A Brief Introduction to
Algorithms

Paul Cull

Department of Computer Science

Oregon State University

May 13, 2011

Contents

1

HARD PROBLEMS 2
1.1 Classification of Algorithms and Problems 2
1.2 Nondeterministic Algorithms 3
1.3 NP and Reducibility 5
1.4 NP-Complete Problems 7
1.5 Dealing with Hard Problems 9
1.6 Approximation Algorithms, 10
1.7 The Worldof NP 12
1.8 Exercises 15

Chapter 1

HARD PROBLEMS

1.1 Classification of Algorithms and Problems

We have encountered various algorithms, particularly of the divide-and-conquer
type, which have running times like ©(n), ©(nlogn), and ©(n?), where n is
some measure of the size of the input. We have also encountered algorithms,
particularly of the exhaustive search type, which have running times like ©(2")
and O(n!). For algorithms of the first type, doubling the size of the input
increases the running time by a constant factor, while for algorithms of the
second type, doubling n increases the running time by a factor proportional
to the running time. If we double the speed of the computer we are using,
then the largest input size which our computer can solve in a given time will
increase by a constant factor if we have an algorithm of the first type; for an
algorithm of the second type, the input size our computer can solve will only
increase by an additive constant, at best. These considerations led Edmonds
to propose that algorithms of the first type are computationally reasonable,
while algorithms of the second type are computationally unreasonable. More
specifically, he suggested the definitions:

o reasonable algorithm: an algorithm whose running time is bounded by a
polynomial in the size of the input.

o unreasonable algorithm: an algorithm whose running time cannot be bounded
by any polynomial in the size of the input.

This suggests that we should try to replace unreasonable algorithms by rea-
sonable algorithms. Unfortunately, this goal is not always attainable. For the
Towers of Hanoi problem, any algorithm must have running time at least ©(2").
Since some problems do not have reasonable algorithms, we should classify prob-
lems as well as algorithms. Corresponding to Edmonds definition for algorithms,
Cook and Karp suggested the following definition for problems:

o easy problem: a problem which has a polynomial time bounded algorithm.

e hard problem: a problem for which there is no polynomial time bounded
algorithm.

An easy problem may have unreasonable algorithms. For example, we have seen
an ©(n!) exhaustive search algorithm for sorting, but sorting is an easy problem
because we also have an ©(nlogn) sorting algorithm. A hard problem, on the
other hand, can never have a reasonable algorithm.

Some problems like Towers of Hanoi are hard for the trivial reason that their
output is too large. To avoid such output-bound problems, Cook suggested
considering only yes/no problems; that is, problems whose output is limited to
be either yes or no. One such yes/no problem is the variant of the Towers of
Hanoi problem in which the input is a configuration and the question is: is this
configuration used in moving the disks from tower A to tower C? Furthermore,
this variant is an easy problem. Usual easy problems can be transformed into
easy yes/no problems by giving as the instance of the yes/no problem both the
input and the output of the usual problem and asking if the output is correct.
For example, sorting can be converted into a yes/no problem when we give both
the input and the output and ask if the output is the input in sorted order. As
another example, matrix multiplication can be converted into a yes/no problem
in which we give three matrices A, B, and C and ask if C = AB. There are also
other ways to transform usual problems into yes/no problems. Examples are
the above variant of the Towers of Hanoi, and the variant of sorting in which
we ask if the input is in sorted order.

To avoid problems which are hard only because of the length of their output,
Cook defined:

e P = the class of yes/no problems which have polynomial time algorithms.

(Some authors call this class PTIM E.) For many problems, it is easy to show
that they are in P. One gives an algorithm for the problem and demonstrates a
polynomial upper bound on its running time. It may be quite difficult to show
that a problem is not in P, but it is clear that there are problems which are not in
P. For example, the halting problem, which asks if an algorithm ever terminates
when given a particular input, is not in P because the halting problem has no
algorithm, and therefore certainly no polynomial time algorithm.

