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ABSTRACT
Bubble interactions with vortical structures are important to

better understand the mechanisms of bubble induced boundary
layer drag reduction and chemical mixing. Traditionally, many
studies of disperse bubble or particle-laden flows have utilized
an Euler-Lagrange two-way coupling approach, wherein the dis-
persed phase is assumed subgrid and its dynamics is modeled. In
this work, results on full three-dimensional simulation of travel-
ing vortex ring together with a few microbubbles are presented
utilizing a volumetric coupling approach, wherein the displaced
mass due to the presence of the bubbles is accounted for by using
mixture theory based conservation laws in an Euler-Lagrange
formulation. It is shown that the volumetric coupling approach
is necessary to reproduce the experimental observations of Srid-
har & Katz, JFM (1999). Experimental work by S&K on bubble
entrainment into a traveling vortex ring has shown that the set-
tling location of the bubble relative to the vortex core can be well
predicted based on the ratio of the buoyancy force to the hydrody-
namic pressure gradient. Additionally, the experimental results
find that even at low volume fractions, bubble injection can sig-
nificantly affect the structure of the vortex core. The two-way
coupling model, wherein the fluid displacement due to bubble
motion is neglected, of bubble-laden flows is unable to capture
these effects on the vortical structure.

∗Address all correspondence to this author.

NOMENCLATURE
ub bubble velocity.
u` liquid velocity.
ρb bubble density.
ρ` liquid density.
db bubble diameter.
θb bubble volume fraction.
θ` liquid volume fraction.
rs bubble settling radius.
θs bubble settling angle.
CD drag coefficient.
CL lift coefficient.
CAM added mass coefficient.
Reb Reynolds number of the bubble.
Stb Stokes number.
θ ◦e azimuthal bubble position angle.
tθe bubble escape past θ ◦e .
Cr vortex core rise.
E relative decay of angular momentum.
W relative increase in peak vorticity.
Γ0 initial vortex circulation.

INTRODUCTION
The features of the interaction of vortical structures with

bubbles are important to many applications, including bubble-
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induced boundary layer drag reduction, chemical mixing in bub-
ble column and stirred tank reactors as well as cavitating flows.
Sridhar and Katz [1], hereafter referred to as S&K, showed that
a few small Stokes number bubbles have the ability to augment
the core structure of both laminar and turbulent traveling vortex
rings during their entrainment cycle. Oweis et al. [2] studied the
properties of bubble capture and cavitation in a line vortex. Their
study utilized a one-way coupling approach to predict capture
times, which was found to be accurate when utilized for small
bubbles, but was not sufficient when bubble growth was a sig-
nificant factor. [3], [4] and [5] utilized experimental methods to
determine the appropriate choices for drag and lift coefficients on
bubbles in vortical structures. Two-way coupling of bubble inter-
actions with homogeneous isotropic turbulence was investigated
by Mazzitelli et al. [6]. They concluded that bubble accumula-
tion on the downward side of vortices was primarily due to the
lift force, in what is known as the preferential sweeping mecha-
nism.

Much of the computational work on bubble-laden turbulent
flows at dilute to moderate volume loadings has utilized the point
particle approach. Hsiao et al. [7] [8] used one-way coupling to
study cavitation inception in a line vortex flow as well as tip vor-
tex cavitation. Mattson and Mahesh [9] studied bubble transport
using one-way coupling in boundary layer flows. Work by Shams
et al. (2010) [10] has shown that in a rising bubble column, ac-
counting for the mass displaced by the presence of bubbles and
their motion (known as volumetric coupling) is required to prop-
erly simulate certain system properties. In addition, studies by
Apte et al. (2008) [11] show the importance of these finite-size
effects in gas-solid fluidized beds and slurry flows. Ferrante and
Elghobashi [12] use this volumetric coupling approach with a
two-fluid model to study the effects of microbubbles on Taylor-
Green vortices. Their study finds an enhanced vortex decay rate
dependent on bubble concentration as well as a positive correla-
tion between enstrophy and flow divergence due to bubble accu-
mulation in the core regions.

