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This study examines the ability to detect the dynamic interactions of vortical structures generated from
a Helmholtz instability caused by separation over bluff bodies at large Reynolds number of approximately
104 based on a cross stream characteristic length of the geometry. Accordingly, two configurations, a square
cylinder with normally incident flow and a thin airfoil with flow at an angle of attack of 200 are examined.
Direct numerical simulation is used to obtain flow over the square cylinder. A time-resolved, three-component
PIV data set is collected in a symmetry plane for the airfoil. Different approaches analyzing vector field
and tensor field topologies are considered to identify vortical structures and local, swirl regions: (i) the Γ

function that maps the degree of rotation rate (or pressure-gradients) to identify local swirl regions, (ii) Entity
Connection Graph (ECG) that combines the Conley theory and Morse decomposition to identify vector field
topology consisting of fixed points (sources, sinks, saddles, and periodic orbits), together with separatrices
(links connecting them), and (iii) the λ2 method that examines the gradient fields of velocity to identify local
regions of pressure minima. Both velocity and pressure-gradient fields are analyzed for the DNS data, whereas
only velocity field is used for the experimental data set. The vector-field topology requires spatial integration
of the velocity or pressure-gradient fields. The tensor field topology, on the other hand, is based on gradients of
the velocity of pressure-gradient vectors. A detailed comparison of these techniques is performed by applying
them to velocity or pressure-based data and using spatial filtering of the data sets to identify the multiscale
features of the flow. It is shown that various techniques provide useful information about the flowfield at
different scales that can be used for further analysis of many fluid engineering problems of practical interest.

Nomenclature

Γ Gamma Function
ECG Entity Connection Graph
x Variable value vector
u Velocity, m/s
ρ Density, kg/m3

P Pressure, N/m2

ν Kinematic viscosity, m2/s
Subscript
i Variable number

I. Introduction

The ability to detect discrete flow structures in fluid flow environments is of growing interest to a wide variety of
applications. For instance, large scale flow structures such as swirling, high shear rates regions and vortical structures
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are thought to be controlling mechanisms for chaotic mixing, unsteady pressure fields that influence fluid-surface inter-
actions, transport in multiphase flows, and a host of other applications. A robust means of developing an understanding
of how these flow structures develop, evolve, decay, and interact is of fundamental importance. To achieve this goal
there needs to be a quantitative measure of the relevant flow structures. This quantitative measure should also allow
for spatial distinction among structures and a means of tracking such structures in the space and time domains. Since
there may be many differing views on exactly what is a flow structure, there is a wide range of defining conditions
for said structures. This results in a number of possible ways of detecting the desired flow structure. The unifying
requirement of the detection schemes is that they provide a quantitative measure in a complex flow environment that
defines the extent of the structure elements with an acceptable spatial and temporal resolution.

In this study the goal is to identify flow structures that are generated as a result of flow separation that occurs
during flow over a bluff body. Such flow separation is indicative of a Kelvin-Helmhotz shearing instability1–3 which
results in a roll-up along a highly concentrated vortex sheet (or high shear region). Flows of this nature are extremely
important in determining the dynamic loading on structures, in aerodynamic flight conditions, and drag forces on
man-made vehicles or animals in motion. Presented are results for two such bodies, a square cross section object with
separation at both the front and trailing edges and a thin airfoil at a high angle of attack (angle between the airfoil chord
and flight direction is large causing leading edge flow separation). The flow patterns associated with both bodies are
illustrated later in this paper, but the common element of concern for these flows is that the flow separation generates
large swirling flow structures that are convected downstream as they change in size, shape and intensity.

