 

 

Figure 2: Free-body diagram of tail flap. The figure shows the flap with an elliptical end, 

but it was actually approximated as a thin rectangle for simplicity. 

Here, T  represents the Torque due to the spring displacement, D  represents the 

damping moment, M  represents the moment caused by fluid forces, and W  represents 

the weight of the flap (approximated as acting at one half of the flap length).   and   

are the wing angle of attack and flap displacement angle, respectively (counter-clockwise 

positive). The equation of angular motion for this system can be written as follows 

(assuming a constant angle of attack): 

 

2

2
cos( )

2

a
hinge

l d
M M T D W I

dt


        (1.2) 

Where: 
2 21

2 M f aM C U l w   (1.3) 
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 T K  (1.4) 

 
d

D C
dt


  (1.5) 

 W mg  (1.6) 

 
21

3 aI ml  (1.7) 

In these equations, 
MC  represents the pitching moment coefficient due to the fluid forces 

on the flap, f  represents the density of the fluid, U
 is the velocity of the surrounding 

fluid, 
al  is the length of the flap, w  is the width of the flap, K  is the spring stiffness 

parameter, C  is the damping coefficient, m  is the mass of the flap, g  is the 

gravitational constant, and I is the flap moment of inertia about the hinge (approximated 

as a thin rectangular plate). Substituting equations (1.3) through (1.6) into equation (1.2) 

yields an expanded form of the equation of motion. After subsequent rearrangement of 

terms, the equation may be presented in the following form: 

 

2

2
cos( )

2

a Md C d K mgl C

dt I dt I I I

 
        (1.8) 

In order to non-dimensionalize this equation, the following substitutions are made: 

 alt
U





  (1.9) 

 2C KI  (1.10) 

Where   is a non-dimensional time and   is a non-dimensional damping parameter. To 

further simplify the equation, the following definitions of the Strouhal number 
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 N N aSt f l U  and spring natural frequency  1
2Nf K I  are utilized. The 

final version of the non-dimensional equation can be written as: 

 

2
2

2 2 *

3 3
4 (2 ) cos( )

2 2

a a M
N N

a

d d gl l C
St St

d d U t I

 
    

  

      (1.11) 

In the above equation, 
at  is the flap thickness and 

*I  is the ratio of the flap moment of 

inertia to the moment of inertia of the equivalent fluid, which simplifies to the ratio of the 

flap density to the fluid density  a f  . Solutions to equation (1.11) are obtained by 

decomposing it into a set of two, coupled, first-order ODEs and applying a third-order 

Runge-Kutta scheme, as implemented by Apte et al. 

Airfoil Model 

In this study, the dimensions of the wing and flap are those of an existing physical 

prototype. The chord length is 20 cm  0.2c m ; the flap represents 30% of the chord 

length  0.06al m ; and the airfoil is 2% thick  0.004at m . Figure 3 shows an 

annotated CAD rendering of the physical model. 
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Figure 3: 3D CAD model of the physical wing prototype. The wing features an adjustable 

torsion spring system to facilitate analysis of the spring stiffness parameter. A vertical 

mounting post positions the trailing edge away from the sting balance. 

The current model is slightly different than that used by Apte and Drost, differing in its 

thickness-to-chord ratio of 0.02 versus 0.038 for the older model. The wing is modeled in 

the solver as a two-dimensional collection of surface points, connected to form a 

simplified surface profile. The method used to generate the surface points is outlined in 

the report by Drost [3]. 
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IMPLEMENTATION 

Grid Refinement Study 

To identify an adequate grid resolution, several cell sizes were investigated. A Cartesian 

grid that spanned 30 times the diameter of the cylinder in the x- and y-directions was 

used, with a uniform refinement patch centered on the cylinder to ensure a well-resolved 

surface. Three different cell sizes were used to calculate the flow past a stationary 

cylinder. Grid sizes of 100 by 100, 200 by 200, and 400 by 400 were used, each with 50 

percent of the x-direction and y-direction cells occupying the refinement region. The cell 

spacing within the refinement region corresponded to grid resolutions of D/17, D/33, and 

D/67, respectively. The remaining cells were gradually stretched away from the cylinder 

using a hyperbolic tangent function. 

 

Figure 4: Uniform refinement patch for 100 by 100 (D/17) grid. Two other grids of 

double and quaduple the resolution shown were also studied. 