Research by Glezer (1988) [13] on the formation of vortex
rings, found a suitable method for predicting vortex strength us-
ing a cylindrical slug model. Classification of laminar, transi-
tional and turbulent vortex rings was also given based on the
generator aspect ratio and the vortex ring strength. S&K, in
follow-up work from their initial study, investigated the effects
of bubbles on the structure of the vortex rings. It was concluded
that at certain ratio of buoyancy to hydrodynamic pressure gradi-
ent forces the bubbles, even at extremely dilute volume loadings
and a small (1/1000) density ratio, could significantly alter vor-
tex structure [1]. Finn et al. [14] utilized volumetric coupling
to study bubble entrainment in a traveling vortex tube, a two-
dimensional approximation of the vortex ring case of S&K. Their
work found that the inclusion of finite-size effects was neces-
sary to reproduce the experimental observation of S&K for both
bubble settling location as well as vortex core distortion. This

motivates the current work on bubble entrainment in a three di-
mensional traveling vortex ring.

MATHEMATICAL FORMULATION
In this work, the liquid phase is handled in an Eulerian fash-

ion using direct numerical simulation. Lagrangian tracking is
utilized for bubble motion and coupled to the flow solver. Bub-
bles are assumed spherical and to be subgrid scale in size. Details
of the numerical methodology can be found in Shams et al. [10]
and Shams & Apte [15].

Continuous Phase
In the volumetric coupling formulation, the fluid phase equa-

tions are altered to account for the mass displaced by the pres-
ence and motion of the bubbles. Each bubble occupies a vol-
ume Vb, which corresponds to a local bubble volume fraction,
θb. The local liquid volume fraction is defined as θ` = 1− θb.
This formulation is consistent with the mixture theory approach
of Joseph et al. [16,17]. Equation 1 is the altered conservation of
mass:

∂

∂ t
(ρ`θ`)+∇ · (ρ`θ`u`) = 0. (1)

Note that in this form, the flow field, even for an incompressible
fluid, is not divergence free. Rearrangement of Eqn. 1 yields an
expression for the local divergence.

∇ ·u` =− 1
θ`

(
∂θ`

∂ t
−u` ·∇θ`). (2)

In a similar manner, the conservation of momentum, Eqn. 3, is
altered to include the presence of bubbles. The two-way momen-
tum coupling source term is denoted by fb→`.

∂

∂ t
(ρ`θ`u`)+∇·(ρ`θ`u`u`)=−θ`∇P+∇·(θ`µ`D)−θ`ρ`g+fb→`

(3)
where the deformation tensor is D = ∇u` + ∇uT

` . The source
term consists of the bubble surface forces and is handled as
shown in Eqn. 4.

fb→`(xcv) =−
Nb

∑
b=1

G∆(xcv,xb)(Fd +F` +Fam) (4)
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here, G∆ denotes an interpolation function from the bubble loca-
tions on to the grid. Here xcv and xb are the centers of the control
volume and bubble respectively. The total number of bubbles is
Nb.

Dispersed Phase
The bubble phase is handled using the equations of motion

developed by Maxey & Riley [18].

d
dt

(xb) = ub (5)

mb
d
dt

(ub) = ∑Fb. (6)

Forces on bubbles are computed from explicit carrier phase
information. The forces are used to update bubble velocity and
position by solving the system of ordinary differential equations
in Eqns. 5 and 6.

∑Fb = Fg +Fp +Fd +F` +Fam, (7)

where xb is the particle location, mb is the mass of an individ-
ual particle, ub is the particle velocity vector and Fb denotes a
generic force acting on a particle. In this case Fb can be broken
up into the pressure (Fp), drag (Fg), gravity (Fd), lift (F`) and
added mass (Fam). In this formulation gravitational force is just
the weight of the bubble:

Fg = ρbVbg, (8)

The volume of the individual particle is denoted as Vb, which is
assumed to be perfectly spherical. The drag force on the parti-
cle is modeled using the standard drag equation for flow past a
sphere:

Fd =−(1/2)Cdρ`πr2
b|ub−u`|(ub−u`), (9)

where Cd is the drag coefficient, and rb is the particle radius.
There are several models available to select from for the drag co-
efficient, each model has particular strengths. For the Reynolds
number ranges and particle mass loadings being studied here, the
Schiller and Nauman [19] drag curve has been selected. In this
model the drag coefficient is modeled by Eqn. 10.

