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Abstract
A hybrid Lagrangian-Eulerian (hLE) scheme, combining a particle-based, mesh-free technique with a finite-
volume flow solver, is developed for direct simulations of two-phase flows. The approach uses marker points
around the interface and advects the signed distance to the interface in a Lagrangian frame. The kernel–based
derivative calculations typical of particle methods are used to extract the interface normal and curvature
from unordered marker points. Connectivity between the marker points is not necessary. The fluid flow
equations are solved on a background, fixed mesh using a co-located grid finite volume solver together
with balanced force algorithm (Francois et al. JCP, 2006, Herrmann JCP, 2007) for surface tension force.
The numerical scheme is applied to standard test cases to show promising results: (i) parasitic currents in a
stationary spherical drop, (ii) small amplitude damped surface waves, (iii) capillary waves on droplet surface,
(iv) Rayleigh-Taylor instability, and (v) gravity-driven bubble/droplet in a stationary fluid.

Introduction
Particle-based Lagrangian, mesh-free algorithms such as moving particle-methods [1], vortex-in cell meth-

ods [2, 3], and smoothed-particle hydrodynamics [4] have been popular for large-scale free-surface flows. These
pure Lagrangian methods are promising as they avoid enormous memory requirements for a three-dimensional
mesh. These methods automatically provide adaptive resolution in the high-curvature region [2] and have been
applied successfully to many two-phase flow problems [5, 6, 7]. However, they exhibit other difficulties such as high
cost of finding nearest neighbors in the zone of influence of a Lagrangian point, true enforcement of continuity (or
incompressibility) conditions, and problems associated with accurate one-sided interpolations near boundaries [2].

In the present work, we develop a hybrid approach, wherein the Lagrangian nature of the interface motion
is captured by particle-based method, and the fluid flow is computed using a finite-volume solver using variable
density, single-fluid model. The basic idea is to merge the locally ‘adaptive’ mesh-free particle-based methods with
the relative ‘ease’ of Eulerian finite-volume formulation in order to inherit the advantages offered by individual
approaches. The interface between two fluids is represented and tracked using Lagrangian points or fictitious
particles [7]. Unlike particle level set method [8] or the semi-Lagrangian methods [9], in the present approach
the interface is represented by Lagrangian points (LPs) (or particles1) that are advanced in a Lagrangian frame.
The motion of the interface is determined by a velocity field (interpolated to the particle locations) obtained by
solving the Navier-Stokes equations on a fixed background mesh in an Eulerian frame. The interface location,
once determined, identifies the region of the mesh to apply jump-conditions in fluid properties. In this sense,
it is in the realm of Arbitrary Lagrangian-Eulerian (ALE) schemes, wherein the computational grid deforms to
conform to the shape of the dispersed phase. The potential advantage of the present hybrid method is that the
background mesh could be of any kind: structured, body-fitted, or arbitrary shaped unstructured (hex, pyramids,
tetrahedrons, prisms) and may be stationary or changing in time (adaptive refinement). Here, we use a co-located
grid, incompressible flow solver based on the energy conserving finite-volume algorithm [10].

The Lagrangian points (LPs) in our interface calculations, are particles distributed in a narrow band around
the interface [11]. These LPs are initially uniformly spaced and carry information such as the signed distance to
the interface (SDF) along the characteristic paths. Variations in flow velocities leads to an irregular distribution of
the initially uniform LPs. Regularization of the particles are performed by mapping the particles on a uniformly
spaced lattice [7]. Values for particle properties at new LP locations are obtained through kernel mollification as
done in Smoothed Particle Hydrodynamics [4] and remeshed-SPH [6]. The novelty in our approach is that this
mesh-free interface representation is integrated with a finite-volume solver where the governing equations for flow
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evolution are solved. The Lagrangian points provide sub-grid resolution and in this respect the method is similar
to the Refined Level Set Grid (RLSG) approach [12, 13]. However, here the LPs move in space with the flow
velocity and different discretizations are necessary and we use high-order schemes based on mollification kernels.

Hybrid Lagrangian-Eulerian (hLE) Scheme
Following Hieber & Koumoutsakos [7], the interface between two fluids is represented using uniformly spaced

Lagrangian points (LPs) or fictitious particles in a narrow band around the interface. Each LP is associated with
position xp, velocity up, volume Vp and a scalar function Φp which represents the signed distance to the interface.
The average spacing (h between the uniformly spaced LPs is related to the volume Vp. In this work, we use cubic
elements (h = V1/3

p ). As the LPs move, they carry the SDF value along the characteristic paths and implicitly
represent the motion of the interface. The evolution of the interface is calculated by solving level set equations
in the Lagrangian form:

DΦp
Dt

= 0;
DVp
Dt

= 〈∇ · u〉p Vp;
Dxp
Dt

= up, (1)

where p denotes the Lagrangian point or particle. For incompressible fluids, the velocity field is divergence free
and theoretically, the change in volume of the LPs (DVp/Dt) is zero.

