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It is well established that extracting and annotating occurrences of entities in a collection of unstructured text documents
with their concepts improve the effectiveness of answering queries over the collection. However, it is very resource intensive
to create and maintain large annotated collections. Since the available resources of an enterprise are limited and/or its users
may have urgent information needs, it may have to select only a subset of relevant concepts for extraction and annotation. We
call this subset a conceptual design for the annotated collection. In this paper, we introduce and formally define the problem
of cost effective conceptual design, where given a collection, a set of relevant concepts, and a fixed budget, one likes to find
a conceptual design that improves the effectiveness of answering queries over the collection the most. We provide efficient
algorithms for special cases of the problem and prove that it is generally NP-hard in the number of relevant concepts. We
propose three efficient approximation to solve the problem: greedy algorithm, Approximate Popularity Maximization (APM
for short), and Approximate Annotation-benefit Maximization (AAM for short). We show that if there is not any constraints
regrading the overlap of concepts, APM is a fully polynomial time approximation scheme. We also prove that if the relevant
concepts are mutually exclusive, greedy algorithm delivers a constant approximation ratio if the concepts are equally costly,
APM has a constant approximation ratio, and AAM is a fully polynomial time approximation scheme. Our empirical results
using Wikipedia collection and a search engine query log validate the proposed formalization of the problem and show
that APM and AAM efficiently compute conceptual designs. They also indicate that in general APM delivers the optimal
conceptual designs if the relevant concepts are not mutually exclusive. Also, if the relevant concepts are mutually exclusive,
the conceptual designs delivered by AAM improve the effectiveness of answering queries over the collection more than the
solutions provided by APM.

Categories and Subject Descriptors: H.2.1 [Logical Design]: Schema and subschema

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Conceptual design, information extraction, effective query answering

1. INTRODUCTION
Discovering structured data from large unstructured or semi-structured document collections is an
active research area in data management [Chiticariu et al. 2010; Doan et al. 2009; Sarawagi 2008;
Dalvi et al. 2009]. A popular method of discovering structured data from unstructured or semi-
structured documents is semantic annotation: extracting the mentions of named entities in a col-
lection of unstructured or semi-structured text documents and annotating these mentions by their
concepts [Chakrabarti et al. 2007; Chu-Carroll et al. 2006; Dill et al. 2003; Schenkel et al. 2007;
Finin et al. 2010; Zwol and Loosbroek 2007; Egozi et al. 2011; Chakrabarti et al. 2010]. It is well es-
tablished that semantically annotating a collection improves the effectiveness of answering queries
over the collection [Chu-Carroll et al. 2006; Dalvi et al. 2009; Chakrabarti et al. 2007]. Figure 2
depicts excerpts of semantically annotated Wikipedia articles (www.wikipedia.org) whose original
and unannotated versions are shown in Figure 1. Since the mentions to the entities named Michael
Jordan are disambiguated by their concepts, a query interface can deliver more effective results for
the queries about Michael Jordan, the scientist, over the semantically annotated collection than the
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<article>
... Michael Jeffrey Jordan is a former American professional
basketball player ...
</article>
<article>
... Michael Jordan is a full professor at the
University of California, Berkeley ...
</article>
<article>
... All six championship teams of Chicago Bulls were led by
Michael Jordan and Scottie Pippen ...

</article>

Fig. 1: Wikipedia article excerpts

unannotated one. We call the set of all concepts that have at least one entity in the collection a

<article>
... <athlete> Michael Jeffrey Jordan</athlete> is a former
<nationality> American </nationality> professional
basketball player ...
</article>
<article>
... <scientist> Michael I. Jordan </scientist> is a full
professor at the
<organization>
University of California, Berkeley
</organization> ...
</article>
<article>
... All six championship teams of
<organization> Chicago Bulls </organization> were led by
<athlete> Michael Jordan </athlete> and
<athlete> Scottie Pippen </athlete> ...
</article>

Fig. 2: Semantically annotated Wikipedia article excerpts

conceptual domain (domain for short). A possible domain for the articles shown in Figure 1 is the
set of concepts {athlete, scientist, position, organization, sport, nationality}.

Intuitively, annotating all concepts in a domain will provide more effective results for the input
queries. Recent studies, however, indicate that accurately annotating the entities of a concept in a
large collection requires developing, deploying, and maintaining complex pieces of software, man-
ual labor, and/or collecting training data, which may take a long time and substantial amount of
computational and financial resources [Chiticariu et al. 2010; Anderson et al. 2013; Elhelw et al.
2012; Doan et al. 2009; Finin et al. 2010]. Given a concept, developers have to design and write a
program called an annotator or extractor that finds and annotates all instances of the concept in the
collection. One may write hand-tuned programming rules, such as regular expressions, that leverage
formatting or language patterns in the text to identify and extract instances of some concepts, such
as Email [Chiticariu et al. 2010; McCallum 2005]. However, formatting and language patterns for
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most concepts, such as person or protein, are subtle and involve many exceptions. In these cases, it
is not unusual to have thousands of rules to extract concepts [McCallum 2005]. Hence, developing
and maintaining annotating programs becomes extremely time-consuming [Chiticariu et al. 2010].

One may also use machine learning methods for concept extraction [McCallum 2005; Chiticariu
et al. 2010; Anderson et al. 2013]. Nevertheless, studies of several recent concept extraction systems
, such as DeepDive (deepdive.stanford.edu), show that using and deploying machine learning meth-
ods for concept extraction are also very time-consuming and labor-intensive [Anderson et al. 2013;
Chiticariu et al. 2010]. In order to extract the instances of a concept, developers have to first inspect
the data set and identify a set of clues, called features, which indicate if some terms in a document
refer to an instance of the concept. For instance, the occurrence of word said in a sentence may
suggest that the subject of the sentence refers to an instance of concept person. Then, developers
have to write programs to extract these features from the documents. Each concept extractor may
use hundreds of features [Anderson et al. 2013; McCallum 2005]. These efforts are more costly for
concepts that are defined in specific domains, such as geology and medicine, as they require ex-
tensive collaborations between developers and scarce domain experts. As communication between
developers and domain experts is often ineffective, developers may have to spend a great deal of
time and sift through the data to find the relevant features [Anderson et al. 2013].

After finding candidate features, developers have to perform feature selection: they have to an-
alyze available features, remove some of them, e.g., those that are highly correlated, and select a
subset of features that predict the instances of the concept accurately [Anderson et al. 2013; Mc-
Callum 2005]. Developers iterate the steps of finding, extracting, and revising features and testing
the annotation program several times in order to create an annotation program with a reasonable
accuracy [Anderson et al. 2013; Doan et al. 2009].