Cd =
24
Reb

(1+0.15Re0.687
b ), (10)

in which Reb is the particle Reynolds number, given by Reb =
(ρbdb|ub − u`|)/µ`. The lift force is due to the relative velocity
difference between the fluid and the particles, it results in lateral
(around the cortex ring) particle motion. This is calculated as
shown

F` =−C`ρ`πr2
b(ub−u`)× (∇×u`). (11)

The coefficient of proportionality, C`, is estimated as C` =
0.59α0.25 [5]. The added mass force (Fa) comes from the amount
of mass in addition to that naturally belonging to the particle
which is displaced due to the bubbles motion. The added mass
force is modeled as:

Fam =−1
2

ρ`Vb(
Dub

Dt
− Du`

Dt
). (12)

The added mass force uses the standard added mass coeffi-
cient of 1/2. The pressure force is that on particles due to the
localized pressure gradients:

Fp =−Vb∇p. (13)

These forces comprise those taken into account through two-way
coupling, i.e. the momentum transfer between the fluid and parti-
cles. Bubble-bubble collisions are neglected due to the extremely
low volume fraction and bubbles are assumed to have a fixed size.

VORTEX RING SETUP
To create an appropriate vortex ring, a circular inlet with a

radius of 0.05m is centered in a rectangular box with dimensions
0.8m× 0.3m× 0.3m. The liquid density and viscosity are ρ` =
1000kg/m3 and ν` = 1× 10−6m2/s, respectively. The bubble
density is ρb = 1kg/m3. At t = 0 liquid is injected according to
the velocity profile specified in Fig. 1.

This yields a traveling vortex ring that is self sustaining be-
yond the end of the computational domain. Iso-pressure contours
are shown in Fig. 2 to visualize the propagation of the ring. All
contours except the initial start up contour represent the same
pressure level. The initial circulation estimate and the vortex
Reynolds number are computed based on the work of Glezer [13]
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FIGURE 1. INLET VELOCITY PROFILE: (—) CURRENT WORK,
(---) S&K EXPERIMENTAL PROFILE [1]

FIGURE 2. PROPAGATION OF A VORTEX RING WITHIN THE
COMPUTATIONAL DOMAIN.

Γ0 =
∫ T

0

u2
0(t)
2

dt = 0.0159; 0.0207; 0.0254 m2/s (14)

Revx =
1

2ν`

∫ T

0
u2

0(t)dt = 15900; 20700; 25400 (15)

to obtain the three different vortex strength used in this work.
Scaling the inlet velocity profile achieves the changes in vortex
strength desired.

The center of the vortex core (Xc,Yc) is defined as the
weighted center of vorticity, computed as shown in Eqn. 16, of a
plane slice at the bottom of the vortex ring.

Xc = ∑
i

Xiω
2
i /∑

i
ω

2
i ; Yc = ∑

i
Yiω

2
i /∑

i
ω

2
i (16)

In a perfectly symmetric vortex core on this slice, the cen-
ter would be the point of zero velocity. In this work there is
a slight streamwise elongation of the core as well as distortion
effects, so these two points need not overlap. When the vor-
tex center reaches 0.5m downstream from the inlet, a number of

FIGURE 3. CONCENTRIC PRESSURE ISO-CONTOURS OF THE
VORTEX RING: Γ0 = 0.0159 m2/s

bubbles (Nb) are injected in front of and below the core center.
At this point the vortex has well defined concentric strucutures
of vorticity and pressure, see Fig. 3. As the vortex propagates
downstream the bubbles entrain within the core. When the core
center reaches 0.65m downstream from the inlet the simulation
is stopped. This distance is far enough away from the outlet to
avoid any spurious boundary effects. Parameters for the traveling
vortex ring cases are shown in Tab. 1.

RESULTS
The effects of vortex entrainment on bubble motion as well

as vortex distortion will be investigated in this section. To be-
gin with, a discussion of the entrainment process and properties
as well as some bubble escape observations will be presented.
Then, the effect these bubbles have on vortex ring behavior will
be presented.

Bubble Entrainment
As the released bubbles are entrained by the vortex they fol-

low a spiraling path inward towards the center. Figure 4(a) shows
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TABLE 1. VORTEX RING CASE STUDY PARAMETERS.