II. Background

Traditionally, flow analysis involving turbulence and unsteady coherent structures that may be imbedded within the
broad spectrum of turbulence has been based on collecting one-point and two-point statistics. However, there is a large
and growing literature on swirl and vortical flow detection methods.4–7 Proper Orthogonal Decomposition (POD),6

the λ2 (second eigenvalue) method,4, 8 and the Γ function,7, 9 among others, have been proposed and typically used
for flow analysis. Specific identication of vortex structures (or pressure minima)4, 8, 9 and correlating vortex shedding
to leading edge separation,3 have been applied. In addition to these, novel approaches developed in the scientific
visualization community based on vector and tensor field visualization and topology extraction provide an alternative
means to extract flow structure features.10, 11

Recent advances in vector field topology focus on features such as fixed points, periodic orbits, and separatri-
ces12–16 in two-dimensions, which have been extended to three-dimensional steady state,17–19 and time-dependent
flows.20–23 To address noise in the data sets, various flow simplification algorithms have been proposed that are either
topology-based14, 16, 24 or purely geometric.25 Symmetric tensor field analysis has also been well investigated in two-
dimensions.26 The basic constituents of tensor topology, the wedges and trisectors have been identified in 2D, symmet-
ric, second-order tensors. By tracking their evolution over time, these features can be combined to form more familiar
field singularities such as saddles, nodes, centers, or foci.26 This work has been extended to three-dimensions27–29

and to time-varying tensor fields.30 Tensor field simplification techniques have also been developed.31, 32 Analysis of
asymmetric tensor fields such as the velocity gradient has been performed.33, 34 Zhang34 performed topological analy-
sis on the eigenvalues and eigenvectors of the velocity gradient to explore flow features such as regions of compression,
dilation, rotation, and stretching.

In this work, the vector field topology extraction techniques is applied to flow data sets and compared with the
traditional approaches based on the Γ and λ2 methods. Furthermore, comparison of velocity-based and pressure-
gradient based data and application of various feature extraction methods is performed to illustrate the potential of
each technique when applied to different data sets. Two flow fields have been selected to explore the capabilities of
flow structure detection during separation: (i) flow over a square cylinder, and (ii) flow over a flat thin airfoil at 20◦

angle of attack.
Flow over a square cylinder at Re≈ 10,000, based on the inlet velocity (U∞ = 1.5 m/s), the cube size (L = 0.1 m

and the fluid kinematic viscosity (ν = 15× 10−6 m2/s), is obtained using direct numerical simulation. A three-
dimensional simulation is performed with Dirichlet conditions at the inlet, a slip condition at the top and bottom
surfaces, periodic conditions in the spanwise direction, and a convective boundary condition for the outlet. The direct
numerical simulation is performed based on a colocated grid, fractional step algorithm35–37 to collect the velocity and
pressure data in space and time. The flow solver has been validated with available experimental data for a variety of
flow configurations involving separated turbulent flows and swirling regions.36–38

The separated flow over an airfoil is obtained experimentally. Time-resolved PIV data of velocity components in
a two dimensional plane along the centerline of a wing in a moderate Reynolds number (Re = 6× 104 based on the
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chord length). The vector resolution of the PIV data is 0.684mm in a total field of field of 54 mm×47 mm. The wing
is at a 200 angle of attack (chord line relative to flow direction) and as such experiences a leading edge separation. The
flow structures developing from this separation are of interest as they are convected downstream.

These two data sets were selected for a number of reasons. They both represent leading edge flow separation
with significant vortical flow structure development. Both flows are at a reasonably high Reynolds number to assure a
range of scales of motion and energy. Consequently, the robust nature of the vortex detection scheme can be evaluated
for these multiscale flowfields. Also, there is a fundamental difference between experimentally and computationally
obtained data sets. In general the computational simulation will contain both velocity and pressure field results over
the full extent of the field of interest, while the experimental set will be limited to a velocity vector field (usually in two
dimensions, and rarely more than two components). Consequently, experimental data sets lack the ability to use the
pressure and/or the full dimensional field and its possible gradients as an indicator variable, or feature descriptor. As
discussed below, several indicator variables are explored in this paper to assess the ability and distinctions of different
variables to detect vortical flow structures.

The paper is arranged as follows. In the following section, the various flow analysis techniques are described in
detail. These include both the vector field (velocity or pressure gradient) and tensor field (λ2 method) analyses. These
techniques are then applied to the square cylinder and airfoil data sets and compared to assess the similarities and
differences of all detection schemes in identifying vortical flow features.