Finally, since annotation modules need to perform complex text analysis, it may take days or
weeks, plus a great deal of computational resources, to execute them over a large collection [Jain
et al. 2008a; Shen et al. 2008; Agichtein and Gravano 2003]. Thus, users have to wait a long time
for the execution of extraction programs before they have a fully annotated collection. The long
delays to execute extraction programs and create and/or update fully annotated collections are well
recognized as an issue in concept extraction [Shen et al. 2008; Gulhane et al. 2011; Elhelw et al.
2012; Doan et al. 2009]. They are particularly problematic in domains with urgent information needs
[Jain et al. 2008a; Shen et al. 2008; Elhelw et al. 2012]. For example, an FBI agent who needs to
query the evolving content of Web sites and social media pages to find and respond to new activities
in human trafficking, a stock analyst who has to respond to the changes in stock market in a timely
fashion, and an epidemiologist who must act quickly to control the spread of an infectious disease
cannot afford to wait for all annotation programs to be (re-)executed [Shen et al. 2008].

Since the structure and content of documents in many domains evolve over time, the annotation
programs should be regularly rewritten and rerun to create an updated annotated collection [Gulhane
et al. 2011; Elhelw et al. 2012; Kowalkiewicz et al. 2006; Chen et al. 2012]. A recent study from
Yahoo! Research indicates that the average lifetime of most extractors is about two months [Gulhane
et al. 2011]. Hence, users have to wait a long time for annotation programs to be rewritten and rerun
in order to pose their queries over an updated and fully annotated collection [Shen et al. 2008;
Elhelw et al. 2012; Chen et al. 2012].

Therefore, an enterprise may decide to select only a subset of the concepts in the domain for anno-
tation or re-annotation, to provide a partially annotated collection relatively quickly. Users can pose
their queries over the partially annotated collection and get reasonably effective answers. Moreover,
since the available financial or computational resources of most enterprises are limited, they may not
be able to hire sufficient number of machine learning experts and acquire computational resources
to (re-)write and (re-)execute the annotation programs for all concepts in their domains and select
subsets of these domains for annotation. We call this subset of concepts a conceptual design (design
for short) for the annotated collection.

Clearly, an enterprise wants to find a design whose required time (or resources) for annotation
does not exceed its limit on turnaround time (or budget) and most improves the effectiveness of
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answering queries over the annotated collection. Each concept may require different amounts of
time and resources for annotating its entities in a collection. For instance, an enterprise may use
a freely available and relatively simple annotation program from OpenNLP (opennlp.apache.org)
to discover the entities of concept Email, purchase and deploy a more sophisticated annotation
programs from companies, such as ontotext.com, to annotated instances of concept position, or
develop and deploy in-house annotators to identify entities of more domain specific concepts, such
as athlete. The latter annotators may require more financial resources and/or time to develop and
execute than the former one. This scenario suggests a novel conceptual design problem: given a
domain and a document collection, we want to find a design for the collection that improves the
overall effectiveness of answers to input queries the most, while its annotation costs do not exceed
a given budget.

Although building and maintaining annotation modules are among the most expensive stages
of managing an annotated collection, to the best of our knowledge, the choice of a cost effective
design for a collection is generally guided only by intuition and has not been studied before. One
cannot address this problem by conceptual or logical design guidelines in classic database literature,
as they neither consider the cost of creating or maintaining a concept nor the impact of having
a concept in the design on the degree of effectiveness of answering queries [GarciaMolina et al.
2008]. In this paper, we introduce and formalize the problem of cost effective conceptual design
for semantic annotation. Our formal treatment paves the way for systematic analysis of the problem
and shows that intuitively appealing heuristics such as choosing the relatively less costly concepts
and/or the ones that appear most often in queries are not generally optimal, even for the cases where
all annotators have equal costs. We prove the problem to be generally NP-hard in the number of
concepts in the domain and provide efficient algorithms with provably bounded or sufficiently small
worst-case approximation ratios to solve the problem. Our extensive experiments using a large scale
real-world document collection, queries from a search engine query log, and real-world conceptual
domains show that our algorithms efficiently select designs that provide effectiveness close to that
of the optimal design for queries. In summary, we make the following contributions:

— We formally analyze the impact of possibly inaccurate annotation of a concept in a collection on
the effectiveness of answering queries over the collection. We quantify this impact using a func-
tion called Annotation Benefit for two categories of real-world domains: the ones with mutually
exclusive concepts and the ones that do not have any constraints regrading the overlap of concepts.

— We introduce and formally define the problem of cost effective conceptual design for semantic
annotation as maximizing the value of the Annotation Benefit function over a set of concepts in a
domain given a limited time or budget. We propose efficient exact algorithms for some interest-
ing special cases of the problem. We prove that the problem over both categories of domains is
generally NP-hard in the number of concepts in the domain.

— We propose three efficient approximation algorithms for the problem: greedy algorithm, Approxi-
mate Popularity Maximization (APM for short) algorithm, and and Approximate Annotation Ben-
efit Maximization (AAM for short) algorithm. We prove that the designs returned by the greedy
algorithm improve the effectiveness of answering queries almost as much as the optimal design
if the concepts are mutually exclusive and have equal costs. We also prove that the designs re-
turned by APM improve the effectiveness of answering queries by at most a constant factor less
than the optimal design and AAM algorithm is a fully polynomial time approximation scheme in
mutually exclusive domains: the effectiveness improvement achieved by its designs will get suf-
ficiently close to the improvement achieved by optimal designs given sufficient running time. We
also show that APM is a fully polynomial time approximation scheme for the domains without
any constraint regarding the overlap of concepts.

— Our extensive experiments over the collection of Wikipedia articles, concepts from YAGO ontol-
ogy [Schenkel et al. 2007], and queries from the MSN query log [Elena Demidova and Xuan Zhou
and Irina Oelze and Wolfgang Nejdl 2010] show that the Annotation Benefit formula accurately
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quantifies the impact of a design on the amount of improvement in the effectiveness of answering
queries over the annotated collection for both categories of domains.

— Our empirical results indicate that APM finds the optimal designs for most cases where the domain
does not have any constraint regrading the overlap of its concepts. They also show that the designs
delivered by the AAM algorithm improve the effectiveness of answering queries more than the
APM algorithm across domains with mutually exclusive concepts. We evaluate the scalability of
APM and AAM and show that both algorithms can find designs that improve the effectiveness
of answering queries in reasonable amount of times and with modest memory overheads for a
preprocessing task.

— Because the complete information about the values of input parameters for AAM may not be
available at design time, we explore the sensitivity of this algorithm to the errors in estimating its
input parameters and show that when using the input parameters computed over a small sample of
the collection, AAM still returns designs that are generally more effective than the ones returned
by APM over domains with mutually exclusive concepts.