As is done in Smoothed Particle Hydrodynamics (SPH) and mesh-free methods, smoothed approximation of
the level set function and its derivatives can be obtained by using a mollification operator with LPs as quadrature
points. The localized mollification kernel ξε generates a smooth continuous approximation of Φ around the particle
at location xp using SDF of other particles at locations xq: Φq =

∑N
p=1 VpΦpξε(xq − xp) where Φq = Φ(xq) and∑N

p=1 ξεVp = 1. Different mollification kernels have been proposed such as quartic spline and Mn splines [4]. In
this paper, we use the quartic spline function. The surface normal and curvature calculations require derivatives
of the scalar function Φ on the particles. These are approximated in a conservative form by using derivatives of
the quartic spline kernels [14]. These mollification operations require information about the neighboring particles
inside the region of influence, and a Verlet list and linked lists are used to optimize storage and location of the
neighbors.

Once the location of the LPs and the associated Φp values are obtained, a color function Ψ(x) can be
constructed. Following the definition of color function, finding Ψ on the LPs is straightforward: Ψ = 0 when
Φ ≥ 0 and Ψ = 1 for Φ < 0. Then the color function field can also be obtained on the background computational
mesh by interpolating Ψ from the LPs. In order to obtain a smooth function, the M ′4 kernel interpolation in
three-dimensions is used [7]. Once the color function Ψ is obtained at a control volume (cv), the density and
viscosity are given as:

ρcv = ρ1 + (ρ2 − ρ1)Ψcv; µcv = µ1 + (µ2 − µ1)Ψcv (2)

Then the flow field is computed on a background mesh (which could be structured or unstructured) by solving
the Navier-Stokes equations for the two-fluid system:

∇ · u = 0 (3)

∂u
∂t

+ u · ∇u = −1
ρ
∇p+

1
ρ
∇ · (µ(∇u +∇Tu)) + g +

1
ρ
Fσ (4)

where u is velocity vector of fluid, p is pressure, ρ and µ are fluid density and viscosity (uniform inside each fluid),
g body force, and Fσ is the surface tension force which is non-zero only at the interface location (Φ = 0). Following
Brackbill et al. [15], the surface tension force is modeled as a continuum surface force (CSF). A common issue with
numerical simulations involving surface tension force, is the development of spurious currents (unphysical velocity
field) [16] due to inaccuracies in the discrete approximations to the surface-tension forces (equation 4). In order
to obtain a consistent coupling of the surface tension force with the pressure gradient forces in a finite-volume
approach, Francois et al. [17] indicated that the surface tension force must be evaluated at the faces of the control
volumes as: FCSFσ,f = σκf (∇Ψ)f where the subscript f stands for the face of the control volume, σ is the surface
tension coefficient (assumed constant in the present work), κ is the curvature, n̂ the interface normal. The surface
tension force at the cv-centers can be obtained through reconstruction from the faces of each cv.

To compute the surface tension force, accurate estimation of the curvature of the interface is necessary.
Herrmann [12] developed a procedure to compute the curvature accurately in the level-set framework. Here we
follow a similar procedure for curvature evaluations. First, the curvature and normals (κ = ∇ · ∇Φ

|∇Φ| ; n = ∇Φ
|∇Φ| )



are evaluated at the LPs close to the interface (|Φ| ≤ 2∆LP , where ∆LP is the spacing between the LPs. The
gradients in the curvature and surface normal computations are evaluated from derivatives of the mollification
kernels. For each of these LPs (with |Φ| ≤ 2∆LP ) , a base point on the interface is obtained by projecting normals
onto the interface. Curvature on the base point is evaluated by using curvature values on LPs in its neighborhood
using the M ′4-kernel based interpolation. Once curvatures on all interface points are evaluated, these values are
assigned to the corresponding LPs from which these interface points were obtained. Curvature at the background
control volume cv is then computed by simply adding the curvatures of LPs that lie inside the control volume.
Curvature at the faces of the control volume are evaluated by arithmetic average of the two control volumes
associated with the face. Here, the average is taken only if the both cvs contain the interface, i.e. color function
0 < Ψcv < 1, else κf is assigned the value of κcv containing the interface.

Numerical Algorithm
The governing equations are solved using a co-located grid finite-volume algorithm [10]. Accordingly, all

variables are stored at the control volume (cv) centers with the exception of a face-normal velocity, located at the
face centers, and used to enforce the divergence-free constraint. The variables are staggered in time so that they
are located most conveniently for the time advancement scheme. Knowing the velocity field at the cv centers, it
is interpolated to the particle locations using the quartic spline kernel. The LPs are then advanced by solving the
equations 1 using a third-order Runge-Kutta scheme. The LPs are re-located and duly transferred to different
processors.