III. Flow Analysis Techniques

The flow descriptors used in this study are: (i) the Γ function, (ii) the Entity Connection Graphs (ECG16), and
(iii) the λ2 method. The Γ function and the ECG are based on a vector field such as velocity or pressure–gradient and
require integration over a region surrounding the point of interest. The λ2 method is based on the analysis of a tensor
field (velocity gradient or pressure Hessian) and requires differentiation of a vector field at a point of interest.

A. The Γ-Function

A Γ function9 has been proposed as a swirl strength parameter and used by one of the co-authors7 to study pulsed jet
in crossow. This method is based on a direct measure of the local swirl tendency of the flow field by calculating the
vector orientation of the feature descriptor relative to a local radius vector at a given point within the flow field. Using
the velocity vector UM in the x− y plane as the feature descriptor the swirl strength, Γ, is determined within a local
grid area AM by:

Γ(x,y) =
1

AM

∫
AM

(
PM×UM

)
· ẐdA(

‖PM‖‖UM‖
) (1)

where Ẑ is a unit vector pointing out of the (x,y)-plane, and PM is the position vector of point M within the integration
stencil and the point P. This is equivalent to the summation of the sine of the angle between the velocity vector at
points within the area AM and the position vector from these points to the position (x,y). Consequently, it is a measure
of the local swirl strength filtered by the selection of the area AM . Because of the local normalization, the swirl can be
detected within regions of large dynamic range of velocity, which is advantageous in a separated flow region.

Note that the traditional definition of Γ function is based on the velocity vector. In order to define a similar feature
detector based on the pressure-gradient vector, a new function denoted as Γp is defined as:

Γp(x,y) =
1

AM

∫
AM

(
PM×P′M

)
· ẐdA(

‖PM‖‖P′M‖
) (2)

where P′M =−(∇p)⊥ is the pressure gradient field rotated by 900 in the anti-clockwise direction. The pressure gradient
normal to the radial vector centered at a given point within the flow is used, and is integrated about area AM in a similar
manner as shown above for the velocity vector. In this case the swirl indication is based on a local low pressure region
which is scaled by the area averaged pressure gradient aligned towards a specific location within the flow. The area of
integration is selected based on the spatial scale of interest.

B. Entity Connection Graphs (ECG)

Vector field topology in two-dimensions consists of fixed points (sources, sinks, saddles, and periodic orbits, Figure 1),
together with separatrices (links connecting them). The fixed points identify specific flow features and the separatrices
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provide possible paths and correlations between spatially varying structures. The fixed points and periodic orbits are
the nodes in the ECG and separatrices are the edges. In addition, a periodic orbit can be connected directly to a source,
sink, or another periodic orbit. These entities and their interconnection can be represented by a graph called Entity
Connection Graph (ECG).16 The ECGs of vector fields (for example, velocity and pressure gradient) can be used to
identify specific flow features (such as vortex centers etc.)

Figure 1. Schematic of vector field topology: (a) source, (b) sink, (c) saddle, (d) attracting and (e) repelling periodic orbits.

Mathematically, a vector field can be expressed in terms of a differential equation ẋ = V (x). The set of solutions to
it gives rise to a flow on the underlying domain M; that is a continuous function ϕ : R×M→M satisfying ϕ(0,x) = x,
for all x ∈M, and

ϕ(t,ϕ(s,x)) = ϕ(t + s,x) (3)

for all x ∈M and t,s ∈ R. Given x ∈M, its trajectory is

ϕ(R,x) := ∪t∈Rϕ(t,x). (4)

S ⊂M is an invariant set if ϕ(t,S) = S for all t ∈ R. Observe that for every x ∈M, its trajectory is an invariant set.
Other simple examples of invariant sets include the following. A point x ∈M is a fixed point if ϕ(t,x) = x for all t ∈R.
More generally, x is a periodic point if there exists T > 0 such that ϕ(T,x) = x. The trajectory of a periodic point is
called a periodic orbit.

Figure 2. An example vector field (left) and its ECG16 (right). The vector field con-
tains a source (green), three sinks (red), three saddles (blue), a repelling periodic orbit
(green), and two attracting periodic orbits (red). Separatrices that connect a saddle
to a repeller (a source or a periodic orbit) are colored in green, and to an attractor (a
sink or a periodic orbit) are colored in red. The fixed points and periodic orbits are
the nodes in the ECG and separatrices are the edges.