This paper is organized as follows. Section 2 reviews the related works. Section 3 describes the
basic definitions. Section 4 quantifies the impact of a design on the improvement in the effectiveness
of answering queries over a collection annotated by the design. Section 5 introduces the problem
of cost effective conceptual design and explores its hardness. Section 6 proposes efficient approx-
imation algorithms for the problem and explores their worst-case approximation ratios. Section 7
contains the empirical results about the accuracy of the Annotation Benefit function and the average
approximation ratios of the algorithms and Section 8 concludes the paper.

2. RELATED WORK
Conceptual design is a topic of research in data management [GarciaMolina et al. 2008]. Our work
extends this line of research by introducing and exploring the ability of a conceptual design in
effectively answering input queries and its cost-effectiveness.

There is a large body of work on building programs that extract entities that belong to a given
concept, and systems that manage the extracted data [Chu-Carroll et al. 2006; Dalvi et al. 2009;
Chiticariu et al. 2010; Chakrabarti et al. 2007; Dill et al. 2003; Chakrabarti et al. 2010; Sarawagi
2008; Doan et al. 2009; Dalvi et al. 2009; Anderson et al. 2013; Chen et al. 2012; Graupmann et al.
2004]. We build on this work by offering a new pre-processing design phase that can be followed
by and coupled with any of these previously proposed approaches.

As developing concept extraction programs are very time consuming, researchers have proposed
frameworks for iterative development of these programs so that developers can check the accuracy
of a concept extraction program in each iteration of its development and stop if the program delivers
the desired level of accuracy [Shen et al. 2008; Anderson et al. 2013]. Our work is orthogonal
to these efforts and focuses on selecting the concepts, for which one will (re-)write an extraction
program.

In order to address the long delays in concept and relation extractions, researchers have proposed
several techniques to optimize the execution time of SQL queries over existing databases whose
information comes from concept and relation extraction programs [Ipeirotis et al. 2006; Jain et al.
2008a; Huang and Yu 2010; Agichtein and Gravano 2003; Jain et al. 2008b; Doan et al. 2009;
Shen et al. 2007; Elhelw et al. 2012]. Similar systems optimize the use of information extraction
programs to add missing data values to an existing database [Kanani and McCallum 2012]. These
techniques generally improve execution time or storage capacity by processing only the “promising”
documents in the collection that contain the information about the database relations instead of the
whole collection. Our work differs in addressing the issues raised at design time rather than query
time. We also consider ranking queries as opposed to SQL queries. Our model covers other types
of costs in annotation in addition to running-time and storage space. Moreover, we explore using
both structured data (i.e. annotated documents) and unstructured data (i.e. unannotated documents)
in effectively answering queries.
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Researchers have proposed methods to discover the schema of the noisy output of information
extraction modules [Cafarella et al. 2007]. Our work, however, finds the set of concepts that worth
extracting and annotating, given their costs of annotation.

Researchers have empirically shown that annotating all concepts in domain using sufficiently
precise annotators improves the effectiveness of answering queries [Chu-Carroll and Prager 2007;
Sanderson 2008; Krovetz and Croft 1992; Stokoe et al. 2003]. We extend this line of work by
considering the cost of building concept annotators, providing a formal analysis of the impact of
concept annotation on the improvement in the effectiveness of answering queries, and proposing
systematic methods to select concepts for annotation given a fixed budget.

We have described and studied the problem of cost effective conceptual design in [Termehchy
et al. 2014]. Current paper improves this work in seven directions. First, it provides the formal
proofs and further analysis of the results in [Termehchy et al. 2014]. Second, it studies the hardness
of the cost effective conceptual design problem in more details and proves its connection to the well
known SUBSET SUM problem. Third, it proposes exact and efficient (polynomial-time) algorithms
for the problem in some interesting special cases. Fourth, it proposes a greedy approximation algo-
rithm for some special cases of the problem that are more efficient than the algorithms proposed in
[Termehchy et al. 2014]. Fifth, we evaluate and analyze the effectiveness of our proposed models
and algorithms using an additional effectiveness metric (i.e. Mean Reciprocal Rank) and provide
more insight on the effectiveness of the investigated models and algorithms. Sixth, we provide a
detailed empirical study for the trade-off between the running times and the output qualities of the
proposed algorithms. Finally, we analyze the parameter estimation techniques for the cost effective
conceptual design algorithms over a large collection.

3. BASIC DEFINITIONS
Similar to previous work, we refrain from rigorously defining the notions of named entities [Dalvi
et al. 2009] and define a named entity (entity for short) as a unique name in some (possibly infi-
nite) domain. A concept is a set of entities, i.e., its instances. For example, person and country are
concepts corresponding to entities Albert Einstein and Jordan, respectively. A collection is a set of
text documents. There may be several mentions, i.e. occurrence, of an entity in a collection. For
example, Michael Jeffrey Jordan and Michael Jordan refer to the famous athlete in the collection
shown in Figure 2. We call these mentions, instances of the entity and for brevity also the instances
of its concept (athlete).

A domain may have some constraints on the relationship between its concepts [Abiteboul et al.
2011]. Concepts C1 and C2 are mutually exclusive in a domain if and only if no entity belongs to
both C1 and C2. For instance, concepts person and location are mutually exclusive, as no entity is
both a person and a location. When all concepts in domain D are mutually exclusive, then each
occurrence of an entity in a collection over D maps to exactly one concept. Our study of real world
ontologies, such as DBPedia (wiki.dbpedia.org/Ontology), Schema.org (schema.org), and YAGO
indicates that mutually exclusive concepts appear frequently in these ontologies. For example, in
Schema.org each entity should belong to only one of the concepts of Action, BroadcastService,
Class, CreativeWork, Event, Intangible, MedicalEntity, Organization, Person, Place, Product, and
Property, which are mutually exclusive. As another example, in DBPedia different types of organi-
zations, places, events, devices, and creative works are described by mutually exclusive concepts.
Mutually exclusive concepts are also easier to annotate via learning based methods, as one can
use the positive training examples of one concept as negative training examples for other concepts
[Riloff and Jones 1999]. When this constraint is available in the domain, we exploit it to find the
cost effective conceptual designs. Concepts in a domain may have other types of relationships such
as a subclass/superclass relationship (e.g. person and scientist). Analyzing and solving the problem
of cost-effective conceptual design for concepts with other types of relations is a larger undertaking
and provides interesting subjects for future work.
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Extracted entities can be represented and stored in a variety of data formats, such as XML files
[Chu-Carroll et al. 2006] or annotation stores [Kandogan et al. 2006; Fagin et al. 2010]. Our frame-
work and algorithms are oblivious to the ways the annotated documents are stored.