Case # Γ0(m2/s) db(µm) Stb Nb

1 0.0159 300 0.09 8

2 0.0159 500 0.27 8

3 0.0159 700 0.53 8

4 0.0159 900 0.87 8

5 0.0159 1100 1.30 8

6 0.0159 1300 1.81 8

7 0.0207 700 0.68 8

8 0.0254 500 0.43 8

9 0.0254 700 0.84 8

10 0.0254 900 1.39 8

11 0.0254 1100 2.07 8

12 0.0254 1300 2.89 8

three sample bubble trajectories for cases 1, 3 and 5 each uti-
lizing the volumetric coupling approach. The larger the bubble
the sharper the spiral towards the center of the vortex ring. Al-
though this only provides one sample bubble from each of the
three cases, it is easy to visualize the difference in settling lo-
cation, the location where the bubble stays at equilibrium, for
the three different bubble sizes. It is also possible to see the ef-
fect of the changing Stokes number on the entrainment process.
The volatility in the paths taken by the three bubbles is clearly
dependent on size (Stokes number). The predictive path differ-
ences between one-way, two-way and volumetric coupling are
shown in figure 4(b). The bubble motion computed using one-
way and two-way coupling are negligibly different, suggesting
that the two-way coupling momentum source term is quite small
compared to the vortex’s momentum.

Not all bubbles entrain to a settling location and stay there.
As Fig. 5 shows, depending on the case, bubbles paths can vary
greatly in relation to the core. S&K developed a relationship
to estimate the settling location of a bubble relative to the core
center. They used dimensional analysis to show that the settling
location is a strong function of the ratio of the buoyancy force
to the hydrodynamic pressure gradient, r/R = f (gd3

b/Γ2
0). In

other words, for the purposes of this study, the smaller the bubble
and/or stronger the vortex, the closer to the core center the bubble
will settle. Figure 5(a) shows the path traversed by a 500µm
bubble in a strong vortex (Case #8). Note that all eight bubbles
stay relatively close together and do not veer to either side of the

(a) Γ0 = 0.0159 m2/s: (—) 300µm, (---) 700µm, (-·-·) 1100µm

(b) Γ0 = 0.0159 m2/s, db = 1100µm: (—) One-Way, (---) Two-Way, (-·-·)
Volumetric

FIGURE 4. BUBBLE TRAJECTORIES RELATIVE TO THE VOR-
TEX CORE CENTER

vortex ring. In contrast, Figs. 5(b) and 5(c) show moderate and
significant bubble escape (bubble motion along the core up the
side of the vortex), respectively.

Table 2 gives measurements for the percentage of simula-
tion time, tθ %, that the bubbles are contained within θ degrees
azimuthally of the plane of injection (i.e. the bottom slice of the
vortex core). In the strong vortex cases bubble escape is not sig-
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(a) Γ0 = 0.0254 m2/s, db = 500µm (Case #8)

(b) Γ0 = 0.0159 m2/s: db = 700µm (Case #3)

(c) Γ0 = 0.0159 m2/s db = 1100µm (Case #5)

FIGURE 5. EXAMPLES OF PATHS TRAVERSED BY BUBBLES
WITHIN VORTEX RING: (a) NEGLIGIBLE BUBBLE ESCAPE, (b)
MODERATE BUBBLE ESCAPE, (c) SIGNIFICANT BUBBLE ES-
CAPE.

nificant, but still can occur to a small degree. Note that in many
cases, bubbles stay within 10◦ of the injection plane for the entire
simulation. While the pattern does not perfectly hold, it would
seem that the settling parameter developed by S&K, gd3

b/Γ2
0, is

also predictive of bubble escape properties. All measurements in
Tab. 2 are based on volumetric coupling. While some escape oc-

TABLE 2. BUBBLE ESCAPE MEASUREMENTS.

Case # t5.1(%) t10.2(%) t20.4(%)

1 50.9 71.3 86.4

2 34.1 51.7 75.3

3 39.9 53.0 80.3

4 29.3 42.6 76.6

5 30.3 42.9 84.4

6 29.8 38.5 92.5

7 41.3 84.1 100.0

8 49.7 100.0 100.0

9 49.6 100.0 100.0

10 62.7 100.0 100.0

11 48.5 100.0 100.0

12 51.9 100.0 100.0

FIGURE 6. SETTLING LOCATION: (•) EXPERIMENTAL, (∆)
TWO-WAY COUPLING, (∇) VOLUMETRIC COUPLING

curs with one-way and two-way coupling it is significantly less
than is present in volumetric coupling.

Settling location measurements were made by averaging the
position of the bubbles relative to the vortex core after the initial
bubble entrainment was done and before escape became signifi-
cant, they are plotted alongside the experimental data of S&K in
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FIGURE 7. (a) VORTICITY CONTOURS AT THE TIME OF BUB-
BLE INJECTION (Xc = 0.5m), Γ0 = 0.0159m2/s.