Classification of problems would not be very useful if we only could say
that some problems have polynomial time algorithms and some problems have
no algorithms. We would like a finer classification, particularly one that helps
classify problems which arise in practice. In the next section we introduce some
machinery which is needed for a finer classification.

1.2 Nondeterministic Algorithms

Up to this point we have discussed only deterministic algorithms. In a deter-
ministic algorithm there are no choices; the result of an instruction determines
which instruction will be executed next. In a nondeterministic algorithm choices

are allowed; any one of a set of instructions may be executed next. Nondeter-
ministic algorithms can be viewed as "magic” : if there is a correct choice, the
magic forces the nondeterministic algorithm to make this correct choice. A less
magic view is that if there are several possibilities the nondeterministic algo-
rithm does all of them in parallel. Since the number of possibilities multiply at
each choice-point, there may be arbitrarily many possibilities being executed at
once. Therefore, a nondeterministic algorithm gives us unbounded parallelism.

This view of nondeterminism as unbounded parallelism makes clear that non-
determinism does not take us out of the realm of things which can be computed
deterministically, because we could build a deterministic algorithm which sim-
ulates the nondeterministic algorithm by keeping track of all the possibilities.
However, a nondeterministic algorithm may be faster than any deterministic
algorithm for the same problem. We define the time taken by a nondeterminis-
tic algorithm as the fewest instructions the nondeterministic algorithm needs to
execute to reach an answer. (This definition is not precise since what an instruc-
tion means is undefined. This could be made precise by choosing a model of
computation like the Turing machine in which an instruction has a well-defined
meaning, but this imprecise definition should suffice for our purposes.) With
this definition of time, a nondeterministic algorithm could sort in ©(n) time be-
cause it always makes the right choice, whereas a deterministic algorithm would
take at least ©(nlogn) time in some cases. In some sense we are comparing the
best case of the nondeterministic algorithm with the worst case of the deter-
ministic algorithm, so it is not surprising that the nondeterministic algorithm
is faster.

For yes/no problems we give nondeterministic algorithms even more of an
edge. We divide the inputs into yes-instances and no-instances. The yes-
instances eventually lead to yes answers. The no-instances always lead to no
answers. We assume that our nondeterministic algorithms cannot lead to yes
as a result of some choices, and to a no as a result of some other choices. For
a yes-instance, the running time of a nondeterministic algorithm is the fewest
instructions the algorithm needs to execute to reach a yes answer. The running
time of the nondeterministic algorithm is the maximum over all yes-instances
of the running time of the algorithm for the yes-instances. We ignore what the
nondeterministic algorithm does in no-instances.

As an example of nondeterministic time, consider the yes/no problem: given
a set of n numbers each containing logn bits, are there two identical numbers
in the set? In a yes-instance, a nondeterministic algorithm could guess which
two numbers were identical and then check the bits of the two numbers, so the
running time for this nondeterministic algorithm is ©(logn). On the other hand,
even in a yes-instance, a deterministic algorithm would have to look at almost
all the bits in worst case, so the running time for any deterministic algorithm is
at least O(nlogn).

The definition of nondeterministic time may seem strange, but it does mea-
sure an interesting quantity. If we consider a yes/no problem, the yes-instances
are all those objects which have a particular property. The nondeterministic
time is the length of a proof that an object has a certain property. We ignore

no-instances because we are not interested in the lengths of proofs that an object
does not have the property.

1.3 NP and Reducibility

Now that we have a definition of the time used by a nondeterministic algorithm,
we can, in analogy with the class P, define

e NP = the class of yes/no problems which have polynomial time nonde-
terministic algorithms.

It is immediate from this definition that
PCNP

because every problem in P has a deterministic polynomial time algorithm and
we can consider a deterministic algorithm as a nondeterministic algorithm which
has exactly one choice at each step. It is not clear, however, whether P is
properly contained in NP or whether P is equal to NP.