Two cells span the z-direction, with periodic boundary conditions. Tests were performed 

at a Reynolds number of 200, based on the cylinder diameter. Strouhal numbers were 

calculated for each case by 
*f D

U
St


 , where f  represents the respective vortex shedding 
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frequency (obtained from the plots of lift and drag coefficients). Table 1 lists the Strouhal 

numbers obtained from each grid spacing (example calculations in Appendix B). 

Grid Size 100 by 100 

(D/17) 

200 by 200 

(D/33) 

400 by 400 

(D/67) 

Strouhal Number 0.1969 0.1953 0.1984 

Table 1: Strouhal number per grid resolution for static cylinder cases at Re=200. 

Interestingly, the results for the D/17 grid are more similar to the D/67 results than are 

the D/33 results. It was expected to see consistent trend, and the reason for this 

discrepancy not entirely clear. 

Qualitatively, the flow behavior around the cylinder can be visualized as vorticity 

contours. Figure 5 shows temporal out-of-phase vorticity contours that are shedding from 

the cross-stream cylinder at a Reynolds number of 200. 

 

Figure 5: Temporal out-of-phase vorticity contours for a cylinder in a cross-flow. Grid 

size = 400 by 400 (D/67). 

Apte [2] identified 0.1986 as an adequate Strouhal number for this specific case, which 

matches well with the Strouhal number calculate from the present D/67 test grid. Figure 6 

and Figure 7, below, show the cylinder lift and drag coefficients for each grid resolution. 
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Figure 6: Lift coefficient comparison for different static cylinder grid resolutions. A 

dramatic difference is observed when a grid resolution of D/67 is used. 

 

Figure 7: Drag coefficient comparison for different static cylinder grid resolutions. 

Again, a clearly nonlinear trend is observed from one resolution to the next. 
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Verification Tests 

The fluid-structure interaction solver was verified by simulating flow past a spring-

mounted cylinder with two degrees of freedom, and comparing the results to established 

data. The finest grid used in the refinement study (D/67) was again used for the dynamic 

cylinder case. The natural frequency of the spring-mass system was set based on the 

Strouhal number (Table 1), calculated from the corresponding static cylinder vortex 

shedding frequency. The figure below illustrates the situation to be studied, which is a 

two-dimensional spring-mass-damper system in a cross-flow. 

 

Figure 8: Diagram of spring-mounted cylinder with two degrees of freedom. Angular 

rotations of the springs were not taken into consideration. Source: [8] 

Three cases were run with the damping factor (xi) varied from 0.001 to 0.1 (two orders of 

magnitude). Figure 9 shows the cross-stream displacements calculated by Apte, using the 
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same solution algorithm as the present study, in comparison to published data by 

Blackburn & Karniadakis [12]. The current scheme yields excellent prediction 

capabilities compared to these studies. 

 

Figure 9: Cross-stream displacement obtained by Apte [2] in comparison with published 

data by Blackburn et al [12]. 

Flow over a Plunging Airfoil with Passively Actuated Tail Flap 

The thin, flat, airfoil was subjected to a simple sinusoidal plunging motion of frequency 

10 Hz and amplitude 1 cm (equal to 5% of the chord length). Cases were run at an angle 

of attack of 5 degrees and a Reynolds number of 1000. The free-stream velocity was set 

to 1 m/s, and the fluid density to 1 kg/m
3
. A Reynolds number of exactly 1000 was 

achieved by setting the fluid viscosity to 0.0002 m
2
/s.  The length of the passive trailing-
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edge flap was equal to 30% of the total chord length. The chord length was 20 cm and the 

airfoil thickness was 4 mm (2%). Figure 10, below, illustrates this setup. 

 

Figure 10: Computational representation of a thin airfoil with a trailing-edge flap. 

First, a case was run with a static flap fixed parallel to the wing, to observe a baseline 

scenario of a simple plunging flat plate. Five cases were then run with the flap allowed to 

passively actuate. The airfoil model was positioned within a uniform grid refinement 

patch, large enough to contain the oscillatory motions. A cell size of 10at  was used in 

the refinement area to ensure a well-resolved wing surface (see Figure 11, below). 

