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ABSTRACT
The characteristics of pore scale vortical structures ob-

served in moderate Reynolds number flow through mono-
disperse packed beds of spheres are examined. Our results come
from direct numerical simulations of flow through (i) a periodic,
simple cubic arrangement of 54 spheres, (ii) a wall bounded,
close packed arrangement of 216 spheres, and (iii) a realistic
randomly packed tube containing 326 spheres with a tube diam-
eter to sphere diameter ratio of 5.96. Pore Reynolds numbers
in the steady inertial ( 10 . Re . 200) and unsteady inertial
(Re ≈ 600) regimes are considered. Even at similar Reynolds
numbers, the vortical structures observed in flows through these
three packings are remarkably different. The interior of the ar-
ranged packings are dominated by multi-lobed vortex ring struc-
tures which align with the principal axes of the packing. The
random packing and the near wall region of the close packed ar-
rangement are dominated by helical vortices, elongated in the
mean flow direction. In the simple cubic packing, unsteady flow
is marked by periodic vortex shedding which occurs at a single
frequency. Conversely, at a similar Reynolds number, the vortical
structures in unsteady flow through the random packing oscillate
with many characteristic frequencies.

∗Address all correspondence to this author.

INTRODUCTION
The flow of fluid through a packed bed of spheres is a fun-

damental problem, rich in its applicability to a variety of disci-
plines. For example, groundwater hydrologists [1, 2], chemical
engineers [3] and nuclear reactor designers [4] often consider
flow through strikingly similar arrangements of fixed, contact-
ing spheres as a prototypical problem for more complex systems.
Despite such broad importance, the existing body of knowledge
related to the flow physics of such problems is limited, partic-
ularly at moderate to large flow rates. For Stokesian, creeping
flow, fluid streamlines conform naturally to the boundary of the
porespace. In this case, the general behavior of the flow may be
adequately described using geometric or network models [5], and
simple relationships are available for macroscale properties such
as Darcy’s law for permeability. However, at larger flow rates,
porous media and packed bed flows become highly non-linear
and multiscale in nature due to the contribution of flow inertia.
This makes a-priori determination of the flow characteristics dif-
ficult or impossible even for simple, homogeneous sphere pack-
ings.

This multiscale nature of inertial flows through porous me-
dia and packed beds is illustrated in FIG. 1. The macroscale is
often used to describe the largest representative scale encoun-
tered in the field or laboratory. The macroscale flow can be sim-
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FIGURE 1: ILLUSTRATION OF THE MULTISCALE NATURE OF POROUS MEDIA FLOWS. (a) SHOWS A REPRESENTATIVE
MACROSCALE VOLUME. (b) SHOWS THE PORESCALE WHERE COMPLEX HYDRODYNAMIC INTERACTIONS OCCUR.

ply characterized with a length scale Lm, volume Vm, porosity,
εm and flux qm. Typically it is macroscale properties including
permeability, dispersion coefficients, or reaction rates which are
of interest to practical engineering applications. Such proper-
ties derive from hydrodynamic interactions at the porescale or
Darcy scale, shown as a single pore subset of the macroscale vol-
ume in FIG. 1b. At the porescale the length and volume scales
are functions of the local pore geometry, Lp, Vp = f (Dsp, εp).
These scales, along with the Reynolds number, govern the hy-
drodynamic character of the flow. We define the Reynolds num-
ber, following Ergun [6] and Dybbs & Edwards [7], as Re =
ρUpDsp

µ
· ε

1−ε
, where Dsp is the sphere diameter, Up = qm/εm is the

pore averaged flow velocity. As Reynolds number is increased
from creeping flow rates, it has been observed both experimen-
tally [7, 8], and computationally [9, 10] that the porespace be-
comes increasingly dominated by inertial flow features such as
steady or unsteady jets, vortices, and stagnation regions.

Vortical flow features are of particular interest in porous me-
dia because of the implications they have for mixing and dis-
persion in the porespace. Vortices can enhance mixing by col-
lecting streamlines from distant sources and ejecting them along
new trajectories after exchange of fluid. Helical vortices with
corkscrew trajectories are good examples of this, and are com-
mon features in inertial flows through porous media [10]. At
unsteady Reynolds numbers, flow oscillations provide an effec-
tive means for enhancing fluid transport, and vortical features are
often the backbone of these oscillations. Alternatively, vortices
can act as dead zones, such as stationary recirculation bubbles
in bluff body wakes, where entrained fluid is bounded by closed

streamlines and residence time is high.