Are there problems in NP which may not be in P? Consider the yes/no
version of satisfiability: given a Boolean expression, is there an assignment of
true and false to the variables which makes the expression true? This problem is
in N P because if there is a satisfying assignment we could guess the assignment,
and in time proportional to the length of the expression we could evaluate
the expression and show that the expression is true. We discussed exhaustive
algorithms for satisfiability because these seem to be the fastest deterministic
algorithms for satisfiability. No polynomial time deterministic algorithm for
satisfiability is known. Similarly, the problem: given a graph does it contain a
Hamiltonian path?, seems to be in NP but not in P. Hamiltonian path is in
N P because we can guess the Hamiltonian path and quickly (i.e., in polynomial
time) check to see if the guessed path really is a Hamiltonian path. Hamiltonian
path does not seem to be in P, because exhaustive search algorithms seem to be
the fastest deterministic algorithms for this problem and these search algorithms
have worst case running times which are at least ©(2™), and hence their running
times cannot be bounded by any polynomial.

Another problem which is in N P but may not be in P is composite number:
given a positive integer n, is n the product of two positive integers which are both
greater than 17 Clearly this is in NP because we could guess the two factors,
multiply them, and show that their product is n. Why isn’t this problem clearly
in P? Everyone knows the algorithm which has running time at most ©(n?)
and either finds the factors or reports that there are no factors. This well-
known algorithm simply tries to divide n by 2 and by each odd number from
3 to n — 1. While this algorithm is correct, its running time is not bounded
by a polynomial in the size of the input. Since n can be represented in binary,
or in some other base, the size of the input is only logn bits, and n cannot be
bounded by any polynomial in logn. This example points out that we have been

too loose about the meaning of size of input. The official definition says that the
size of the input is the number of bits used to represent the input. According
to the official definition, the size of the input for this problem is logn if n is
represented in binary. But if n were represented in unary then the size of the
input would be n. So the representation of the input can affect the classification
of the problem.

There are a great variety of problems which are known to be in NP, but
are not known to be in P. Some of these problems may not seem to be in
NP because they are optimization problems rather than yes/no problems. An
example of this kind of optimization problem is the traveling salesman problem:
given a set of cities and distances between them, what is the length of the
shortest circuit which visits each city exactly once and returns to the starting
city? This optimization problem can be changed into a yes/no problem by
giving an integer B as part of the input. The yes/no question becomes: is
there a circuit which visits each city exactly once and returns to the starting
city and has length at most B? At first glance the optimization problem seems
harder than the yes/no problem, because we can solve the yes/no problem by
solving the optimization problem, and solving the yes/no problem does not give
a solution to the optimization problem. But we can use the yes/no problem to
solve the optimization problem.

e Set B to n times the largest distance; then the answer to the yes/no
problem is yes.

Set STEP to B/2.

Now set B to B — STEP, and STEP to STEP/2.

Now do the yes/no problem with this new B and this new STEP.
e If the answer is yes, set B to B — STEP and STEP to STEP/2.
e If the answer is no, set B to B+ STEP and STEP to STEP/2.

e Continue this process until STEP = 0.

The last value of B will be the solution to the optimization problem. How long
will this take? Since STEP is halved at each call to the yes/no procedure, the
number of calls will be the log of the initial value of STEP. But STEP is
initially n times the largest distance, so the number of calls is logn + log(largest
distance) which is less than the size of the input. Thus the optimization problem
can be solved by solving the yes/no problem a number of times which is less
than the length of the input.