 

Figure 11: Uniform grid region over leading edge of airfoil. Cells in red region are 

considered to be within the airfoil, and are therefore constrained to rigid body motion. 
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Outside of the refinement patch, the cells were gradually stretched away using a 

hyperbolic tangent function. The amplitude and frequency of plunging was identical for 

each case. For comparison with the work by Apte, the natural frequency of the spring-

flap system was varied to produce symmetric frequency ratios about the resonance case. 

Where f  represents the frequency of plunging (10 Hz) and 
Nf  represents the natural 

frequency. Specific ratios of 0.5,  0.8,  1.0,  1.25,  and 2.0Nf f   were studied, as 

well as the static flap scenario  0Nf f  . Each case was allowed to run for 10-12 

periods of oscillation to allow any transient behavior to dissipate. The latter 6 periods of 

stable behavior were then used to calculate average values of lift and drag coefficients. 

An even number of periods were used because it was observed that the oscillations in lift 

and drag coefficients demonstrated alternating cycle variations.  
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RESULTS 

As the airfoil underwent a sinusoidal plunging motion, the lift and drag characteristics 

along with many other parameters were monitored. Table 2 summarizes the average lift 

and drag forces as a function of the frequency ratio. The amplitude ratio of the trailing-

edge oscillation to the leading-edge oscillation, as well as the propulsive efficiency, is 

also listed in the table. To calculate the propulsive efficiency, the following definition 

was used: 

 D

L

F U

F v
    (12) 

The negative sign is used to compensate for the negative drag force. In equation (12), v  

represents the vertical velocity of the airfoil as a result of the forced plunging motion. 

Equations (13) and (14) give the functions for the plunging motion and the vertical 

velocity, respectively, noting that the vertical velocity is merely the time derivative of the 

plunging motion. 

 0.05 *sin(2 * )y c f t  (13) 

 0.05 *2 *cos(2 * )v y c f f t    (14) 

To calculate the amplitude ratio, the leading-edge oscillation amplitude was defined as 

the amplitude of the plunging waveform. The trailing-edge amplitude was found by 

calculating the displacement distance of the trailing edge relative to the zero-position 

(parallel to the wing). The equation of the trailing-edge displacement is given in equation 

(15), where al  represents the flap length, and   is the flap displacement angle. 

 *sin( )TE ay l   (15) 
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Nf f  aTE/aLE 
 propC  DC  LC  Flap DC  Flap LC  

0 (static) 1 0.023 1.475 -0.033 0.667 -0.154 -0.021 

0.5 0.2305 -0.004 1.667 0.007 0.628 -0.114 -0.023 

0.8 1.159 -0.066 2.253 0.147 0.929 0.084 0.057 

1 2.653 0.150 0.773 -0.114 0.930 -0.141 0.089 

1.25 1.138 0.210 0.782 -0.162 0.653 -0.280 -0.003 

2 0.7902 0.136 0.977 -0.130 0.747 -0.247 0.006 

Table 2: Summary of airfoil average lift and drag coefficients, as a function of frequency 

ratio. aTE/aLE is the ratio of the oscillation amplitude of the trailing edge over the leading 

edge, and η is the propulsive efficiency of the airfoil. 

As expected, the resonance case produced the largest flap displacements (as indicated by 

the amplitude ratio in column 2). The most noteworthy trend, however, would be the 

negative drag coefficients seen at frequency ratios equal to or greater than 1, and also for 

the static flap case. One might also notice that mean drag coefficient values for the flap 

by itself share a similar trend with the overall drag coefficients, but with an extra negative 

value at f/fN=0.5. Looking at the corresponding overall drag coefficient for that case, the 

DC  value appears to be almost zero in comparison with the other drag coefficients 

(approximately 2 orders of magnitude smaller). This indicates that the f/fN=0.5 case is on 

the verge of producing a positive thrust value, which makes sense given its behavioral 

similarity to the static flap case (see Table 3, below). In comparing the drag coefficients 

of the passive flap cases to that of the static flap case (to identify any benefits of passive 

actuation), it is noticed that the drag coefficient of the static case is roughly zero, in 

comparison with many of the values obtained from the dynamic flap cases. Therefore, it 

can be concluded that the addition of a passively-actuated tail flap does produce 
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measureable differences. Given the proper combination of the plunging frequency and 

natural frequency, these differences can be quite advantageous. 