The case for detailed and accurate simulation to investigate
these types of features is particularly compelling considering the
challenges associated with making detailed three dimensional
flow measurements in the interior of a solid sphere matrix, al-
though new experimental techniques such as index of refraction
matched PIV, and MRI are helping [11–14]. Broadly, resolved
simulation methods used for flow through porous media can be
classified by the way in which they represent the fluid/solid inter-
face. To obtain a detailed description of the pore-scale flow field,
appropriate boundary conditions (typically no-slip) need to be
suitably enforced on the solid boundaries of the porespace, and
the porespace needs to be sufficiently resolved by the computa-
tional grid. Body fitted grid methods, where the Navier Stokes
equations are solved on unstructured grids that conform to the
solid boundaries of the porespace, have probably been the most
popular type of approach [15–18], and is the method which is
pursued here. However, body fitted grid generation is compli-
cated for porous media and packed bed geometries, and a care
must be taken to avoid poor mesh quality, as described in the next
section. Alternatives to the body fitted approach exist, includ-
ing the lattice-Boltzmann method, immersed boundary methods
and fictitious domain methods. The Lattice-Boltzmann method
solves the Boltzmann equation of particle motion on a regular
grid or lattice, which approximates the statistical distribution of
fluid motion in space and time. This method has been used by
Hill, Koch and coworkers [9, 10, 19, 20] to investigate inertial
flows in packed beds and by Pilotti [21] in a synthetically gener-
ated porous medium. Immersed boundary and fictitious domain
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methods, which have been applied widely to problems with com-
plex or moving boundaries, are also beginning to see application
to porous media flows [22, 23]. These methods use Cartesian,
non body-conformal grids, and enforce surface boundary condi-
tions with the addition of a local forcing term in the momentum
equation. Recently Finn & Apte [23] have made comparisons of
the traditional body fitted approach to a Cartesian grid fictitious-
domain approach, and shown the latter to be favorable in terms
of computational overhead required for accurate simulations of
flow through packed beds.

The remainder of this paper will focus on the characteri-
zation of porescale vortical features in packed beds of spheres.
These features are investigated using a parallel Navier-Stokes
solver with unstructured, body fitted meshes. To understand
the effects of the both flow inertia and solid geometry on these
flow features, three different sphere packings are investigated at
Reynolds numbers spanning the steady inertial (10. Re. 200),
and unsteady inertial flow 200. Re. 1000 regimes.

COMPUTATIONAL APPROACH
Consider the incompressible Navier-Stokes equations for the

entire fluid domain:

ρ

(
∂u
∂ t

+u ·∇u
)

= −∇p+µ∇
2u (1)

∇ ·u = 0 (2)

where ρ is the density, u the velocity vector, p the pressure, µ

the fluid viscosity. The equations are discretized on unstructured,
tetrahedral meshes, and solved using a parallel, second order ac-
curate fractional step solver. The code is parallelized using Mes-
sage Passing Interface (MPI), allowing for larger scale simula-
tions by distributing the required memory over many processors.
For additional details regarding the numerical implementation,
the reader is referred to [24].

Unstructured mesh generation for complex geometries is a
non-trivial procedure in general, and in packed beds the process
is complicated by sphere-to-sphere contact points, near which
elements can become unmanageably small and have high aspect
ratios. We employ a cylinder bridge model [25], whereby every
contact point is bridged by a small cylinder, removing a small
amount of typically stagnant fluid as is illustrated in FIG. 2. This
process has been parameterized and automated using the com-
mercial package Pointwiser. Details regarding the mesh gener-
ation procedure as well as detailed validation of the flow solver
for packed bed type problems can be found in [23].

FLOW THROUGH PACKED BEDS OF SPHERES
We now present results for flow through three different

packed beds of spheres at both steady and unsteady Reynolds

Dsp Dsp

Solid region created by bridge

Db

Sphere A Sphere B

FIGURE 2: SCHEMATIC OF THE FILLET BRIDGE CRE-
ATED BETWEEN TWO CONTACTING SPHERES.