Consideration of the important qualita-
tive structures associated with vector fields
on a surface requires familiarity with hy-
perbolic fixed points, period orbits and sep-
aratrices. Let x0 be a fixed point of a vec-
tor field ẋ = V (x); that is V (x0) = 0. The
linearization of V about x0, results in a
2×2 matrix D f (x0) which has two (poten-
tially complex) eigenvalues σ1 + iµ1 and
σ2 + iµ2. If σ1 6= 0 6= σ2, then x0 is called
a hyperbolic fixed point. Observe that on
a surface there are three types of hyper-
bolic fixed points: sinks σ1,σ2 < 0, saddles
σ1 < 0 < σ2, and sources 0 < σ1,σ2. Sys-
tems with invariant sets such as periodic
orbits are considered and the definition of
the limit of a solution with respect to time
is non-trivial. The alpha and omega limit
sets of x ∈M are

α(x) := ∩t<0cl(ϕ((−∞, t),x)), ω(x) := ∩t>0cl(ϕ((t,∞),x))

respectively. A periodic orbit O is attracting if there exists ε > 0 such that for every x which lies within a distance ε

of O , ω(x) = O . A repelling periodic orbit can be similarly defined (α(x) = O)). Finally, given a point x0 ∈M, its
trajectory is a separatrix if the pair of limit sets (α(x),ω(x)) consist of a saddle fixed point and another object that can
be a source, a sink, or a periodic orbit.

Figure 2 provides an example vector field (left). Fixed points are highlighted by colored dots (sources: green;
sinks: red; saddles: blue). Periodic orbits are colored in green if repelling and in red if attracting. Separatrices that
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terminate in a source or a repelling periodic orbit are shown in green and those terminate in a sink or an attracting
periodic orbit are colored in red.

C. The λ2 Method

The gradient of a vector field is an asymmetric tensor field, and the topological and geometric analysis of the vector
gradient can provide additional insights to the understanding of the vector field itself. Here a well-known technique,
the λ2 method is applied to the experimental and numerical data sets. A newly developed descriptor based on the
eigenvalue topology34 has been developed in scientific visualization community and will be investigated in the future.

The local swirl within a flow can be determined based on a local pressure minimum by assessing the gradient fields
of either velocity or pressure, this is designated as the λ2 method. Jeong and Hussain4 provide a thorough discussion
of the various criteria and argue that the Hessian of pressure be used to identify local pressure minima, and hence the
vortex core.

The equations of motion for an incompressible, Newtonian fluid with constant viscosity are given by the Navier
Stokes equations:

∂ui

∂ t
+

∂

∂x j
(uiu j) = − 1

ρ

∂P
∂xi

+ν
∂ 2ui

∂x j∂x j
(5)

where ui represents the components of the velocity vector, P the pressure field, and ν the kinematic viscosity. In
addition, the velocity field must satisfy the divergence free constraint u j, j = 0 for an incompressible fluid. Taking the
gradient of the Navier-Stokes equation results in the relationship shown below between the pressure Hessian and the
velocity gradient tensor separated into its symmetric and antisymmetric parts, Si j and Ωi j, respectively,[

DSi j

Dt
+SikSk j +ΩikΩk j

]
︸ ︷︷ ︸

symmetric

+
[

DΩi j

Dt
+ΩikSk j +SikΩk j

]
︸ ︷︷ ︸

antisymmetric

=− 1
ρ

P,i j +νui, jkk, (6)

where Si j = (ui, j +u j,i)/2 and Ωi j = (ui, j−u j,i)/2.
A direct meassure of the local pressure minimum can be obtained by evaluation of the eigenvalues of the pressure

Hessian (P,i j). Upon ordering the eigenvalues, a positive second eignevalue, denoted here as λ2,p expresses a local
minimum. Alternatively, if the advective ( DSi j

Dt ) and viscous terms (νui, jkk) of the above gradient equation are assumed
small, the strain and rotation tensors, Si j and Ωi j, can be used to relate the effects of the local pressure minimum.
Noting that the second bracket of the equation is identically zero (it is the well-known vorticity transport equation4),
this method examines the eigenvalues of the remaining terms on the left hand side by using the velocity gradient fields
and represents an estimation of the pressure Hessian (P,i j). This is denoted as λ2.