This example suggests the idea that two problems are equally hard if both
of them can be solved in polynomial time if either one of them can be solved in
polynomial time. This equivalence relation on problems also suggests a partial
ordering of problems. A problem A is no harder than problem B if a polynomial
time deterministic algorithm for B can be used to construct a polynomial time
deterministic algorithm for A. We symbolize this relation by A < B. If A is the

yes/no traveling salesman problem, and B is the traveling salesman optimization
problem, then we have both A < B and B < A. If A and B are any two
problems in P then we have both A < B and B < A, because we could take
the polynomial time deterministic algorithm for one problem and make it a
subroutine of the polynomial deterministic algorithm for the other problem and
never call the subroutine. While in these examples, the relation < works both
ways, there are cases in which < only works one way. For example, let A be
any problem in P. and let HALT be the halting problem; then A < HALT,
but HALT £ A, because we don’t need an algorithm for HALT to construct
a polynomial time algorithm for A, and the polynomial time algorithm for A
cannot help in constructing any algorithm for HALT, let alone a polynomial
time algorithm for HALT.

This relation A < B which we are calling A is no harder than B, is usually
called polynomial time reducibility, and is read A is polynomial time reducible
to B. There are many other definitions of reducibility in the literature. We refer
the interested reader to Garey and Johnson[1979] and Hartley Rogers[1967].

The notion of a partial ordering on problems should aid us in our task of
classifying problems. In particular, it may aid us in saying that two problems
in NP are equally hard. Further, it suggests the question: is there a hardest
problem in N P? We consider this question in the next section.

1.4 NP-Complete Problems

In this section, we will consider the relation < defined in the last section, and
answer the question: is there a hardest problem in N P? Since we have a partial
order <, we might think of two very standard instances of partial orders: the
partial (and total) ordering of the integers, which has no maximal element;
and the partial ordering of subsets, which has a maximal element. From these
examples, we see that our question cannot be answered on the basis that we
have a partial order. If we consider < applied to problems, is there a hardest
problem? The answer is no, because the Cantor diagonal proof always allows us
to create harder problems. On the other hand, one may recall that the halting
problem is the hardest recursively enumerable (RE) problem. So on the analogy
with RE, there may be a hardest problem in N P. Cook [1971] proved that there
is a hardest problem in N P. A problem which is the hardest problem in NP is
called an N P-complete problem. Cook proved the more specific result:

Theorem 1 (Cook’s Theorem). Satisfiability is NP-complete.

The proof of this theorem requires an exact definition of nondeterministic
algorithm, and since we have avoided exact definitions, we will only be able
to give a sketch of the proof. We refer the interested reader to Garey and
Johnson[1979] for the details. The basic idea of the proof is to take any instance
of a problem in VP which consists of a nondeterministic algorithm, a polynomial
that gives the bound on the nondeterministic running time, and an input for
the algorithm, and to show how to construct a Boolean expression which is

satisfiable iff the nondeterministic algorithm reaches a yes answer within the
number of steps specified by the polynomial applied to the size of the input.
The construction proceeds by creating clauses which can be interpreted to mean
that at step O the algorithm is in its proper initial state. Then for each step, a set
of clauses are constructed which can be interpreted to mean that the state of the
algorithm and the contents of the memory are well-defined at this step. Further,
for each step a set of clauses are constructed which can be interpreted to mean
that the state of the algorithm and the contents of memory at this step follow
from the state and contents at the previous step by an allowed instruction of
the algorithm. Finally, some clauses are constructed which can be interpreted
to mean that the algorithm has reached a yes answer. The polynomial time
bound is used to show that the length of this Boolean expression is bounded by
a polynomial in the length of the input.

An interesting consequence of the proof is that satisfiability of Boolean ex-
pressions in clause form is N P-complete. This result can be refined to show
that satisfiability in clause form with exactly 3 literals per each clause is also
N P-complete.

After Cook’s result, Karp[1972] quickly showed that a few dozen other stan-
dard problems are N P-complete. Garey and Johnson’s book contains several
hundred N P-complete problems. Johnson also writes a column for the Journal
of Algorithms which contains even more information on N P-complete problems.