In this paper, we consider queries that seek information about named entities [Chu-Carroll et al.
2006; Chakrabarti et al. 2007; Chu-Carroll and Prager 2007]. A query takes the form (C, T ), where
C is a concept and T is a finite set of keywords. Example queries include (person, { Jordan }) and
((location, { Jordan attractions }). This type of query has been widely used to search annotated
collections [Chu-Carroll et al. 2006; Graupmann et al. 2005; Chakrabarti et al. 2007; Pound et al.
2010]. Query (C, T ) over collection CO is answered by a function that maps T to a ranked list of
documents in CO, such that each document in the list contains an occurrence of an entity in C. One
may use a variety of functions to rank the documents [Manning et al. 2008].

Empirical studies on real world query logs indicate that the majority of entity centric queries refer
to a single entity [Sanderson 2008]. Since this paper is the starting effort to address the problem of
cost effective conceptual design, it is reasonable to start with the aforementioned class of queries.
We do not consider complex queries such as aggregations, e.g., the average number of actors in a
movie, or the ones that seek information about relationships between several entities. Such queries
require a different model and algorithms, and thus are beyond the scope of this paper.

4. THE BENEFIT OF A CONCEPTUAL DESIGN
4.1. Objective Function
Let S be the design of annotated collection CO and Q be a set of queries over CO. We would like
to quantify the degree by which S improves the effectiveness of answering queries in Q over CO.
The value of this function should be larger for the designs that help the query interface to answer
a larger number of queries in Q more effectively. It has been shown that most information needs
over annotated collections are precision-oriented [Dill et al. 2003; Chu-Carroll et al. 2006]. In some
settings, users may be more interested in improving query answer recall, rather than precision at
k. For instance, a biologist may want to view all possible genomic causes of cancer listed in the
scientific literature. The problem of cost-effective design to maximize other objective functions,
such as recall, is an interesting subject for future work.

We choose the standard metric of precision at k (p@k for short) to measure the effectiveness of
answering queries over an annotated collection [Manning et al. 2008]. The value of p@k for a query
is the ratio of the number of relevant answers in the top k returned answers for the query, divided
by k. Precision at k has also a simpler form than other precision oriented metrics, such as Mean
Reciprocal Rank (MRR) or Normalized Discounted Cumulative Gain (NDCG), thus, it is easier to
optimize [Manning et al. 2008]. We average the values of p@k over queries in Q to measure the
amount of effectiveness in answering queries in Q.

4.2. Effectiveness Improvement for Queries of Annotated Concepts
LetQ : (C, T ) be a query inQ. If C is annotated, i.e. C ∈ S, the query interface will find and return
only the documents that contain information about entities in C. It will then rank them according to
its ranking function, such as the traditional TF-IDF scoring methods or learning to rank techniques
[Manning et al. 2008]. Our model is orthogonal to the method used to rank the candidate answers.
Annotating C in CO will help the query interface avoid non-relevant results that otherwise may
have been placed in the top k answers for Q. We call the fraction of queries in Q whose concept is
C the popularity ofC inQ. Let uQ be the function that maps conceptC to its popularity inQ. When
Q is clear from the context, we simply use u instead of uQ. The portion of queries for which the
query interface returns only the documents about entities in their desired concepts is

∑
C∈S u(C).

Given all other conditions are the same, the larger the value of
∑
C∈S u(C) is, the more likely it

is that the query interface will achieve a larger p@k value over queries in Q. Hence, we may use∑
C∈S u(C) to compare the degrees of improvement in the value of p@k over queries inQ achieved

by various designs.
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Annotators, however, may make mistakes in identifying the correct concepts for occurrences of
entities in a collection [Chu-Carroll et al. 2006]. An annotator may annotate some appearances of
entities from concepts other than C as the occurrences of entities in C. For instance, the annotator
of concept person may annotate Lincoln Building as a person. The accuracy of annotating concept
C over CO is the number of correct annotations of C divided by the number of all annotations of
C in CO. We denote the accuracy of annotating C over CO as prCO(C). When CO is clear from
the context, we show prCO(C) as pr(C). Given query Q : (C, T ) and C ∈ S, it is reasonable to
assume that 1−pr(C) of the top k results may contain information about entities that do not belong
to C. Hence, we should refine our estimate to:∑

C∈S
u(C)pr(C) (1)

in order to reward the designs whose concepts are annotated more accurately.

4.3. Effectiveness Improvement for Queries of Unannotated Concepts
Given queryQ : (C, T ) ∈ Q, if C ∈ C−S (C is not annotated by S), there is insufficient meta-data
information in the collection for the query interface to identify the occurrences of the entities in
C. Therefore, it may view the concept name C and the keywords in T as a bag of words and use
some document ranking function to return the top k answers for Q. We like to estimate the fraction
of the results for Q that contain a matching entity in concept C. Given all other conditions are the
same, the larger this fraction is, the more likely it is that the query interface delivers more relevant
answers, and therefore, a larger p@k value for Q. Based on the available constraints on the relations
between concepts in the domain, we provide two different estimations of the fraction of the results
for Q that contain a matching entity in concept C.

Domains with mutually exclusive concepts: If the concepts in the domain are mutually exclu-
sive, the annotated concepts may help the query interface to eliminate some non-relevant answers
from its results for Q. For example, assume that the instances of concept location are annotated
and the instances of concept person are not annotated in the collection. As these concepts are mu-
tually exclusive, given query (person, { Jordan }), query interface can ignore matching instances
like Jordan River for this query. Because text documents are coherent, they do not usually contain
information about entities with similar or the same name but from mutually exclusive concepts. For
instance, it is unlikely to find a document that contains information about both Jaguar, the vehi-
cle, and Jaguar, the animal. Hence, the query interface can eliminate the candidate answers for Q
whose matched terms are annotated by concepts other than the concept of Q. By removing these
non-relevant answers from its ranked list, the query interface may improve the value of p@k for Q.

In order to compute the fraction of candidate answers for Q whose matching instances belong
to C, we have to first calculate the fraction of candidate answers that survive the elimination. This
ratio, however, may vary across different queries in Q as some queries may have more candidate
answers with matched annotated instances from concepts in S than others. Estimating this ratio per
query is generally hard as it may require estimating and computing model parameters per query.
Particularly, detailed information about queries in a query workload such as their candidate answers
may not be always available. Hence, in order to have an estimation which can be efficiently and
effectively computed over a large number of queries, we assume that all queries in Q have equal
ratios of candidate answers that contain matched instances of a certain concept in the domain. We,
further, estimate this ratio for the concept by the fraction of documents in the collection that contain
instances of the concept. Our empirical results using queries from a real world search engine query
log and collection, which are reported in Section 7, show that in spite of these simplifying assump-
tions, our model effectively estimates the degrees of improvement achieved by various designs for
a collection.

Let dCO(E) denote the fraction of documents that contain instances of concept E in collection
CO. These instances may or may not be annotated depending on whether E ∈ S . We call dCO(E)

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: June 2014.