Majority of the works in turbulent, separated flow use the λ2 method mainly because the velocity field can be
directly measured in laboratories and hence its gradients can be obtained. However, detailed measurement of the
pressure field in a region is usually not performed. In numerical simulations, both the velocity and pressure fields are
computed and allows computation of different measures of swirl strengths. By examining the results using both the λ2
and λ2,p it is possible to assess the detection sensitivities based on the velocity-based versus pressure-gradient based
fields. In this case the exclusion of the covnective and viscous terms can be evaluated.

IV. Computation of Flow Descriptors

Computation of the vector field descriptors such as Γ & Γp and tensor field eigenvalues (λ2 and λ2,p) is fairly
straightforward for both experimental and computational data sets. Once the velocity and pressure gradient fields
are obtained these descriptors are extracted at each data-points and can be applied to multiple frames to evaluate the
temporal evolution. In addition, the data-sets can be filtered using high and low-pass filters to extract the multiscale
nature of the flow structures. Accordingly, any flow variable f can be written as f = f̃ + f ′, where f̃ and f ′ represent
the low-pass and high-pass filtered data, respectively. A Gaussian filtering operation is used to obtain the low-pass
data:

f̃ (x,y) =
∫

A
( f ·G)dA; G(x,y) =

1
2πσ2 exp

(
−x2 + y2

2σ2

)
(7)

where σ represents the filter width. In this work, the filtered width used is four times the local grid resolution.
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Evaluation of the vector field topology (ECG) needs description. The data sets provided by the experiments
or simulation at particular grid nodes are first triangulated. The feature extraction domain is a triangular mesh in
either a planar domain or a curved surface. The vector field is defined at the vertices only. To obtain values at a
point on the edge or inside a triangle, a piecewise interpolation scheme is used. For planar domains, this is the well
known piecewise linear interpolation scheme.30 On surfaces, the scheme of Zhang et al.24, 32 that ensures vector field
continuity in spite of the discontinuity in the surface normal is used.

Vector field topology for two-dimensional flows consists of fixed points, separatrices, and periodic orbits. An ECG
is used to represent vector field topology.16 To construct an ECG for a vector field represented on a triangular mesh,
fixed points such as sources, sink, and saddles are first located and classified based on linearization inside each triangle.
Next, periodic orbits are extracted by identifying regions of recurrence in the flow. In the third step, separatrices are
computed by tracing streamlines from the saddles in their respective incoming and outgoing directions. This provides
edges in the ECG that connect saddles to sources, sinks, and periodic orbits. Finally, edges in the ECG that directly
connect between sources, sinks, and periodic orbits are determined by following the forward and reverse directions
near periodic orbits that have not been reached by any separatrices.16

V. Results

The results of the flow detection schemes described previously were evaluated for the two data sets: (i) data in the
symmetry plane from direct numerical simulation of the velocity and pressure fields for flow around a square cylinder,
and (ii) experimentally obtained two dimensional velocity field around a thin wing at a fixed angle of attack. The
experimental data is limited to velocity field and comparison of the vector (Γ and ECG) and tensor field topologies
(λ2 is performed. The DNS data set for flow over a square cylinder was evaluated using velocity-based and pressure-
gradient based feature extraction techniques. This data set is used to compare the flow descriptors based on the velocity
and pressure-gradient fields.

A. DNS Data on Flow Over a Square Cylinder

Figure 3 shows snapshots of velocity magnitude for flow over a square cylinder at Re ≈ 10,000 obtained from di-
rect numerical simulation. A three-dimensional simulation is performed with Dirichlet conditions at the inlet, a slip
condition at the top and bottom surfaces, periodic conditions in the spanwise direction, and a convective boundary
condition for the outlet. The edge of the square cylinder is 0.1 m, the inflow velocity is U∞ = 1.5 m/s. A total of
around 7–million Cartesian grid points are used in the computational domain. Also shown in Figure 3 are the three
locations (near the leading edge and two near the edge of the boundary layer, ((−0.5,0.079,0) and (−0.45,0.079,0))
are marked at which temporal data is collected. Figures 3e–f show the pressure and velocity signals at these three
locations. Figures 3g–h show the corresponding power spectra. Near the leading edge, the vortex shedding frequency
is around 2 Hz. The corresponding Strouhal number St = f L/U∞ is 0.132. The flow separates at the leading edge
corners and forms an oscillatory wake downstream giving rise to large scale vortical structures containing large levels
of turbulent kinetic energy.