(a) SCP
(PERIODIC)

(b) HCP
(WALL BOUNDED)

(c) RANDOM
(WALL BOUNDED)

FIGURE 3: THE THREE SPHERE PACKINGS CONSID-
ERED. FLOW IS FROM BOTTOM TO TOP IN EACH CASE.

numbers. The sphere packings considered are shown in FIG. 3.
Their characteristics, and the relevant parameters used in the sim-
ulations of flow through each are summarized in TAB. 1. The
three packings were chosen to complement each other, as their
porescale geometries vary significantly. The simple cubic pack-
ing (SCP) shown in FIG. 3a is the loosest possible packing ar-
rangement with εSCP = 0.47. It contains periodic boundaries on
all sides which allows for the generation of a flow field unaf-
fected by the presence of external walls. Also, the repeating na-
ture of the packing provides a single geometric length scale in
the pore. A 3× 3× 3 arrangement is used for the steady flows
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TABLE 1: PACKED BED SIMULATIONS

Packing Dimension Re Dsp/∆ Ncv total

Steady

SCP 3×3×3 10 < Re < 250 29 1.2m

HCP 6×6×6 10 < Re < 150 29 12.3m

Random Dtube/Dsp = 5.96, 326 sp. total 10 < Re < 150 29 16.8m

Unsteady
SCP 3×3×6 529 56 7.3m

Random Dtube/Dsp = 5.96, 326 sp. total 600 56 32m
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FIGURE 4: RADIAL VOID FRACTION VARIATION OF THE
RANDOM PACKING. COMPARISON OF THE PRESENT
SIMULATION TO THE EXPERIMENTALLY MEASURED
VOID FRACTION OF MUELLER [27].

and a 3× 3× 6 arrangement for the unsteady flows. The sec-
ond packing is a 6× 6× 6 hexagonal close packing containing
(216 spheres) shown in FIG. 3b. It is one of two arrangements
(face centered cubic being the other) with lowest possible void
fraction of ε = 0.26. However, this is only in the interior of the
packing, and the solid, external boundaries result in a signifi-
cantly higher mean void fraction, εHCP = 0.40. This wall effect
increases the Reynolds number near the wall and can lead to sig-
nificant flow channeling. Finally, the packing shown in FIG. 3c
is a tube packed randomly with 326 spheres. The tube diameter
to sphere diameter ratio is Dtube/Dsp = 5.96. The packing was
generated following the parameterized, sequential procedure of
Mueller [26] and has a mean void fraction of εrandom = 0.47 and a
total packing height of h/Dsp ≈ 12. Because of the exterior tube
boundary, there is a significant wall effect in the radial porosity
variation, ε(r), which is shown in FIG. 4 alongside the void frac-
tion variation of a laboratory generated packed column [27]. The
trend of ε(r) obtained with the current packing do a good job of
matching the measured trend.

The pore volume of each geometry is meshed using the pa-
rameterized method described in [23]. All meshes used in the
steady flow simulations have a grid spacing of Dsp/δcv ≈ 29
which was shown to provide grid convergence and good experi-
mental agreement in prototypical test cases. The unsteady simu-

lations use a more refined mesh with Dsp/δcv ≈ 56. The ratio of
fillet diameter to sphere diameter is D f /Dsp = 0.2 for all simula-
tions. The total number of tetrahedral control volumes, Ncv used
in the body fitted meshes of each geometry varies from 1.2m to
16.8m. The flow is forced in the positive Z direction by a con-
stant pressure gradient in the SCP cases, and by a constant flux
inflow condition in the HCP and random cases. Each simulation
is started with the flow at rest, and the flow solution is advanced
in a time accurate manner until the solution has reached a station-
ary state. In the steady flow cases, we use the total kinetic energy,
∑cv uiui, in the porespace as an indicator. When this quantity
does not change significantly, the inflow flux or pressure gradient
is increased to the next target Reynolds number. In the unsteady
flow cases, the simulation is run for several non-dimensional flow
through times, T = tUp/Dsp, so that the velocity fluctuations in
the porespace reach a statistically stationary state.