39:9

the frequency of E over CO. When CO is clear from the context, we denote the frequency of E as
d(E). Given design S for collection CO, we want to compute the fraction of the candidate answers
for query Q : (C, T ) that contain a matching instance of concepts E ∈ C − S . In order to simplify
our model, we estimate this fraction as

∑
E∈C−S d(E). Our experimental results in Section 7.2

indicate that in spite of this simplification, our objective function effectively captures the degree of
improvement delivered by a conceptual design over a collection. This portion of answers will stay
in the list of results for Q after the query interface eliminates all candidate answers with matching
instances from concepts in S. Hence, the fraction of the candidate answers that contain a matching
instance of concept C in the list of answers for a query in Q is d(C)/

∑
E∈C−S d(E). We assume

that the documents in the collection are not so long such that finding information about a matching
entity from a single document takes a great deal of time and effort.

Using this estimation and equation 1, we formally define the function that estimates the likelihood
of improvement for the value of p@k for both queries that belong and queries that do not belong to
the conceptual design in a query workload over a collection that is annotated by concepts in design
S.

Definition 4.1. Given domain C with mutually exclusive concepts, query workload Q, and con-
ceptual design S ⊆ C, the annotation benefit of S is:

AB(S) =
∑
C∈S

u(C)pr(C) +
∑

C∈C−S
u(C)

d(C)∑
E∈C−S d(E)

. (2)

Overall, the annotation benefit estimates the likelihood in improving users’ satisfaction by answer-
ing queries more precisely. The larger the value of the annotation benefit is for design S over col-
lection CO, the more likely it is that Q will have a larger average p@k over the version of CO
annotated by concepts in S.

The first term of the annotation benefit in Equation 2 reflects the portion of queries for which
the query interface returns only the candidate answers with instances matching to the concept of
the query. It is larger for the concepts that are more frequently used in queries. For example, let a
domain contain conceptsC1,C2, andC3 where the instances ofC1 appear in 90% of queries and 1%
of documents, the instances of C2 occur in 1% of queries and 90% of documents, and the instances
of C3 appear in 9% of queries and 9% of documents. If all annotators have perfect accuracies (i.e.
pr(C)= 1, C ∈ {C1, C2, C3}), we have

∑
C∈{C1} u(C) >

∑
C∈{C2} u(C). Although C1 appears

in only 1% of documents, it is used in 90% of queries. Hence, it is more likely that the query
interface will answer the input queries more effectively if we annotate the instances of C1 rather
than C2 in the collection.

The second term represents the impact of annotating the concepts in S on the likelihood of im-
proving the precision of answering queries whose concepts are not in S. Given that the concept of
a query does not belong to S, the more frequent the concepts in S in the collection are, the more
non-relevant answers the query interface can eliminate.

Domains without constraints regarding the overlap of concepts: If there is not any constraint
on the relations between concepts in the domain, e.g. whether they are mutually exclusive or super-
class/subclass, the query interface has to examine all documents in the collection to answer Q. For
example, assume that a domain contains concepts actress and director and the entities of actress
are annotated in the collection. Given query (director, { Rossellini }), the query interface cannot
filter out its matching instances from concept actress like Isabella Rossellini because concepts ac-
tress and director are not mutually exclusive. Thus, if the instances of concept C are not annotated,
C /∈ S , the fraction of candidate answers of Q : (C, T ) that contain a matching instance of con-
cepts C is d(C). Using equation 1, we formally define the function that estimates the likelihood
of improvement for the value of p@k for all queries in a query workload over a collection that is
annotated by concepts in design S over domains without any constraint.
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Definition 4.2. Given domain C without any constraint, query workload Q, and conceptual de-
sign S ⊆ C, the annotation benefit of S is:

AB(S) =
∑
C∈S

u(C)pr(C) +
∑

C∈C−S
u(C)d(C). (3)

Similar to the formula for annotation benefit in equation 2, the first term of the annotation benefit
in equation 3 reflects the group of queries for which the query interface returns only the candidate
answers with instances matching to their concepts. The second term of the annotation benefit in
equation 3, however, is different from the second term in equation 2 and represents the impact of
the frequency of a concept that is not in S on the likelihood of the precisions of its queries.

Some domains may contain a mix of mutually exclusive and overlapping concepts. Analyzing and
solving the problem of cost-effective conceptual design for such domains is a larger undertaking,
which requires more space than one paper and provides an interesting subject for future work.

4.4. Estimating The Input Parameters
According to Definitions 4.1 and 3, we need popularities, frequencies, and accuracies of annota-
tion for each concept in a domain, in order to compute the Annotation Benefit of a design over
the domain. These values, however, are not usually available before annotating the instances of
concepts in the collection. Similar issues arise in database query optimization, where the complete
information about running times of operators in a query are not available before running the query
[GarciaMolina et al. 2008]. Our empirical results indicate that one can effectively estimate the val-
ues of popularities and frequencies of concepts over a small sample of a collection (e.g. 384 out of
about 1 million documents). The enterprise may use methods such as crowd sourcing to compute
the popularities and frequencies of concepts over such small samples. These annotated documents
may be also used as training data for the annotation program of the concept if it is selected for an-
notation. In some settings, a sample workload of queries with their concepts is not available, i.e. we
may have access only to pure keyword queries. The enterprise can use the click-through information
of sample queries to effectively find their associated concepts [Bennett et al. 2007]. Nevertheless,
rigorous study of parameter estimation methods for concept extraction requires a deeper theoretical
investigation and empirical analysis over more than one collection. An interesting future work is
to find practical parameter estimation methods that can effectively estimate such parameters over
many different collections.

An enterprise may use the Annotation Benefit function to choose the concepts for which it should
develop annotation programs, therefore, it may not know the accuracies of the annotation programs
in design time. Because one has to spend more time and resources to develop a more accurate
annotator, the accuracy of annotating a concept somewhat represents the cost of developing its an-
notation program. Hence, the enterprise may set the accuracy of annotating a concept to a reasonable
value that can be achieved using its associated cost. It may also compute and compare the values
of Annotation Benefit for designs across multiple assignments of costs and accuracies of annotating
concepts in the domain.

5. COST EFFECTIVE CONCEPTUAL DESIGN
5.1. Costs of Concept Extractions
Researchers have noticed the overheads and costs of curating and organizing large data sets [Dong
et al. 2013; Kanani and McCallum 2012; Jain et al. 2008a]. For example, some researchers have
recently considered the problem of selecting data sets for fusion such that the marginal cost of ac-
quiring and processing a new data set does not exceed its marginal gain, where cost and gain are
measured using the same metric, e.g., US dollars [Dong et al. 2013]. Other researchers have consid-
ered the problem of filling missing values in a relational database by extracting information from the
Web given that the resources available for information extraction are limited [Kanani and McCal-
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lum 2012; Jain et al. 2008a]. They identify the costs associated with information extraction as the
computational power and network bandwidth needed to issue queries to find and download relevant
documents and the time to execute information extraction programs over the downloaded docu-
ments. In addition to these recurring overheads, concept extraction may incur one-time costs, such
as the amount of time, money, or manual labor spent on developing, training, and/or maintaining
concept extractors.