Why is this business of N P-complete problems so interesting? The N P-
complete problems are the hardest problems in NP in the sense that for any
problem Ain NP, A < NP—complete. So if there were a polynomial time deter-
ministic algorithm for any N P-complete problem, there would be a polynomial
time deterministic problem for any problem in N P; that is, P and NP would
be the same class. Conversely, if P # N P, then there is no point to looking for
a polynomial time deterministic algorithm for an N P-complete problem. Sim-
ply knowing that a problem is in VP without knowing that it is N P-complete
leaves open the question of whether or not the problem has a polynomial time
bounded algorithm even on the supposition that P # NP. The fact that a
number of N P-complete problems have been well known problems for several
hundred years and no one has managed to find a reasonable algorithm for any
one of them suggests to most people that P # NP and that the N P-complete
problems really are hard.

One of the virtues of Cook’s theorem is that to show that an NP problem A
is N P-complete you only have to show that satisfiability < A.

As a catalog of N P-complete problems is built, the task of showing that an
NP problem A is N P-complete gets easier because you only have to pick some
N P-complete problem B and show that B < A.

We have already mentioned the traveling salesman problem (TSP). This
problem is N P-complete. Let us show that if Hamiltonian circuit is N P-
complete then TSP is N P-complete. The Hamiltonian circuit problem (HC)
is: given a graph, is there a circuit which contains each vertex exactly once and
uses only edges in the graph? Given an instance of HC, we create an instance
of TSP by letting each vertex from HC become a city for TSP, and defining the

distance between cities by d(i,j) = 1 if there is an edge in HC between vertices
i and j, and d(i,7) = 2 if there is no such edge. Now if there were n vertices
in HC, we use B = n as our bound for TSP. If the answer to TSP is yes, then
there is a circuit of length n, but this means that the circuit can only contain
edges of distance 1 and hence this circuit is also a Hamiltonian circuit of the
original graph. Conversely, if there is a Hamiltonian circuit, then there is a
TSP circuit of length n. To complete our proof. We must make sure that this
transformation from HC to TSP can be accomplished in polynomial time in the
size of the instance of HC. Since HC has n vertices and TSP can be specified
by giving the n(n — 1)/2 distances between the n cities, we only have to check
for each of the n(n — 1)/2 distances whether or not it corresponds to an edge
in the original graph. Even with a very simple algorithm this can be done in at
worst ©(n*) , which is bounded by a polynomial in the size of the HC instance.

This is a very simple example of proving that one problem in NP is N P-
complete by reducing a known N P-complete problem to the problem. We refer
the reader to Garey and Johnson[1979] for more complicated examples.

1.5 Dealing with Hard Problems

In the theoretical world there are hard problems. Some of these hard problems
are N P-complete problems and there are other problems which are harder than
N P-complete problems. How can these hard problems be handled in the real
world?

The simplest way to handle hard problems is to ignore them. Many practical
programmers do not know what hard problems are. Their programming involves
tasks like billing and payroll which are theoretically trivial, but practically quite
important. Ignoring hard problems may be a reasonable strategy for these
programmers.

Another way to handle hard problems is to avoid them. To avoid hard
problems, you have to know what they are. One of the major virtues of lists
of N P-complete problems is that they help the programmer to identify hard
problems and to point out that no reasonable algorithms for these problems are
known. It is often unfortunately the case that a programmer is approached with
a request for a program and the requester has tried to remove all the specific
information about the problem and generalize the problem as much as possible.
Over-generalization can make a problem very hard. If the programmer can get
the specific information, she may be able to design a reasonable algorithm for
the real problem and avoid the hard generalization.

Sometimes real problems are really hard but not too big. For example,
many real scheduling problems turn out to be traveling salesman problems with
30 to 50 cities. For these situations an exhaustive algorithm may still solve
the problem in reasonable time. The programmer should still try to tune the
algorithm to take advantage of any special structure in the problem, and to
take advantage of the instructions of the actual computer which will be used.
Exhaustive search is a way to handle some N P-complete problems when the

size of the input is not too large.