Because of this advection, the original uniform map of LPs may get distorted, and they are reconfigured (if
a threshold distortion is exceeded) to a uniform Cartesian lattice. This process of remeshing or reconfiguration
was introduced in Remeshed-Smoothed Particle Hydrodynamics [2]. Remeshing removes any unphysical kinks in
the interface and gives the ‘entropy-satisfying viscous solution’ [7]. It also eliminates unnecessary points away
from the interface. For remeshing, we use the M ′4 kernel to obtain the interpolated SDF values. Although the
reconfiguration procedure provides the entropy solution, it does not guarantee that Φ remains a signed-distance
to the interface. In this work, reinitialization is implemented according to the method suggested by Sussman et
al. [18, 19] in which the reinitialization equation is solved on uniformly spaced LPs: ∂Φ

∂τ = sign(Φ0)(1 − |∇Φ|)
where Φ(x, 0) = Φ0 and sign(Φ0) ≡ 2(Hε(Φ)− 1/2) and Hε(Φ) is the Heaviside function. We apply redistancing
in a two-layer narrow band around the interface and using the procedure described in Gomez et al. [13].

Once the new LP locations are obtained, interface properties such as curvature, surface normal are obtained by
using conservative formulation based on the derivatives of the kernel functions. The curvatures at the cv-centers
and a color function are obtained as described in the previous section. The two-phase flow properties are then
evaluated at the cv centers, and the Navier-Stokes equations are solved using the balanced force algorithm [17, 12]
that enforces discrete balance of surface tension force and pressure gradient in the absence of any flow and other
external forces.

Results
In this section, some numerical examples of standard test cases using the hLE scheme are presented. First,

the accuracy of the pure Lagrangian advection approach is evaluated by performing standard test cases such
as the Zalesak disc rotation and the evolution of a circular interface in a deformation field [20]. These showed
comparable results with published data [7] and are not shown here.

Estimation of Surface Normal and Curvature
The accuracy of the surface normal and curvature calculation by using the procedure described before is

tested on a circular interface. The Lagrangian points (LPs) are uniformly distributed in a narrow band around
the interface and initialized by exact signed distance function. The surface normals and curvatures are first
calculated on the LPs. Only those LPs are considered where |Φ| ≤ 2∆LP , where ∆LP is the LP-spacing. The
average relative error in surface normal calculation is shown in Figure 1 indicating second order convergence. For
all these LPs, corresponding points on the interface are calculated using the normals and signed distance function
(Φ). The interface-projected curvature values at the interface points are evaluated using the M ′4-kernel based
interpolation from the neighboring LP values. These curvatures are then compared with the exact curvature
κexact = 1/R for a two-dimensional interface. The corresponding L1-errors are plotted at different LP-resolutions
in Figure 1b, showing second order convergence similar to Herrmann [12]. Error calculations based on the κ values
at the LPs are also plotted, showing only a first-order convergence, indicating the importance of the interface
projected curvature calculation.
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Figure 1: Error versus grid spacing for circular interface: (a) average relative error in surface normal, (b) absolute
error in curvature–circles indicate error at LP location, squares indicate error at interface location.

Static Drop in Equilibrium
To validate the curvature and surface tension force calculation in hLE, we consider the test of static drop

in a quiescent medium with zero gravity. The pressure gradient across the interface balances the surface tension
force resulting a zero velocity and static drop at all times. Errors in representation of the surface tension and
curvature at the interface, however, lead to non-zero velocity, or the so called ‘spurious currents’. The exact
solution for the pressure jump across the interface for a circular two-dimensional drop is: ∆Pexact = σκexact
where κexact = 1/R and R is the radius of the drop. We consider a square domain having sides of eight units.
A drop of radius R = 2 is placed at the center of the domain. The surface tension coefficient σ is taken to be
73, the drop density is 1 and the surrounding fluid density is 0.1. Accordingly, the pressure jump across the
interface should be ∆P = 36.5 units. All parameters are in SI units and correspond to the test case simulated by
Francois et al. [17]. The background grid consists of uniform Cartesian elements with resolution of R/∆ = 10.
The resolution of the Lagrangian points is refined successively to have R/∆LP = 45, 60, 75. The time step is
fixed at ∆t = 10−3. The interface remains a perfect circle after t = 0.5 with low magnitudes of spurious currents.
Table 2a shows the convergence of L1-error in total kinetic energy at t = 0.5, indicating larger than second order
convergence. Remeshing and reinitialization are suppressed in the above calculations.