Our goal is to propose a rather general framework that can capture various types of costs involved
in concept extraction. Given collection CO, we define function wCO that maps each concept to a
real number, which reflects the amount of resources used to annotate instances of that concept over
collection CO. When the collection is clear from the context, we simply denote the cost function
as w. The cost function captures both one-time and recurring overheads. In some settings, concept
annotation incur multiple types of costs, which may be measured in different units. For instance,
an enterprise may spend financial resources to develop concept extractors, and it will take some
time to execute these annotators. The enterprise may not be able to represent these multiple cost
elements using a unified measure. We will explain how our proposed framework handles these
cases in Section 6.1.

We assume that annotating certain concepts does not impact the cost and accuracies of other
concepts in the collection. The costs of (re-)writing, (re-)running, and maintaining an extractor for a
concept are still considerable in most cases after coupling its extraction with other related concepts.
For example, programmers have to find, extract, and select a great deal of relevant features for
each concept separately, run its extraction programs, and re-write and/or re-run it as the underlying
collection evolves. The problem also becomes rather complex to express and solve without this
assumption.

Researchers have developed effective methods to estimate the required time and computational
power for concept extraction [Jain et al. 2008a]. An enterprise may also use the amount of money
needed to purchase extraction programs from other companies (e.g. ontotext.com) to estimate the
cost of acquiring concept extraction programs. It may predict the cost of annotator programs that
are developed in house using current techniques for predicting costs of software development and
maintenance [Boehm et al. 2000]. In the absence of any evidence, one may assume that all concepts
require equal amount of resources for annotation. As we shown in Section 5, it is still challenging
to find cost effective designs in this setting.

5.2. The Cost Effective Conceptual Design Problem
Since the resources available to develop, maintain, and execute concept annotators are limited, our
goal is to find a conceptual design S such that annotating the concepts in S in the queries and
collection maximizes the annotation benefit. Let B denote the amount of resources available to
perform the annotation. Annotating a set of concepts S is feasible if

∑
C∈S w(C) ≤ B. We formally

define the annotation benefit problem as follows.

PROBLEM 5.1. Given a domain C, the goal of the COST EFFECTIVE CONCEPTUAL DESIGN
problem is to construct a conceptual design S that maximizes the annotation benefit (AB) while
satisfying the constraint w(S) ≤ B.

In the case of domains with no constraints, we can rewrite the annotation benefit function as follows.

AB(S) =
∑
C∈S

u(C)pr(C) +
∑

C∈C−S
u(C)d(C)

=
∑
C∈S

u(C)(pr(C)− d(C))

+
∑
C∈C

u(C)d(C).
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where the term
∑
C∈C u(C)d(C) is independent of S . Concept extraction is intended to be an

informative process, i.e., it should perform better than random selection [Downey et al. 2006]. A
random annotator for conceptC with frequency d(C) will achieve pr = d(C). Thus, it is reasonable
to assume that for an annotation of C that takes resources, we have pr(C) ≥ d(C). Moreover, if for
a concept C, pr(C) < d(C), it is better to leave the concept unannotated. If we do not annotate C,
the benefit we get from C is at least u(C)d(C), while annotating C gives a benefit of pr(C)u(C)
for concept C, which is less than u(C)d(C).

Thus, the optimization problem in this setting is following.

max
∑
C∈S

u(C)(pr(C)− d(C)), s.t.
∑
C∈S

w(C) ≤ B

If the domain has n concepts, the COST EFFECTIVE CONCEPTUAL DESIGN problem over domains
with no constraints is equivalent to the 0-1 KNAPSACK problem with n objects, where the value of
each object OC is u(C)(pr(C) − d(C)) and its weight is w(C). Since 0-1 KNAPSACK problem is
NP-hard, the COST EFFECTIVE CONCEPTUAL DESIGN problem over domains with no constraints
is also NP-hard.

Next, we prove that the COST EFFECTIVE CONCEPTUAL DESIGN problem is NP-hard for do-
mains with mutually exclusive concepts by a reduction from the following NP-hard variant of the
PARTITION problem [Korte and Schrader 1981].

PROBLEM 5.2. LetA = {a1, . . . , a2m} be a set of 2m positive integers that sum up to 2A, such
that for each a ∈ A, A

m+1 < a < A
m−1 . The goal is to decide whether there exists a set I ⊂ A such

that
∑
a∈I a = A.

THEOREM 5.3. Problem 5.2 polynomially reduces to the COST EFFECTIVE CONCEPTUAL
DESIGN problem over a domain with mutually exclusive concepts.

PROOF. Given an instance of problem 5.2, we construct an instance of the COST EFFECTIVE
CONCEPTUAL DESIGN problem with 2m concepts as follows. For each 1 ≤ i ≤ 2m, let w(Ci) =
u(Ci) = ai,pr(Ci) = 1, and d(Ci) = 1 and let B = A.

A conceptual design S is a maximal design for the COST EFFECTIVE CONCEPTUAL DESIGN
problem if there exists no C ′ ∈ C − S such that w(C ′) +

∑
C∈S w(C) ≤ B; there is no concept C

such that its annotation cost is less than the leftover annotation budget.
Moreover, since for each i we have w(Ci) < A

m−1 and B = A, the size of each maximal feasible
solution is either m − 1 or m. Next we show that the optimal conceptual design of the constructed
instance of the COST EFFECTIVE CONCEPTUAL DESIGN problem is at most A+ A

m and this value
is obtained iff there exists a set S such that w(S) = A. By a straightforward analysis we have

AB(S) ≤
∑
C∈S

u(C) +
2A−

∑
C∈S u(C)

m

=
2A

m
+

∑
C∈S

u(C)(1− 1

m
)

=
2A

m
+

∑
C∈S

w(C)(1− 1

m
)

≤ 2A

m
+A(1− 1

m
) = A+

A

m
.

where S is a feasible conceptual design. Moreover, AB(S) = A + A
m iff w(S) = A. Thus there

exists a set I ⊆ A such that
∑
a∈I a = A iff its corresponding the COST EFFECTIVE CONCEPTUAL

DESIGN instance (which is constructed in polynomial time) has a solution of value A+ A
m .
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PROBLEM 5.4 (SUBSET SUM PROBLEM). In SUBSET SUM problem we are given a set S of n
positive integer numbers and the goal is to determine whether there exists a subset A ⊆ S whose
total sum of its element is W where W is a positive integer.