Figures 4 shows the flow analysis techniques applied to the cube data set. Specifically, the time evolution of Γ, Γp,
λ2, and ECG are plotted. The Γ, λ2 and ECG are based on the velocity field, whereas the Γp is based on the pressure
gradient. Note that the actual computations are full three-dimensional, however, only the two-dimensional data in the
symmetry plane is analyzed. For the square cylinder, only the low-pass filtered data is shown. The goal of this analysis
is to compare the various techniques for vortex detection.

Γ and Γp:

Figures 4a–b compare the Γ and Γp contours for the square cylinder. Both techniques identify the flow separation
and swirling regions clearly. The flow separates at the corners of the leading edge. The top corner creates clockwise
rotation whereas the bottom-one shows counter-clockwise rotation. The separated flow evolves over the cube surface
and a strong wake region is visible downstream of the cylinder. Both techniques identify a strong, clockwise rotation
in the wake of the cylinder. It is apparent that the pressure-gradient based Γp identifies more features than the velocity
based Γ contours. This may be attributed to the fact that Γp is based on (−∇P), and thus can capture the variations
in flow velocity on a smaller scale (local grid size) compared to the velocity vector-based topology. Note that the
Γ-function is obtained by performing spatial integration of the flow quantities (equation 1) at each grid location.
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(a) t∗ = 4.38 (e)

(b) t∗ = 4.44 (f)

(c) t∗ = 4.51 (g)

(d) t∗ = 4.59 (h)

Figure 3. Direct numerical simulation of flow over a square cylinder at Re = 10,000. (a–d) the temporal evolution of velocity magnitude in
the symmetry plane (t∗ = tU∞/L), (e–f) pressure and velocity signal at three locations on the top surface, (g–h) the power spectra of pressure
and velocity signals.
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(Γ) (Γp) (λ2) (ECG)

(Ia) (Ib) (Ic) (Id)

(IIa) (IIb) (IIc) (IId)

(IIIa) (IIIb) (IIIc) (IIId)

(IVa) (IVb) (IVc) (IVd)

Figure 4. Vortex detection techniques applied to the velocity and pressure field of flow over a square cylinder. The time-evolution of Γ, Γp,
λ2, and ECG in the symmetry plane is plotted for t∗ = 4.38,4.44,4.51, 4.59, respectively.
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λ2 and λ2,p:

Figures 4c show the λ2 contours obtained based on the velocity-gradient tensor. These tensor field topologies are based
on the gradient of a vector field and identify locally, strong regions of swirl. Accordingly, strong swirl regions are
obtained near the leading edge corners and also in the wake regions. The pressure Hessian based λ2,p shows similar
regions of swirl (and is not shown). The contours are more spotty owing to the fact that the topology obtained is based
on second derivatives of the pressure. The λ2 contours try to find pressure minima based on the velocity-gradient based
tensor. The temporal, convective, and viscous effects are assumed small to approximately locate the pressure minima.
In the λ2,p approach, all effects are retained and consequently can locate the vortical regions more accurately.

ECG:

Figures 4d show the vector field topology as obtained from the velocity vector, respectively. Again, similar swirling
patterns as observed by the Γ and Γp contours are visible. In this data-set sources (green), sinks (red), saddles (blue)
and periodic orbits (attracting are red circles) are clearly visible. In addition, the separatrices connecting the fixed
points are also shown. Again, the pressure-gradient based topology identifies more fixed points than the velocity field.
However, the main vortical structures are identified by both. For example, the large circulation in the wake region (just
behind the cylinder) is identified by green dots (source).