Fig. 6. Settling did not occur in any reasonable sense for cases
5 and 6, the measurement for case 4 is also a bit tenuous due to
the short settling time. The one-way and two-way coupling ap-
proaches under predict the settling location of the bubbles. These
methods were relatively accurate for small bubbles where vortex
distortion is small, but performed poorly for larger Stokes num-
ber bubbles. It would seem that accounting for finite-size effects
is necessary, as the settling location matches the experimental
data of S&K quite well, unlike the two-way coupling approach
results. This shows that the vortex distortion effects caused by
displacing the fluid mass at bubble locations is an important fac-
tor in this process.

Vortex Ring Alteration
The primary result of the work of S&K [1] was that even at

very dilute loading, a small number of low Stokes number bub-
bles can dramatically alter the structure of a vortex ring. This
section will discuss some of the effects of bubble entrainment on
the vortex ring.

Figure 7 shows a cross section of a bubble-free vortex ring,
note the roughly concentric contours of vorticity. Figures 8(a)
- 8(c) show how the initial vortex is distorted in three different
cases. While the clean gas contours provide one distinct con-
tinuous region of high vorticity, the others have a high vorticity
region, as well as other regions of near max vorticity through-
out, as well as regions of extremely low vorticity near the vortex
center. This is a good visual measure of vortex distortion.

A core center increase in vorticity as well as an increase
in peak vorticity due to bubble entrainment were both found by
S&K and Finn et al. [1,14]. Figure 9(a) shows a proportional rise
is core center mean vorticity as a function of bubble Stokes num-
ber. Note that the profiles for bubble sizes db = 700 and 900µm
do not fit the trend, which suggests bubble escape is also a factor
in this feature. This is conceptually in line with the results of

(a) Case # 1

(b) Case # 3

(c) Case # 5

FIGURE 8. VORTICITY CONTOURS AT THE PLANE OF BUB-
BLE INJECTION AFTER BUBBLE ENTRAINMENT (Xc = 0.65m).

S&K [1], who obtained maximum vortex distortion for 700µm
bubbles. Finn et al. [14] saw a clear trend purely in relation to
bubble size within a given vortex strength. This is likely due to
the two-dimensionality of the work, causing bubble escape to not
be a significant factor. This is only found to occur in significant
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(a) Γ0 = 0.0159 m2/s: (—) Clean Gas, (---) 500µm, (-·-·)
700µm, (•••) 900µm, (-··-··) 1100µm

(b) Γ0 = 0.0159 m2/s, db = 1100µm: (—) One-Way, (---)
Two-Way, (-·-·) Volumetric

FIGURE 9. RADIALLY AVERAGED VORTICITY PROFILES
(Xc = 0.65m).

portions when utilizing volumetric coupling. Two-way coupling
measurements differ from clean gas measurements by less than
1%, see Fig. 9(b). The two-way coupling momentum source due
to bubble motion relative to liquid motion was an insignificant
contribution to the total momentum.

Several measures of vortex distortion are considered here.
First is the relative decay rate of angular momentum, E, com-
puted by taking the mean angular momentum loss rate, ε =
d(Lvx)

dt , where Lvx = ∑core cv ρ`uθ rcvVcv. W is the relative increase
in peak vorticity, calculated as

E =
ε̂− ε

ε
×100 ; W =

ω̂p−ωp

ωp
×100 (17)

TABLE 3. VORTEX DISTORTION MEASUREMENTS.

Case # E(%) W (%) I0.4(m2/s) I(m2/s) Cr(x10−5m)

1 0.93 11.2 0.1 0.2 2.15

2 2.57 11.6 0.3 0.6 8.85

3 1.59 10.0 1.9 2.9 5.15

4 1.52 3.9 1.1 1.8 10.65

5 1.34 6.5 3.3 5.5 46.15

6 2.40 3.6 2.7 4.4 53.15

7 2.36 2.1 1.0 2.1 7.2

8 2.80 -0.1 0.2 0.3 7.5

9 4.45 -0.1 0.4 0.8 3.75

10 7.48 0.1 1.0 2.2 22.9

11 7.65 2.1 1.2 2.4 20.9

12 10.00 4.3 1.4 2.5 33.6

whereˆdenotes the volumetric coupling case measurement and no
superscript indicates the bubble-free vortex. Another measure of
distortion taken is the integrated difference in the absolute value
of vorticity between the volumetric coupling cases and clean gas
case, as in Eqn. 18. I0.4 and I are taken to show the difference
in the vortex distortion near the core center and away from the
center. I0.4 denotes the radial integrated difference for 0≤ r/rc ≤
0.4.