THEOREM 5.5. SUBSET SUM problem polynomially reduces to the COST EFFECTIVE CON-
CEPTUAL DESIGN problem over a domain with mutually exclusive concepts

PROOF. Given an instance of SUBSET SUM problem with n integers a1, · · · , an and query value
W , we construct the following instance of COST EFFECTIVE CONCEPTUAL DESIGN. For each
i ≤ n create a concept Ci such that u(Ci) = w(Ci) = ai and d(Ci) = 0. Moreover, we add two
extra concepts Cn+1 and Cn+2 with w(Cn+1) = w(Cn+2) = W , u(Cn+1) = u(Cn+2) = 0 and
d(Cn+1) = d(Cn+2) = 1. Since for each i, u(Ci)d(Ci) = 0, the benefit of the mixed part is always
zero. Thus for the constructed instance, W is an upper bound for COST EFFECTIVE CONCEPTUAL
DESIGN and it obtains W iff there exists a subset A such that

∑
ai∈A ai =W .

By Theorem 5.3 problem and Theorem 5.5 and the fact that both SUBSET SUM problem and
Problem 5.2 are NP-hard we have the following corollary.

COROLLARY 5.6. The COST EFFECTIVE CONCEPTUAL DESIGN problem is NP-hard.

If a domain contains a manageable number of concepts, developers can manually estimate the
popularities of concepts among users and their associated costs and manually select the most cost-
effective concepts for extraction. However, we observe a new trend in concept extraction where the
number of possible concepts is too large for a manual approach. For instance, search engine compa-
nies such as Google and Microsoft have proposed a set of hundreds of concepts, called schema.org.
Enterprises can annotate their Web pages using the concepts from schema.org, so that users of
Google and Bing can satisfy their information needs from the enterprises’ Web sites more easily.
It is very difficult to manually navigate through hundreds of concepts, pick the ones that are most
likely to be queried by users, and select a cost-effective subset of these concepts. This is particu-
larly true for enterprises with diverse sets of Web pages, such as newspapers, e.g., the New York
Times, and large companies, such as IBM. Further, as shown in Section 6, a cost-effective design
does not necessarily include the concepts most popular among users, as a concept may be suffi-
ciently frequent in the collection for an effective document ranking method to provide answers with
reasonable ranking quality for queries involving this concept.

The obvious first step toward a solution for the COST EFFECTIVE CONCEPTUAL DESIGN prob-
lem is to adopt a greedy solution, i.e., pick the concepts with the largest value of u(C)pr(C) or
the largest values for both u(C)pr(C) and d(C). However, the following examples show that the
problems of using such ideas.

Example 5.7. Consider a domain with three concepts {event, personality, shape} from
YAGO ontology over the collection of English Wikipedia articles [Schenkel et al. 2007]. Some
instances of concept event, personality, and shape in this collection are Jesus Christ Crucifixion,
Julia Child, and sphere. These concepts have the following normalized u and d values over the
collection:

event personality shape
u 0.57 0.38 0.05
d 0.91 0.07 0.02

Assume that they can be annotated with perfect accuracy. Given that developing an annotator costs
the same for all three concepts, i.e., w(C) = 1, C ∈ {event, personality, shape}, and B = 1,
we would like to select a concept for annotation that delivers the maximum annotation benefit.
Although event has larger u and d values than the other two concepts, annotating place maximizes
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the annotation benefit function.

AB(event) = 0.57 +
1

1− 0.91
(0.38× 0.07 + 0.05× 0.02)

= 0.877

By annotating concept personality, the value of the annotation benefit becomes:

AB(Personality) = 0.38 +
1

1− 0.07
(0.57× 0.91 + 0.05× 0.02)

= 0.939

This is because d(personality) ≈ d(shape). However, event has considerably higher d value than
the other two concepts. Thus, after event has been annotated, personality and shape are still indis-
tinguishable; but annotating personality helps event to be recognizable as well.

An interesting special case of COST EFFECTIVE CONCEPTUAL DESIGN problem over mutually
exclusive domains is its unweighted variant, the setting in which all costs of equal costs. It will
provide useful insights to the general problem and accepts exact algorithms in some cases. It may
also occur in practice. For instance, if the enterprise does not have sufficient information about the
costs of the concepts in a domain, it may assume their costs to be equal. In this setup, the goal is to
find a set of B concepts, S, whose annotations maximizes the value of the annotation benefit over
the collection where B is the available budget for annotation.

5.3. Equally Popular or Frequent Concepts
An interesting variant of the COST EFFECTIVE CONCEPTUAL DESIGN problem is the case in which
all concepts are equally popular; for each C ∈ C, u(C) = u where u is a fixed constant.

PROPOSITION 5.8. Suppose that for each C ∈ C, u(C) = u where u is a fixed constant. The
greedy approach that picks concepts in descending order of pr() values achieves an optimal solu-
tion.

PROOF. By annotating a set S of concepts, the value of the annotation benefit is equal to:

AB(S) =
∑
C∈S

u(C)pr(C) +

∑
C∈C−S u(C)d(C)∑

C∈C−S d(C)

= u
∑
C∈S

pr(C) +
u∑

C∈C−S d(C)

∑
C∈C−S

d(C)

= u(
∑
C∈S

pr(C) + 1).

Another case of interest is when all concepts have almost the same number of instances in the
collection; for each C ∈ C, d(C) = d where d is a fixed constant.

PROPOSITION 5.9. Given that d(C) = d for each C ∈ C, choosing concepts in descending
order of u()pr() achieves the maximum annotation benefit.

PROOF. Let d(C) = d for each C ∈ C, where d is a fixed constant, and letB be the given budget
for annotation. After annotating an arbitrary set S of concepts, the value of the annotation benefit
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will be equal to:

AB(S) =
∑
C∈S

u(C)pr(C) +

∑
C∈C−S

u(C)d(C)∑
C∈C−S

d(C)

=
∑
C∈S

u(C)pr(C) +
d

1−B · d
∑

C∈C−S
u(C)

=
∑
C∈S

u(C)pr(C) +
d

1−B · d
(
∑
C∈C

u(C)pr(C)−
∑
C∈S

u(C)pr(C))

=
∑
C∈S

u(C)pr(C)(1− d

1−B · d
) +

d

1−B · d
∑
C∈C

u(C)pr(C).

Since the value of both 1 − d
1−B·d and

∑
C∈C are both independent of choice of S, if we want to

annotate a set of concepts S of size B from C to maximize the annotation benefit, we should choose
the concepts with the m highest u()pr() values.