(a) Velocity based ECG (b) −∇P based ECG

Figure 5. Comparison of vector field topology obtained from velocity and pressure
gradient vectors.

The separatrices show the link between
the fixed points. It is observed that in-
side the separated flow region, the extent of
the separatrices is large, indicating that the
fixed points detected are correlated with
distant flow events. This connectivity in-
formation is crucial for multiscale energy
cascade mechanisms observed in many tur-
bulent flows. By investigating the statis-
tical nature of fixed points and their cor-
relations, the path associated with energy
transfer from large-scale to small scale
flow structures can be identified. The ECG
identifies circular paths around the vortical
structures and the extent of the separatrices
roughly scales with the size of the vortical
structures. However, the strength of the vortex is not indicated by the ECG. The Γ function, on the other hand, provides
information regarding the strength of the vortex.

Figure 5 compares the velocity vector based and pressure-gradient based ECG for one frame. For the velocity-
based ECG, the separatrices show circular paths spiraling around the source. The pressure-gradient based ECG,
however, shows lines emanating from the source. This can be explained by considering a simple case of Rankine
vortex (a combination of forced and free vortices):

vθ =
{

ωr, r ≤ ac;
ωa2

c

r
, r > ac

}
,

where ac is the radius of the core of the vortex, ω is the angular rotation associated with the vortex, r is the radial
direction, and vθ is the tangential velocity. The pressure gradient field inside the vortex core is simply given as
∂ p/∂ r = ρω2r. The pressure thus increases with increase in r and the gradient is truly radial. Thus, in a pure vortical
flow, the pressure gradient lines are perpendicular to the velocity vector. The separatrices obtained from the pressure-
gradient based ECG are seen to be approximately perpendicular to those obtained from the velocity-based ECG (see
for example in the wake region). This is indicative of a strong vortical region. The extent of the separatrices roughly
scales with the size of the vortical structure.

Figure 6 shows the power density spectra based on Γ, Γp, and λ2 at three different locations near the top surface of
the cube. The Γp and λ2 spectra show distinct peaks for the middle data point (near the edge of the boundary layer).
Note that the Γp is obtained from the gradient of the pressure, whereas the λ2 is based on gradient of a velocity vector.
These gradient based vector and tensor fields seem to detect the passing of vortical structures better than velocity
based Γ function. The Γ function involves integration over a small region around the point of interest and may cause
smearing of the spectral content of the vortical structures.
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(a) (b) (c)

Figure 6. Power density spectra for flow over a square cylinder: Spectra are based on (a) Γ, (b) Γp, and (c) λ2 at three near the top surface
(as shown in Figure 3).

B. Airfoil Data

Figure 7 shows experimentally obtained velocity components in a two dimensional plane along the centerline of a
wing in a moderate Reynolds number (Re = 6× 104 based on the chord length). This data set was obtained using
particle image velocimetry and represents a snapshot of the velocity field with a vector resolution of 0.684mm in a
total field of field of 54 mm×47 mm. The wing is at a 20◦ angle of attack (chord line relative to flow direction) and as
such experiences a leading edge separation. The flow structures developing from this separation are of interest as they
are convected downstream. The energy spectrum associated with the leading edge region shows a broadband spectrum
and is typical of these separated flows.

Figure 7. Time-resolved PIV data in the symmetry plane obtained at the OSU wind tunnel. (a) A close up view of the flow separation near
the leading edge at 200 angle of attack, (b-c) time history of axial and vertical velocity signals, respectively, at x = 17.1 and y = 15 mm, (d-e)
the corresponding power density spectra showing a broadband spectrum and time scales.

The wing flow field analysis is shown in Figure 8, where each row shows the flow features obtained from Γ, λ2,
and ECG, respectively. Each column represents the same feature extraction techniques applied to different time frames
capturing the spatio-temporal evolution of the flow structures.

Γ Function:

The Γ function results (Figures 8a) illustrate the detection of well defined swirl that are separated into two main
regions, the upper region is a clockwise (negative values) rotating stream that begins at the leading edge of the wing.
This represents a flow instability that is generated by this localized separation which is then convected downstream.
Below this region, very near the wing surface is a companion region of counterclockwise (positive values) rotating
flow. Taken together these regions form a stream of clearly identified counter rotating vortices.