 Thus far, the quantitative effects of the passively actuated trailing-edge flap have 

been examined. It is also informative to observe the qualitative behavior of the airfoil 

under the circumstances in which it was simulated. Looking at Table 3, the flow patterns 

around the airfoil are clearly visible as vorticity contours. The table is situated such that 

phases of plunging are listed horizontally, and the different cases of plunging frequency 

over natural frequency are presented on different rows. Clear trends and patterns are 

visible in the data. 

:0Phase  : / 2Phase   :Phase   :3 / 2Phase   

    

    

    

    

    

    

Table 3: Vorticity contours for airfoil plunging scenario. Phase 0 is the center position 

going up. Phase pi/2 is the upper-most position. Phase pi is the center position going 

down. And phase 3pi/2 is the lower-most position. 

0Nf f   

0.5Nf f   

0.8Nf f   

1Nf f   

1.25Nf f   

2Nf f   
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A major aspect of the vorticity contours seen in Table 3 is their comparatively smooth 

behavior, when compared with the vorticity contours generated by Apte [2]. This is 

certainly to be expected, since the cases in this study are at a much lower Reynolds 

number. The plots in Table 3 also show that the oscillation of the flap about its mean 

position is out of phase with the plunging motion for frequency ratios greater than 1. In 

other words, for those cases, the flap is above its mean position when the plunge is below 

the midline, and the flap is below its mean position when the plunge is above its midline. 

Conversely, the lower frequency ratios seem to be more or less in phase with the 

plunging motion. These concepts are further illustrated in Figure 12 and Figure 13. In the 

following figures that illustrate flap position, it should be noted that the flap displacement 

angle is measured positive counter-clockwise. That is, a positive θ value indicates a flap 

that is above the mean position. 

 

Figure 12: Plunging waveform versus flap displacement, f/fN=1.25. 
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Figure 13: Plunging waveform versus flap displacement, f/fN=0.8. 

The previous two figures show comparisons of the plunging motion and the flap 

displacement for the maximum thrust case (f/fN=1.25) and its reciprocal (f/fN=0.8). These 

plots show how the larger frequency ratio produces flap displacements that attempt to 

counter the motions of the plunging, whereas the lower ratio actuation adds to the 

plunging motion. Appendix E lists similar plots for all cases examined, and it can be seen 

through these figures that frequency ratios less than 1 tend to produce flap actuation that 

is between 0 and 90 degrees ahead of the plunging waveform, and ratios larger than or 

equal to 1 produce actuation that is between 90 and 180 degrees ahead. Plotting the phase 

shift for each case versus the respective frequency ratio yields a sigmoidal curve tapering 

off at 180 degrees. From Figure 14, it can be seen that the beneficial effects are obtained 

at phase shifts greater than 90 degrees. 



24 

 

 

Figure 14: Trailing-edge flap phase shift relative to the plunging waveform. 

Figure 15 and Figure 16 give a comparative view of the motion of the leading edge and 

trailing edge, over a graph of power input for plunging. Note that the vertical scale of 

Cprop been adjusted for easy comparison. In comparing the two figures a distinct upward 

shift of the power input can be noticed, owing to the opposite behavior of the flap (out of 

phase vs. in phase). This explains the poor propulsive efficiencies of the lower frequency 

ratios. An examination of the drag profile should confirm this. 
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Figure 15: Comparison of plunging waveform, flap displacement and power input for a 

frequency ratio of f/fN=1.25. Cprop values scaled by factor of 0.0015 for clarity. 

 

Figure 16: Comparison of plunging waveform, flap displacement and power input for a 

frequency ratio of f/fN=0.8. Cprop values scaled by factor of 0.0015 for clarity. 
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Looking at the drag characteristics in comparison with the plunging and actuation 

behavior, Figure 17 and Figure 18 show how the behavior of the tail flap affects the drag 

on the airfoil. 

 

Figure 17: Comparison of plunging waveform, flap position, and drag coefficient, for 

f/fN=1.25. Note: The drag coefficient is scaled by a factor of 0.005 for ease of analysis. 
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Figure 18: Comparison of plunging waveform, flap position, and drag coefficient, for 

f/fN=0.8. Note: The drag coefficient is scaled by a factor of 0.005 for ease of analysis. 

In contrast, Figure 19 shows the drag coefficient and plunging position for the case of a 

static flap. 