STEADY FLOW
Steady Reynolds numbers were chose to thoroughly sample

the inertial flow regime range between creeping flow (Re . 10)
and inertially dominated flow near the threshold of unsteadi-
ness (Re & 200) [7]. The non-dimensional pressure drop, Ψ =

−∆P
Lm

Dsp
ρU2

p

εm
1−εm

measures the relative resistance to flow through

the packed bed. Here, ∆P is the difference in pressure measured
at the outlet and inlet of the packing. This is plotted in FIG. 5 vs
Reynolds number for each of the three packings. Also plotted are
the correlations of Ergun [6] for infinite, random porous media,
and Eisfeld & Schnitzlein’s [28] correlation for randomly packed
tubes with finite tube to sphere diameter ratios. The periodic SCP
arrangement offers the least flow resistance at all Re, followed by
the HCP arrangement. This is due in part to the preferential flow
channeling between rows of spheres in the SCP arrangement and
along the walls in the HCP arrangement. The random packing,
which lacks long open channels, shows the highest resistance for
all Re, and agrees reasonably well with the correlation from [28].

Next, the porescale vortical structures are examined in each
arrangement. Due to the large amounts of shear in the pores-
pace, using vorticity alone for vortex detection is generally noisy
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and unfruitful. Instead, the λ2 criteria of Jeong & Hussain [29]
is used. This criteria identifies vortices as regions with a local
pressure minima and can therefore be identified as regions where

λ2(S2 +Ω
2)< 0 (3)

Here, S and Ω are the symmetric and anti-symmetric compo-
nents of the velocity gradient tensor respectively, and the opera-
tor λ2 returns the intermediate (second) eigenvalue of a symmet-
ric matrix. In FIG.’s 6, 7 and 8, several visualizations are pro-
vided of the characteristic vortical structures seen in SCP, HCP,
and random arrangements respectively. The SCP arrangement,
shown in FIG. 6 is dominated by two distinct regions which
can be identified easily with a simple streamline visualization
(FIG. 6a): (i) high velocity channels through which the flow
passes undisturbed, explaining the low values of Ψ, and (ii) large
recirculation regions in the gaps between rows of spheres. These
recirculation regions are actually complex, multi-lobed vortex
ring structures, shown with an isosurface of λ2 in FIG. 6b. These
vortex rings are actually more like vortex cubes, with four dis-
tinct sides each aligned along a cross-stream axis. This is further
illustrated in FIG. 6c, where the tangent vectors are plotted on
a plane passing through the center of one of these vortex cubes,
perpendicular to the mean flow. The vectors show the complex
three-dimensionality of the flow feature, and the close relation-
ship between the pore geometry and the behavior of the vortical
structure.

The characteristic vortical structures observed in the HCP
arrangement are shown in FIG. 7 as isosurfaces of λ2. Similar to
the SCP arrangement, the dominant porescale vortical feature in
the interior of the packing is a multi-lobed vortex ring (FIG. 7a-
b). These rings are located upstream of the forward stagnation
points on the spheres in the interior of the packing. Due to the
geometric orientation of the packing, the ring has 3 lobes which
align with the principal axes of the packing as well as the ma-
jor flow directions away from the stagnation point. Near the
bounding walls, the flow is accelerated significantly due to the
increased porosity and less tortuous channels compared to the in-
terior. These factors give rise to elongated helical vortices shown
in FIG. 7c. These helical structures are regions where the veloc-
ity and vorticity vectors are roughly aligned, and the flow spirals
through the porespace with a roughly corkscrew motion.

This type of helical vortex is the dominant inertial feature
everywhere in the random packing. In FIG. 8a-d, one typical fea-
ture is visualized using stream ribbons colored by λ2, (red colors
indicating the strongest vortical region) for Re = 10, 50, 100,
and 150, showing its development from near creeping flow to
strongly inertial flow. The stream ribbons which enter the fea-
ture at all Re originate from two sides of the bottom sphere and
collect in a channel where the streamwise flow is accelerated.
As Re is increased from the creeping regime, flow inertia pushes

FIGURE 5: NON-DIMENSIONAL PRESSURE DROP AS A
FUNCTION OF REYNOLDS NUMBER IN THE STEADY
FLOW REGIME FOR THE THREE SPHERE PACKINGS.
THE CORRELATIONS OF ERGUN [6] AND EISFELD &
SCHNITZLEIN [28] ARE PLOTTED FOR COMPARISON.

the streamlines away from the right hand sphere, and the two
streams entering the feature begin to twist around one another as
they travel upward in a corkscrew like motion. This radial mo-
tion is non-existent at Re = 10 (FIG. 8a), first appears at Re≈ 50
(FIG. 8b), and strengthens with Re up to Re = 150 (FIG. 8c-d).
Despite the variety of pores which exist in the random packing,
this single feature is very representative of the majority of vorti-
cal structures seen for these steady flow rates. There are few, if
any, of the vortex-ring like structures which were observed in the
interior of the SCP and HCP arrangements, likely due to the lack
of geometric symmetry and organization.