λ2 Method:

Figures 8b show the tensor field topology as detected by the λ2 method. As described in the previous section, the λ2
method is associated with gradient of the vector-field (velocity in this case) and identifies local effects. Consequently,
the original data set indicates clockwise rotating flow away from the airfoil surface, similar to the Γ-function. The
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Figure 8. A comparison of various techniques for feature extraction applied to the experimental data set of flow over an airfoil with 200

angle of attack.
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Γ-function is able to display well defined swirl flow pattern. While the λ2 method does detect the strong clockwise
rotating flow stream it only weakly detects the counterclockwise rotation near the surface.

ECG:

Figures 8c show the vector field topology (ECG). The ECG includes the instantaneous streamlines as a background
texture in addition to the singularities (sources (green dots), sinks (red dots), and saddles (blue dots)), and the separa-
trices or the lines connecting the singularities (green line connects a saddle to a source or repeller, and red line connects
the saddle to a sink or attractor). Repelling periodic orbits (green circles) are also clearly visible. The connectivity
between the singularities indicate the spatial extent of the various flow events and their interactions. For example, in
Figure 8c the two saddles (blue) near the leading edge show connection with the sources (green) on the downstream
surface of the wing. This indicates how the flow patterns stretch and evolve through the flow and how surface effects
are correlated to flow events far from the surface. Several fixed points inside and outside the separated flow region
are visible. The separatrices show the link between the fixed points. It is observed that inside the separated flow
region, the extent of the separatrices is large, indicating that the fixed points detected are correlated with distant flow
events. However, outside the separated region (in the free-stream), the flow features are closely correlated by more
local events. This vector-field based feature extraction technique shows similar vortical features as the Γ function.
This connectivity information is crucial for multiscale energy cascade mechanisms observed in many turbulent flows.

VI. Conclusion

In this work, various techniques, based on vector and tensor fields, to identify multiscale features in turbulent,
separated flows were analyzed in detail. Specifically, two techniques called (i) the Γ function, and (ii) ECG (the Entity
Connection Graph) were used to deduce the vector field topology. In addition, the tensor field based on the velocity
gradient or the pressure Hessian was analyzed by the λ2 method. These flow feature extraction techniques were
applied to two data sets: (i) direct numerical simulation based data of velocity and pressure-gradient fields for flow
over a square cylinder, and (ii) experimental velocity field data of flow over a thin airfoil at 20◦ angle of attack. Both
data sets were obtained at flow Reynolds number on the order of 104 based on the characteristic size of the bluff body.
At these Reynolds numbers, the flow separates and large vortical structures are obtained that convect downstream. The
various flow structure detection techniques were compared in detail.

The velocity and pressure-gradient fields were used to obtain the vector field topologies. The Γ function maps
the degree of rotation rate (or pressure-gradient) to identify local swirl regions, and the ECG combines the Conley
theory and Morse decomposition to identify vector field topology consisting of fixed points (sources, sinks, saddles,
and periodic orbits), together with separatrices (links connecting them). For both data sets the two techniques detected
similar flow features. The Γ function was able to provide the strength associated with the vortical structure. The ECG
identified singularities in the flow and the separatrices showed the links between the singularities. The extent of the
separatrix connecting two singularities was found to be roughly proportional to the scale of the vortex. It was observed
that the λ2 method for the tensor-field topology was capturing vortical structures on the small scale, whereas the extent
of the vortices and large-scale features were observed in the vector field topology (Γ and ECG).

From the numerical simulations, the pressure-gradient based topology was obtained and indicated more flow fea-
tures compared to the velocity-based analysis. The connectivity information between singularities or vortex centers as
provided by the separatrices is an important feature that can be further used to analyze the multiscale energy cascade
mechanisms observed in many turbulent flows.

These techniques can be further classified into global and local flow descriptors. The global descriptors are based
on spatial integration of flow parameters (Γ, Γp and ECG) and thus extract large-scale features. The local techniques
are based on the spatial derivatives of flow parameters (λ2) and identify flow features on the scale of the grid size used
to define the flowfield.
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