I0.4 =
∫ 0.4rc

0
|ω̂−ω|dr ; I =

∫ 1.71rc

0
|ω̂−ω|dr (18)

S&K [1] used the peak increase in vorticity in combination
with the induced core rise of the flow (Cr) to classify distortion.
Table 3 gives values of each of these measurements by case.

The general trend of increasing distortive properties with in-
creasing bubble Stokes number is clear. This trend is very strong
for cases 8-12, where Γ0 = 0.254m2/s, due to bubble escape be-
ing fairly minimal in comparison with the weaker vortex cases.
By entraining the bubble for an extended period of time near the
core center the effect is not diluted out over a larger volume or
slice of the vortex ring. Using viscous diffusion as an estimate
for how far the effect of bubbles can propagate away from their
bodies, S&K estimated the distance as about 1 bubble diameter
laterally [1]. Thus the effect is concentrated in the region of mea-
surement. In cases 1-6 there are two competing effects, a larger
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reaction force caused by larger Stokes number bubbles, as well
as the decreased time this reaction force is applied to the plane
of bubble injection due to escape. The core rise measurements
are in qualitative agreement with those of S&K, however their
study found larger maximum core rise and found it to be better
correlated to vortex fragmentation than was seen in the current
work [1].

Figure 6 was not just useful for classifying bubble settling
locations relative to the core, but also to classify vortex distor-
tion. S&K observed similar properties of distortion as this study,
where bubble escape seems to limit deformation due to bubble
presence. This is due to vortex reparation mechanisms which
cause the distorted vortex, once the bubbles have escaped the
plane of bubble injection, to repair itself to a similar profile as
before bubble injection [1]. This makes quantitatively analyzing
the effects of bubble entrainment difficult, as deformation can be
repaired in a relatively quick manner. Finn et al. [14] did not ob-
serve these trends since bubble escape was negligible in the two-
dimensional vortex tube case, thus a direct correlation between
Stokes number and distortion was found. S&K found that vortex
distortion was not present in cases where the bubble settling close
to the core, rs/rc < 0.13, as well as for bubbles that settled far
from the core, or did not settle at all, rs/rc > 0.45. Marginal dis-
tortion was found for 0.14 < rs/rc < 0.2 and 0.4 < rs/rc < 0.45,
with a mix of severe and marginal distortion between those
ranges [1]. This result is in general agreement with the obser-
vations in this work. The smallest bubbles do not exhibit enough
force to distort, the largest do not settle long enough to cause a
larger contribution by some measures. Bubble escape properties
are intimately related to the lateral (azimuthal direction) pres-
sure gradient generated by vortex distortion. This increased core
pressure causes bubbles to settle further out, and be more likely
to escape along the contour of largest pressure gradient, which is
along the center of the vortex core out of the plane of injection.
Thus, gd3

b/Γ2
0 is also an excellent indicator of vortex distortive

properties.

CONCLUSIONS
Direct numerical simulation of a traveling vortex ring was

performed using Lagrangian particle tracking. The effectiveness
of the point particle method and the volumetric coupling method
are analyzed and compared to the experimental results of Srid-
har and Katz [1] and the two-dimensional simulations of Finn
et al. [14]. It was found that accounting for the mass displaced
caused by the presence of bubbles is necessary to adequately re-
produce experimental observation of bubble settling and escape
as well as vortex distortion properties. Bubble behavior was ana-
lyzed by studying escape characteristics as well as settling prop-
erties of various Stokes number bubbles. The lift coefficient of
S&K [5] was utilized and, in combination with volumetric cou-
pling, results in agreement with experimental observations and

data on bubble escape and settling, as well as the results of Finn
et al. [14]. Vortex distortion was classified using several methods
including the radially averaged mean vorticity profile, peak vor-
ticity, angular momentum decay, core-assymetry and fragmen-
tation. Two-way coupling calculations showed minimal vortex
distortion by any measure. The dimensionless parameter gd3

b/Γ2
0

was confirmed to be an excellent indicator of all three properties
(settling, escape, distortion). Further work on the mechanisms
and strength of vortex reparation effects would be a beneficial
extension of this work.
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