UNSTEADY FLOW
The random and SCP arrangements were chosen for un-

steady flow simulations because of their distinctly different ge-
ometries and vortical structures observed in the steady flow
regime. The simple cubic and random meshes used for these
unsteady flows are composed of 7 million and 32 million CV s
respectively. As in the steady flow cases, the mean flow is pro-
vided by a constant inflow condition on the bottom boundary
in the random packing, and a constant pressure gradient in the
triple periodic SCP arrangement. The resulting, time averaged
Reynolds numbers are Re = 600 and Re = 529 respectively.

At Re = 529, the flow in the SCP arrangement is dominated
by spatially and temporally periodic porescale vortex shedding.
The characteristics of the three dimensional vortical structures
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(a) (b) (c)

FIGURE 6: SCP FLOW AT RE = 230. (a) STREAMLINES COLORED BY STREAMWISE VELOCITY (RED = FAST), (b) ISO-
SURFACES OF λ2, (c) VELOCITY FIELD ON A CROSS-STREAM PLANE.

(a) (b) (c)

FIGURE 7: HCP FLOW AT RE = 150. ISOSURFACES OF λ2 SHOWING THE INTERIOR VORTEX RING STRUCTURES (a,b),
AND THE ELONGATED HELICAL VORTICES IN THE WALL REGION (c).

(a) Re = 10 (b) Re = 50 (c) Re = 100 (d) Re = 150

FIGURE 8: DEVELOPMENT OF A PORESCALE HELICAL VORTEX IN THE RANDOM ARRANGEMENT. STREAM RIBBONS
COLORED BY λ2 (RED INDICATES STRONG SWIRL).
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FIGURE 9: UNSTEADY PORESCALE KARMAN LIKE VORTEX SHEDDING OBSERVED IN THE SIMPLE CUBIC PACKING.
ISOSURFACE OF λ2 SHOWN, COLORED BY PRESSURE (BLUE INDICATES LOW PRESSURE REGION).

are shown in FIG. 9, where isosurfaces of λ2 colored by local
pressure are shown for a single snapshot in time. Several orthog-
onal views of consecutive pores, with sphere boundaries denoted
with solid black lines, are provided to give three dimensional
context to the vortical structure relative to the sphere packing.
The main vortical feature in every pore is a half vortex ring which
is bent upward in the direction of the mean flow. These half rings
have a larger lobe at each end. These lobes are similar to the
lobes observed in the steady flows through the SCP arrangement,
in that they are aligned with the major cross-stream axes of the
sphere packing (X and Y in this case). The difference however is
that only two lobes exist at any given time in a single pore; the
vortical structure never forms a complete, four lobed vortex ring
as was seen for steady flow rates. These structures alternate spa-
tially along the mean flow direction (Z), such that the half ring is
located in opposite sides of consecutive pores. This is best seen
in the X-Y views on the right hand side of FIG. 9. In the cross
stream directions, these vortical features are in phase with one
another. That is, across pores in the same X-Y plane, they will be
located in the same quadrant of every pore (not shown).

The transient character of these structures strongly resem-
bles the periodic Kármán vortex shedding observed in the wake
of a single cylinder or sphere. The half vortex ring structures de-
scribed above alternate between the (+X ,+Y ) corner of the pore
shown in View ’B’ of FIG. 9 and the (−X ,−Y ) corner shown
in View ’A’. This 180o phase shift occurs in every pore in the
packing. In the middle of this cycle, the half ring structures are

flushed into the high velocity channels by the mean flow, and are
stretched into thinner tail-like regions. As a new half ring forms,
the old structure is being flushed through the center of channel.
These tail regions can be seen in the pore throats in the snapshot
of FIG. 9.