Heuristics are another way to deal with hard problems. We have already
mentioned heuristics in discussing backtrack algorithms. A heuristic is a method
to solve a problem which doesn’t always work. To be useful a heuristic should
work quickly when it does work. The use of heuristics is based on the not
unreasonable belief that the real world is usually not as complicated as the
worst case in the theoretical world. This belief is supported by the observation
that creatures which seem to have less computing power than computers can
make a reasonable living in the real world. Artificial intelligence has been using
heuristics for years to solve problems like satisfiability. These heuristics seem
to be very effective on the instances of satisfiability which arise in artificial
intelligence contexts. Heuristics are also widely used in the design of operating
systems. Occasional failures in these heuristics lead to software crashes. Since
we usually see only a couple of such crashes per year these heuristics seem to
be very effective.

Sometimes the behavior of heuristics can be quantified so that we can talk
about the probability of the heuristic being correct. For example, a heuristic
to find the largest element in an n element array is to find the largest element
among the first n — 1 elements. If the elements of the array are in random order,
then this heuristic fails with probability 1/n, and as n — oo the probability that
this heuristic gives the correct answer goes to 1. Such probabilistic algorithms
are now being used for a wide variety of hard problems. For example, large
primes are needed for cryptographic purposes. While it seems to be hard to
discover large primes, there are tests which are used so that if a number passes
all the tests, then the number is probably a prime.

Many hard problems can be stated as optimization problems: find the small-
est or largest something which has a particular property. While actually finding
the optimum may be difficult, it may be much easier to find something which is
close to optimum. For example, in designing a computer circuit one would like
the circuit with the fewest gates which carries out a particular computation.
This optimization problem is hard. But from a practical point of view, no great
disaster would occur if you designed a circuit with 10% more gates than the
optimum circuit. For various hard problems, approximation algorithms have
been produced which produce answers close to the optimum answer. We will
consider an example of approximation in the next section.

1.6 Approximation Algorithms

Let us consider the traveling salesman optimization problem: given a set of
cities and distances between them, find the shortest circuit which contains each
city exactly once. This problem arises in many real scheduling situations. We
will try to approximate the shortest circuit.

To make an approximation possible, we will assume that the distances behave
like real distances, that is, the distances obey the triangle inequality d(i,j) <
d(i, k) + d(k, 7), so that the distance from city ¢ to city j is no longer than the

10

distance from city ¢ to city k& plus the distance from city & to city j.

A simpler task than finding the minimum circuit is finding the minimum
spanning tree. The minimum spanning tree is a set of links which connects all
the cities and has the smallest sum of distances. In the minimum spanning tree,
the cities are not all directly connected; several links may have to be traversed
to get from city ¢ to city j. There is a reasonable algorithm for the minimum
spanning tree because the shortest link is always in this tree. So one can proceed
to find this tree by putting in the shortest link and continuing to add the shortest
link which does not complete a cycle.

A circuit can be constructed from the minimum spanning tree by starting
at some city and traversing the links of the tree to visit every other city and
returning to the starting city. This circuit is twice as long as the sum of the
distances of the links in the minimum spanning tree. But this circuit may visit
some cities more than once. To “clean up” this circuit, we use this circuit while
no city is repeated and, if city j is the first repeated city and if city ¢ is the
city before city 7 and if city k is the next city after city 7 which has not yet
been visited, we connect city ¢ to city k. We continue to use this procedure to
produce a circuit in which each city is visited exactly once. From the triangle
inequality we have that the length of this new circuit is at most as long as the
circuit with cities repeated, and hence that this new circuit is no longer than
twice the length of the minimum spanning tree.

The optimum circuit must be at least as long as the minimum spanning tree
because the optimum circuit connects every city. Thus we have

OPT < ALG < 20PT

where OPT is the length of the optimum circuit and ALG is the length of the
circuit produced by the approximation algorithm.