Figure 2: (a) Absolute error in spurious current magnitude as function of grid spacing, (b) Error in the predicted
period of an oscillating liquid column for different modes on a 322 grid with ∆

∆LP
= 4.5

Droplet Oscillation
Simulation of oscillating droplet or liquid column due to perturbations on the surface under zero-gravity

conditions are performed to analyze the accuracy of the solver for capillary waves. A cylindrical liquid column with
the radius perturbed according to, r = r0 +αcos(nθ), and has a frequency of oscillation given by ω2

n = (n3−n)σ
(ρd+ρe)r30

,
where ρd and ρe are the density, interior and exterior to the liquid column, respectively [21]. The cases considered
include σ = 1, α = 0.1 (this is 10% larger than the perturbation considered in [21]), ρd = 1, ρe = 0.01, r0 = 2
in a [−10, 10]2 doubly connected computational domain. The grid resolution is 322 and the Lagrangian particle
resolution is fixed at ∆

∆LP
= 4.5. The second, third, and fourth modes are simulated. The relative error in period

of oscillation Eperiod = |Tnumericalωn/2π − 1| is given in Table 2b. The errors are comparable to those reported
in [21], even for ten times larger perturbation used in the present study.



Damped Surface Waves
Small amplitude damped surface wave between two immiscible fluids is investigated by comparing the nu-

merical solution to the theoretical solution of the initial value problem obtained by Prosperetti [22]. Initially the
interface between the two fluids inside a box [0 2π] × [0 2π] is perturbed by a sinusoidal wave disturbance of
wavelength λ = 2π and amplitude A0 = 0.01λ [12]. Periodic boundary conditions are used in the x direction, and
slip conditions are used in the y-direction. The case analyzed consists of two fluids of equal density ρ1 = ρ2 = 1,
and equal kinematic viscosities ν = 0.006472. For σ = 2 and ∆t = 0.02, the time-evolution of the amplitude of
the surface is plotted in figure 3. Two different grid resolutions 162 and 322 are used for this test case with the

∆
∆LP

= 4. The coarse grid solution shows large errors in period and amplitude, however, with grid refinement,
converging results are obtained.

Figure 3: (a) Time evolution of a damped surface wave for two grid resolutions ∆ = 162 (dashed) and 322 (dash
dot) compared with theoretical result (solid). The LP resolution is held fixed at ∆

∆LP
= 4.; (b) Time sequence of

Rayleigh Taylor instability of ∆ = 1/288 grid.

Rayleigh Taylor Instability
The common test of heavier fluid over a lighter fluid giving rise to Rayleigh-Taylor instability is performed

to evaluate the accuracy of the scheme ([23, 13, 12]. The simulation parameters are: ρ1 = 1.225, µ1 = 0.00313
(heavy fluid), ρ2/ρ1 = 0.1383, µ2

µ1
= 1, g = 9.81, σ = 0 in a computational domain of size [1, 4]. Initially the

interface between the two fluids (at the center of the domain) is perturbed by a cosine wave of amplitude 0.05.
The heavier fluid falls due to gravity, giving rise to a Rayleigh-Taylor instability of the interface perturbation.
The surface tension forces are neglected. The boundaries in the x direction are assumed periodic whereas slip
conditions are employed in the y direction. The time step is fixed at 5×10−4 and the flow evolutions for different
grid resolutions are compared at certain time instances. The grid resolutions used are ∆ = 1/64, 1/128, and
1/288. The LP resolution relative the grid is fixed at ∆

∆LP
= 4.5. Figure (3b) shows the instantaneous snapshots

obtained for the finest grid resolution, comparing well with the published data [12].

Summary
A new hybrid Lagrangian-Eulerian (hLE) scheme, combining a mesh-free Lagrangian technique with a finite-

volume flow solver, has been developed for direct simulations of two-phase flows with fully resolved interfaces.
This approach merges the naturally adaptive nature of particle-based schemes, for efficient representation of
the interface between two media, with the relative flexibility offered by grid-based solvers for complex flows.
In hLE, a mesh-free, particle-based scheme for interface tracking [7] is integrated with a co-located grid based
finite volume solver. The potential advantage of the hLE method is that the background mesh could be of
any kind: structured, body-fitted, or arbitrary shaped unstructured (hex, pyramids, tetrahedrons, prisms) and
may be stationary or changing in time (adaptive refinement). In this work, we used uniform Cartesian grids
for the background mesh. A balanced force algorithm [17] for accurate representation of surface tension forces
and considerably reduced magnitudes of spurious currents, is used to solve the two-phase flow equations. The



predictive capability of the hLE scheme is verified by performing a series of standard test cases for interface
tracking showing good predictive capability.
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