Despite similar Reynolds numbers, the flow through the ran-
dom packing contains remarkably different vortical structures.
Due the the variety of geometric pore configurations which exist
in this packing, the local value of Re can vary considerably from
the bed average value of Re = 600. This results in not just one,
but a variety of coherent porescale vortical structures. We will
concentrate on the two main types of feature types seen, which
are shown in FIG. 10. To illustrate these features, instantaneous
stream-ribbons colored by the local pressure are shown in three
different pores. The most common feature is the helical vor-
tex, which was also seen at reduced flow rates in the steady flow
simulations. In fact, the same pore is shown in FIG. 10a, as in
FIG. 6g-k, and a helical vortex can be seen in a similar loca-
tion as the one which develops over the range 50 < Re < 150.
At this higher, unsteady flow rate, the streamlines of the feature
have much stronger radial motion as they spiral through the pore
compared to the steady flow feature, and the length of the vortex
is stretched further in the streamwise direction. These elongated
helical vortices persist throughout the packing, often with multi-
ple vortices in a single pore. Another of these features is shown
in FIG. 10b, located near the solid outer tube wall. This feature
results from the high momentum streamlines in the high void
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(a) (b)
INTERNAL AND EXTERNAL HELICAL VORTICES

(c) COUNTER ROTATING VORTEX TUBES

FIGURE 10: UNSTEADY PORESCALE VORTICAL
FEATURES OBSERVED IN THE RANDOM PACKING.
STREAMRIBBONS COLORED BY PRESSURE ARE
SHOWN IN THREE DIFFERENT PORES (BLUE INDI-
CATES LOW PRESSURE REGION)

fraction wall region (see FIG. 4) mixing as they enter the pore
from below, and swirling around each other during their exit up-
ward. Because of the locally higher Re at the wall, and the other
features that exist in this pore, this vortical feature is more active
in it’s unsteady motions than the internal feature of FIG. 10a,
although it remains in this pore at all times. Future work will
focus on quantifying the relationship between the vortical length
and time scales and Re over the entire steady and unsteady flow
regime.

The other main type of feature which is observed in the ran-
dom packing at Re = 529 is a vortex tube whose axis is roughly
aligned perpendicular to the flow. A counter-rotating pair of
these features are shown in FIG. 10c. The instantaneous flow
vectors in a perpendicular plane are shown in the background.
Such features tend to exist in the near wake behind a sphere, or
in the gaps between two spheres as shown. Despite the slow

turnover time of these eddies exhibited by the vector magnitudes
in the circulating regions, they are not complete dead zones.
They expand and contract in tandem, meaning one grows while
the other shrinks in a periodic fashion, exchanging fluid amongst
themselves and with the mean flow.

None of the vortical features observed in the unsteady flow
through the random packing exhibit any vortex shedding and
there does not appear to be vortex destruction or creation at this
Reynolds number. Rather, they tend to oscillate in their posi-
tion without much net change of shape. The helical vortex cores
translate periodically, mostly in the in the cross stream plane,
but their size and mean location remains nearly constant for the
length of the simulation.
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FIGURE 11: TIME AUTOCORRELATION FUNCTIONS OF
STREAMWISE VELOCITY FLUCTUATIONS, ρxx. (−�−)
SCP & RANDOM WALL REGION (OUTERMOST 0.5Dsp),
(•) RANDOM INNER CORE (INNERMOST 0.5Dsp).

In order to quantify the timescales of these unsteady flows,
the fluctuating velocity field, u′(x, t), is computed via a Reynolds
decomposition for a time series of instantaneous velocity fields,
u(x, t).

u(x, t)′ = u(x, t)−u(x) (4)

Here, u is the time averaged velocity field. With the fluctuating
velocity field, the time autocorrelation function is computed for
the porespace region of the SCP and random arrangements:

ρii(∆τ) = ∑
x

∑
τ

u′i (x,τ)u′i (x,τ +∆τ)

u′i(x,τ)2 (5)

(6)