It would be pleasant if all hard optimization problems had approximation
algorithms. Unfortunately this is not the case. We really needed the triangle
inequality to produce an approximation for the traveling salesman problem.
Consider an instance of Hamiltonian circuit with n vertices. We can convert
this to an instance of traveling salesman without triangle inequality by assigning
distance 1 to all the edges which are in the original graph, and assigning distance
n + 2 to all the edges which were not in the original graph. Now if there were
a Hamiltonian circuit in the original graph, then there would be a traveling
salesman circuit of length n. If we could approximate this traveling salesman
problem within a factor of 2, the traveling salesman circuit would have length
at most 2n exactly when the original graph had a Hamiltonian circuit, because
if the traveling salesman circuit used even one of the edges not in the original
graph, it would have length at least 2n + 1. So approximating the traveling
salesman problem without triangle inequality is as hard as Hamiltonian circuit.

This example can be generalized to show that no approximation within a
factor of f(n) is possible by assigning each edge not in the graph a distance
greater than n f(n) + 1. If the original graph has a Hamiltonian circuit then the
approximating algorithm must report a value of at most n f(n). On the other

11

hand, if there was no Hamiltonian circuit then the approximating algorithm
must report a value of at least n(f(n) + 1). So, by simply looking at the
reported approximating value, one can determine whether or not the original
graph has a Hamiltonian circuit.

To make sure the above transformation can be carried out in polynomial
time in the size of the instance of Hamiltonian circuit, f(n) must be bounded
by 2P(") where p(n) is a polynomial. Thus no reasonable approximation to the
traveling salesman problem is possible unless the Hamiltonian circuit problem
can be solved quickly; that is, unless P = NP.

1.7 The World of NP

The fact that various N P-complete problems have resisted attempts to find rea-
sonable algorithms for them suggests to many people that P # N P. Even if we
accept this belief, there are still other open questions about classes of problems
associated with VP. The class NP is defined in terms of the yes-instances of
its problems. A class could also be defined in terms of no-instances. In corre-
spondence with NP, we define the class coN P as problems whose complements
are in N P; that is, for each problem in coN P there is a nondeterministic algo-
rithm which has polynomial bounded running time for the no instances of the
problem.

The notion of < we have used before will lump NP and coNP together.
To tell them apart we will need a finer notion called polynomial time many-
one reducibility, and as is traditional in computer science, we will “overload”
the symbol < to stand for this new partial ordering. This new ordering will
be defined on sets, but we will also use the ordering for problems where we
ambiguously use the same name for the problem and for the set of yes-instances
of the problem. For example, we will use SAT to mean the satisfiability problem,
and we will also use SAT to mean the set of Boolean formulas which can be
satisfied.

With these preliminaries, we define:

A<B

iff there exists a polynomial time computable function f(z), so that for every

input instance x,
reA iff f(z) € B.

With this ordering it is still true that all (nontrivial) sets in P are mutually
equivalent, i.e.

VA,B € P A<B and B < A.

On the other hand, sets in NP and coNP do not have to be related. For
example, let SAT mean all the Boolean expressions that are true for at least one
setting of the variables, and let coSAT mean all the Boolean expressions that
are false for all settings of the variables. We have already seen that SAT € N P.

12

Now, notice that coSAT € coN P because if the answer to the coSAT question
is no, then there is a setting which makes the expression true (that is, not false)
and a nondeterministic algorithm could quickly guess the setting and verify that
the setting makes the expression true. While SAT and coS AT seem to be very
closely related, this notion of polynomial time many-one reducibility (<) does
not seem to see them as related. Notice that for an expression E, we have

E € coSAT iff E ¢ SAT.
but our notion of < does not allow £, it requires that
E € coSAT iff f(E) € SAT.

While it is possible to construct this f(E), the only ways I know would give, at
least for some E’s, an f(F) whose length is exponentially larger than the length
of E. So, we expect that this notion of < will be able to distinguish NP from
coNP.