 

Figure 19: Comparison of plunging waveform and drag coefficient for f/fN=0. Note: The 

drag coefficient is scaled by a factor of 0.005 for ease of analysis. 
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Between the high and low frequency cases, it is immediately apparent that the drag 

coefficient is skewed downward for the larger frequency ratio, and skewed upward for 

the smaller ratio. This indicates a decrease in drag for the larger frequency ratio. Figure 

17 through Figure 19 are further broken down by phase in the following analysis. 

 Phase 0: In this position, the airfoil is at the midline of its plunge and about to go up. 

For f/fN=1.25, it is observed that flap position is essentially zero, and the drag is 

positive and decreasing. In the case of no actuation, the drag value is also positive and 

decreasing. For f/fN=0.8, the flap is below the mean position and the drag coefficient 

is again positive. 

 Phase π/2: Here, the plunging position is at its maximum positive value and the drag 

coefficient is almost at its minimum (producing thrust) for all three cases. For 

f/fN=0.8, the flap angle is near its most positive value above the mean position. The 

flap is near its lowest position for the f/fN=1.25 case. 

 Phase π: In this stage, the airfoil is in the center-most position of the plunging cycle 

about to go downward. Drag values are negative (thrust) and increasing toward zero 

for all three cases plotted above. In the case of f/fN=0.8, the flap angle is largely 

above the mean position and decreasing. For f/fN=1.25, the flap is approximately at 

the mean position and increasing. 

 Phase 3π/2: Lastly, this phase represents the airfoil at its lowest plunging position. 

For each case, the drag value is at its largest positive value (or very near). The 

f/fN=0.8 case yields a flap angle below the mean position, and f/fN=1.25 shows a flap 

that is well above the mean position. 
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The seemingly opposite behavior of the passive flap between cases where f/fN>1 and 

f/fN<1, appears to have the net effect of producing thrust at the higher frequency ratios. 

This could be explained by observing the trailing-edge vortex shedding behavior between 

the different cases studied. The two most extreme examples are highlighted below. 

 

Figure 20: Vortex shedding behavior at phase π/2 for f/fN=0.8. 

 

Figure 21: Vortex shedding behavior at phase π/2 for f/fN=1.25. 

Besides the opposite position of the passive flap in these two figures, the most obvious 

difference would be the magnitude differences of the trailing-edge vortices. In the 

f/fN=0.8 case, the vortex is much greater, owing to the fact that the compounded effect of 

a rising airfoil plus a rising flap is more capable of disturbing the trailing-edge fluid. The 

energy required to generate the larger vortex would translate into a larger drag force for 

the case of an in-phase flapping motion. This is confirmed by fact that, at this particular 

instant, the out-of-phase flap is producing twice the amount of thrust as the in-phase flap. 
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In summary, the out-of-phase motions for frequency ratios greater than or equal to 1 tend 

to allow the flap to be less of a disturbance to the trailing-edge fluid, thereby increasing 

the overall thrust value for these cases. 
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SUMMARY AND FUTURE WORK 

The effects of a spring-mounted passively actuated trailing-edge flap were modeled in 

two dimensions using a fictitious domain method by Apte et al. The airfoil studied was 

similar to that of Apte [2] and Drost [3], but with a smaller thickness-to-chord ratio to 

accommodate new project goals. The airfoil was subjected to a sinusoidal plunging 

motion to simulate a flapping wing, and cases were run at a Reynolds number of 1000. It 

was shown by the drag values in Table 2 that the presence of a passively actuated 

trailing-edge flap does produce beneficial results, provided that the proper ratio of the 

plunging frequency and natural frequency is obtained. Specifically, natural frequencies 

lower than or equal to the plunging frequency were shown to produce thrust, rather than 

drag. Thrust was also produced with a rigid flap, that was fixed parallel to the wing, 

implying that a plunging flat-plate airfoil has the potential to generate thrust without the 

aid of a passive flapping mechanism. However, the thrust value for the fixed flap scenario 

was nearly zero in comparison to the large-frequency-ratio passive-actuation cases, 

suggesting that the presence of a passive flap may provide much greater performance.

 Comparing the performance of this airfoil, at a Reynolds number of 1000, to the 

performance of the similar airfoil simulated by Apte, at a Reynolds number of 14700, 

reveals an opposite trend in drag performance versus frequency ratio. Table 4 lists the 

results obtained by Apte for this situation. 
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Table 4: Results obtained by Apte [2], for a low-Reynolds-number plunging airfoil, with 

a passively actuated trailing-edge flap, very similar to the present study. Highlighted in 

red are the cases that produced thrust, rather than drag. 