Here, ∆τ = tU
Dsp

is the non-dimensional time separation, between
two velocity samples at position x in the porespace. The stream-
wise autocorrelation function, ρxx is plotted for both arrange-
ments in FIG. 11. The cross-stream correlation functions, ρyy and
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ρzz, show similar trends in both arrangements and are omitted for
clarity. The SCP time correlation function is periodic with a sin-
gle dominant frequency. Recently, Horton & Pokrajac [14] have
experimentally investigated the flow structure in SCP arrange-
ments of spheres driven by constant pressure gradients with ul-
trasonic velocity profilers (UVP), and observed similar periodic
correlation functions at transitional Reynolds numbers. These
resolved simulation results, which show the shedding and mo-
tion of coherent vortical structures at the porescale, provide cor-
roborating evidence that these periodic velocity fluctuations are
linked to porescale vortical motion and vortex shedding .

Because of the radial porosity variations present in the ran-
dom packing (FIG. 4), and the locally higher Re near the wall, the
correlation function is computed separately for different annular
regions of the flow to show the effect of the wall on the unsteady
timescales. In FIG. 11b we have plotted the function for the re-
gion within 0.5Dsp of the tube wall and the region within 0.5Dsp
of the tube centerline. These two correlations both show time
periodic behavior, and the existence of several modes of veloc-
ity fluctuations in the porespace. The higher Reynolds number
wall region shows exhibits a more complex function with more
modes than does the inner region. Both correlation functions
decay with long time separation, similar to the results of [30]
for converging/diverging channel flows, but shows a strongly pe-
riodic behavior for the short time separations investigated here.
This shows that despite the randomness of the bed, there are very
specific dominant modes of velocity fluctuation. The increased
number of modes compared to the SCP arrangement signals that
the flow through the random packing may be closer to a turbulent
chaotic breakdown.

By performing a Fourier transform on the autocorrelation
functions, the velocity frequency spectra can be obtained. This
is shown in FIG. 12 for both sphere arrangements, where the fre-
quency is non-dimensionality to give the Strouhal number, St =
(∆τ)−1. The SCP arrangement contains a dominant Strouhal
number of nearly unity, showing the vortex shedding is strongly
linked to the length scale of the sphere packing. The ran-
dom packing contains several different Strouhal numbers be-
tween 0.29 and 1.57. In the inner region, the high frequency
modes (St > 1 have been eliminated. This shows that the larger
Reynolds number wall region contains a larger spectrum of ener-
getic time (and most likely spatial) scales,

CONCLUSIONS
Resolved and time accurate simulations of flows through

three different types of packed bed geometries have been per-
formed to identify and characterize pore scale vortical structures.
These simulations considered the steady and unsteady inertial
regimes (10 < 600), where the effect of porescale flow features
on macroscale properties is not well understood. Vortical fea-
tures are detected by regions of swirl and pressure minima using
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FIGURE 12: VELOCITY FREQUENCY SPECTRUM OB-
TAINED FROM THE FOURIER TRANSFORM OF ρxx.
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the λ2 criteria. The results show that there is a clear relation-
ship between pore geometry and the types of pore-scale vortical
structures observed. In the SCP and HCP arrangements, a multi-
lobed vortex ring structure is present in the gaps between spheres
at steady flow rates. The lobes of these structures align with the
principal geometric axes of the packing, and are highly three di-
mensional. At steady flow rates through the random packing,
and in the wall region of the HCP arrangement, elongated helical
vortices are the dominant porescale flow feature. Such features
appear to be located near accelerating streamlines in regions of
high curvature and low geometric symmetry.

At higher flow rates near Re = 600, the unsteady dynamics
of flow through the SCP and random arrangements are signifi-
cantly different. In the simple cubic arrangement, spatially and
temporally periodic Kármán like vortex shedding is observed at
a single Strouhal number near 1. Flow through the random ar-
rangement exhibits a wider range of time scales with Strouhal
numbers between 0.29 and 1.57 but without any observed vortex
shedding. The higher frequency modes seem to be active mostly
in the near wall region, where the Reynolds number is locally
higher due to the wall effect. At this Reynolds number, helical
vortices are still the dominant porescale feature, along with vor-
tex tubes aligned perpendicular to the mean flow.

Future work on this topic will focus on quantifying the
length and time scales of the porescale vortical features identi-
fied here, and linking their characteristics to macroscale proper-
ties. Also, direct comparison with experimental measurements
in similar packed beds will be used as more detailed validation
of the computational methods.
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