The above definition of colN P suggests the questions:

e Does NP = coNP?
e Does P= NP NcoNP?

Unfortunately, these questions are unsolved. While the above questions are
unsolved, many people believe that the answer to each of these questions is
no. The basis for this belief is the analogy between NP and RE. For RE the
following diagram can be shown to be valid:

Recursive

coRE-Complete
coRE RE

)
|

13

RE-Complete

If the analogy between NP and RE is valid, the world of NP should look
like:

coNP-Complete
coNP NP

L~ N

A minor difference in the two diagrams is that RE N coRE has the name
RECURSIVE, but NPNcoN P has not been assigned a name. If this diagram
is correct then there are several types of hard problems which are not NP-
complete. In particular, there may be problems which are in NP N coNP but
are not in P.

Until recently Composite-Number was a candidate problem for this status.
We know that Composite-Number is in N P because we can show that a num-
ber is composite by guessing a factor and then proving that it is a factor by
dividing which takes polynomial time in the number of digits. The complement
of Composite-Number is Primes. While it is not immediately obvious, for every
prime number there is a proof that the number is prime and the length of the
proof is bounded by a polynomial in the log of the number. So the complement
of composite is also in NP, and composite is in NP N coNP. But everyone
(including the National Security Agency) assumes that composite and prime do
not have reasonable algorithms. Unfortunately, proving that composite/prime
is not in P is probably very difficult since this would imply P # N P.

The status of Primes has recently been clarified by Agrawal et al[2002].
(Interestingly, this result was discovered by one professor working with two
undergraduates.) They showed that there is a polynomial time algorithm which
determines whether or not a number is a prime. At the moment, their algorithm
is not considered fast enough to be a practical algorithm.

14

NP-Complete

How does PRIMES € P effect cryptographic schemes? As you may know
several cryptographic schemes, like RSA, depend on the difficulty of factoring
for their security. The new algorithm does not (at present) effect RSA’s security
because the algorithm can show that a number is composite without giving a
factor. Even if we know that ¢ has a factor, we don’t know how to find the
factor quickly. Hence, RSA is still secure. (But many people expect that a fast
composite algorithm which produces a factor will be found soon. The paranoids
assume that NSA has such a factoring algorithm but wants to keep it secret so
only they can break RSA coded messages.)

We are now without a reasonable candidate for a problem in NP N coN P
but not in P. Each of the problems that were known to be in NP NcoN P have
each been shown to be in P. For example, Linear-Inequalities was known to be
in NP NcoNP and it has now been shown to be in P.

LINEAR INEQUALITIES:
INPUT: A set of inequalities of the form

a1;T1 a2z + o4 aniTn < b

for i = 1 through m.
QUESTION: Is there a set of rational numbers z1, zs, ..., z, which
simultaneously satisfy all m inequalities?

We conclude by mentioning that our diagram of the world of NP may be
incorrect, but there is some reasonable circumstantial evidence to support it.

1.8 Exercises

Ex 1.1. Show that if Hamiltonian circuit is N P-complete then Hamiltonian
path is N P-complete.

Ex 1.2. Show that if Hamiltonian path is N P-complete then Hamiltonian cir-
cuit is N P-complete.

Ex 1.3. For the following graph use the minimum spanning tree method to
construct a short traveling salesman circuit. Assume that any missing edges
have the longest distance consistent with the triangle inequality. How close to
the minimum circuit is your constructed circuit?

15

Ex 1.4. Show that the following variant of the Towers of Hanoi is in the class
P. INPUT: A configuration, CON, of the Towers of Hanoi puzzle with n disks.
QUESTION: Does CON occur in the sequence of configurations used to move
n disks from tower A to tower C' using the minimal number of moves?

Ex 1.5. Show that the following Graph Isomorphism problem is in the class
NP. INPUT: Two graphs G; and G3. QUESTION:Can the vertices of G; be
relabeled so that the relabeled GG is identical to Gs.

16