The main differences between the past and present study are 1) the Reynolds number at 

which the tests were performed, and 2) the thickness-to-chord ratio of the wings being 

tested. The plunging amplitudes, plunging frequencies, and frequency ratios were the 

same for both cases. A major difference in the behavior of the spring-mounted trailing-

edge flaps for the different studies was the phase shift of the different cases. As Apte 

observed, the best performance was obtained when the trailing-edge flap was 90° out-of-

phase with the leading edge. The present study shows that the highest propulsive 

efficiency and largest thrust are obtained when the trailing edge is 180° out-of-phase. 

Reasons for this discrepancy in beneficial phase shift may stem from the different time 

scales of flow past the wings, resulting different interactions between the shedding 

leading-edge vortices and the flap position. For the frequency ratio of 1.25, the 180° out-

of-phase motion of the trailing edge, in the present study, results in a flap center-of-

rotation located almost exactly on the trailing edge (meaning that the trailing edge 

remains almost stationary as a result of the opposite motions of the flap and the 

plunging). This may be the reason that the frequency ratio of 1.25 yields the best 

performance. 
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 Future plans are already in progress for the next phase of studying the effects of 

passive flap actuation on thin airfoils. A possible experiment could be the simulation of a 

thin airfoil with passively actuated flaps on both the leading and trailing edges at the 

same time. Complex combinations of leading-edge and trailing-edge spring frequencies 

could be studied, as well as different flap lengths. A conceptual model of such an airfoil 

is shown below, in Figure 22. 

 

Figure 22: A conceptual CAD model of a thin airfoil with a passively actuated flap on 

both the leading edge and trailing edge. This type of setup may provide more information 

as to the nature of drag in relation to passive actuation. 
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Appendix A: Grid Resolutions for Static and Dynamic Cylinder Cases 

 

Figure A 1: Uniform refinement patch for D/33 

grid. 

 

Figure A 2: Uniform refinement patch for D/33 

grid. 

 

Figure A 3: Uniform refinement patch for D/67 

grid. 
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Appendix B: Strouhal Number Calculations for Flow past a Stationary Cylinder 

To calculate the Strouhal number of a cylinder in a cross flow, the oscillatory frequency 

of the lift coefficient was measured and averaged over 10 periods. This frequency was 

then used in the equation 
*f D

U
St


 to calculate the Strouhal number. 

 

Figure A 4: Vortex shedding frequency 

measurement, D/17 grid. 

 

Figure A 5: Vortex shedding frequency 

measurement, D/33 grid. 

 

Figure A 6: Vortex shedding frequency 

measurement, D/67 grid. 
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Appendix C: CD and CL Plots for Static Cylinder Study 

 

Figure A 7: Static cylinder drag coefficient for 

D/17 grid, Re=200. 

 

Figure A 8: Static cylinder drag coefficient for 

D/33 grid, Re=200. 

 

Figure A 9: Static cylinder drag coefficient for 

D/67 grid, Re=200. 
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Figure A 10: Static cylinder lift coefficient for 

D/17 grid, Re=200, xi=0.001. 

 

Figure A 11: Static cylinder lift coefficient for 

D/33 grid, Re=200, xi=0.001. 

 

Figure A 12: Static cylinder lift coefficient for 

D/67 grid, Re=200, xi=0.001. 
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Appendix D: Cross-Stream Displacements for Spring-Cylinder Study. 

 

Figure A 13: Cross-stream displacement, D/67 

grid, xi=0.001. 

 

Figure A 14: Cross-stream displacement, D/67 

grid, xi=0.01. 

 

Figure A 15: Cross-stream displacement, D/67 

grid, xi=0.1. 
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Appendix E: Comparison of Leading-Edge Amplitude to Trailing-Edge Amplitude. 

 

Figure A 16: Comparison of leading and 

trailing-edge waveforms, f/fN=0.5. 

 

Figure A 17: Comparison of leading and 

trailing-edge waveforms, f/fN=0.8. 

 

Figure A 18: Comparison of leading and 

trailing-edge waveforms, f/fN=1. 

 

Figure A 19: Comparison of leading and 

trailing-edge waveforms, f/fN=1.25. 

 

Figure A 20: Comparison of leading and 

trailing-edge waveforms, f/fN=2. 

 



 