5.4. Greedy Approximation Algorithm
We have shown in Section 5.3 that the greedy algorithm, which picks the B concepts with the
largest values of u()pr(), delivers the optimal answer for some cases of the COST EFFECTIVE
CONCEPTUAL DESIGN problem for mutually exclusive domains. We can show that the greedy
algorithm has a reasonable approximation ratio for the unweighted variant of the problem over
mutually exclusive domains. Consider a maximization problemM. A polynomial time algorithm
A is an α-approximation to M if SOLA ≥ 1

αOPTM, where SOLA is the value of the solution
returned by A and OPTM is the value of the optimal solution toM.

THEOREM 5.10. The greedy algorithm is a (prmin
B
B+1 )-approximation where prmin =

minC∈C pr(C).

PROOF. We use the method of Gal et al. [Gal and Klots 1995] to analyze the algorithm. It is
clear that the greedy algorithm at least picks theB concepts with largest u()pr() value. On the other
hand, the optimal solution cannot pick more than B concepts of C. If the optimal solution picks `
concepts, we have `+1 terms in the annotation benefit formula (` for the extracted concepts and one
for the mixed one). The total benefit of these terms is less than the sum of the ` + 1 largest values
of u()pr(). Since the annotation benefit of the output of the greedy algorithm is more than the sum
of the u()pr() of the B concepts with the largest u()pr(),

AB(Sgreedy) > prmin

B

B + 1
OPT.

Furthermore, we can show that the ratio obtained for the greedy algorithm in Theorem 5.10 is
tight. Consider the following example in [Gal and Klots 1995]. A set C of n + 1 concepts with the
following u and d is given:

— u(Ci) = 1− (i− 1)ε, 1 ≤ i ≤ n; u(Cn+1) = 0,
— d(Ci) = (1− ε− ε2)/(n− 1), 1 ≤ i ≤ n− 1; d(Cn) = ε2; d(Cn+1) = ε,
— pr(Ci) = 1, 1 ≤ i ≤ n+ 1.

Here, ε is a small positive number. Set w(C) = 1 for each concept C in C. For B = n − 1, the
value of solution returned by the greedy algorithm is close to n− 1, while the value of the optimal
solution, which selects {C2, . . . , Cn}, is about n.
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Using a similar idea to the proof of Theorem 5.10, we prove the approximation ratio of greedy
algorithm for the case where the concepts are not equally costly.

THEOREM 5.11. The greedy algorithm is a (prmin · wmin

wmax
· B
B+1 )-approximation where prmin =

minC∈C pr(C), wmin = minC∈C w(C), and wmax = maxC∈C w(C).

Hence, the greedy algorithm may not deliver a reasonably effective design if the concepts are not
equally costly. In Section 6, we propose efficient algorithms with constant or sufficiently small
approximation ratios for the general case of the problem.

6. APPROXIMATION APPROACHES FOR GENERAL CASE
A brute force algorithm for the COST EFFECTIVE CONCEPTUAL DESIGN problem may take sev-
eral days or weeks of computation even if the domain contains only 50 concepts. In this section,
we design some efficient approximation algorithms for the general case of COST EFFECTIVE CON-
CEPTUAL DESIGN problem.

6.1. Approximate Popularity Maximization Algorithm (APM)
We can use available efficient algorithms with bounded approximation ratios for the 0-1 KNAPSACK
problem to solve the COST EFFECTIVE CONCEPTUAL DESIGN problem over domains without any
constraint with the same approximation ratios. An algorithm A for an optimization problem P is
Fully polynomial time approximation scheme (FPTAS) if given ε > 0, A achieves approximation
guarantee (1 + ε), and A finds the solution in a time polynomial in the size of the input of P and
(1/ε). Since 0-1 KNAPSACK problem is NP-hard, FPTAS is the best possible approximation for the
problem, unless P = NP . In our experiments, we consider an FPTAS algorithm of 0-1 KNAPSACK
problem described in [Ibarra and Kim 1975] that uses a dynamic programming approach. Note that
since COST EFFECTIVE CONCEPTUAL DESIGN problem over domains with no constraint is sim-
ply a 0-1 KANPSACK problem, there is an FPTAS algorithm for COST EFFECTIVE CONCEPTUAL
DESIGN problem over domains with no constraint.

Moreover, we use the idea behind FPTAS algorithms of 0-1 KANPSACK problem to devise an
approximation algorithm for the COST EFFECTIVE CONCEPTUAL DESIGN problem over domains
with mutually exclusive concepts. This algorithm ignores the improvement in effectiveness of an-
swering the queries whose concepts are not in the design of a collection. As discussed in Section 4,
this improvement is achieved by eliminating the non-relevant answers whose concepts are in the
design of the collection from the list of candidate answers for these queries. This degree of im-
provement is represented by the second term of the annotation benefit function. Hence, this algo-
rithm picks a conceptual design S with maximum value of

∑
C∈S u(C)pr(C). We call this modified

problem the POPULARITY MAXIMIZATION problem. More formally, given a domain C, the POPU-
LARITY MAXIMIZATION problem maximizes

∑
C∈S u(C)pr(C) subject to

∑
C∈S w(C) ≤ B.

The following lemma shows that we can design a constant factor approximation algorithm for
the COST EFFECTIVE CONCEPTUAL DESIGN problem by applying an algorithm with bounded
approximation ratio for the POPULARITY MAXIMIZATION problem.

LEMMA 6.1. A ρ-approximation algorithm for the POPULARITY MAXIMIZATION problem is
a (ρ + 1/prmin)-approximation for the COST EFFECTIVE CONCEPTUAL DESIGN problem over
domains with mutually exclusive concepts, where prmin = minC∈C pr(C).

PROOF. Let P = 〈C, B, d, u, pr, w〉 be an instance of the COST EFFECTIVE CONCEPTUAL
DESIGN problem. Let SOL be the solution returned by the ρ-approximation of the POPULAR-
ITY MAXIMIZATION problem on P and let OPT be the optimal solution of the COST EFFECTIVE
CONCEPTUAL DESIGN problem on P . Note that for any set S, the value of the second term in the
annotation benefit function ∑

C∈C−S
u(C)

d(C)∑
E∈C−S d(E)
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is less than u(Cmax), where Cmax = argmaxC∈C u(C). Let MOPT be the value of the second term

in the annotation benefit function in the optimal solution, MOPT =
∑

C∈C\OPT u(C)d(C)∑
C∈C\OPT d(C) . Since for

each C ∈ C, w(C) ≤ B,∑
C∈SOL

pr(C)u(C) ≥ pr(Cmax)u(Cmax) ≥ pr(Cmax)MOPT.

Moreover, since SOL is a ρ-approximate solution of the POPULARITY MAXIMIZATION problem
on P ,

ρ
∑

C∈SOL

pr(C)u(C) ≥
∑

C∈OPT

pr(C)u(C).

These two together imply that (ρ + 1/pr(Cmax))AB(SOL) ≥ AB(OPT); thus, SOL is a
(ρ + 1/pr(Cmax))-approximate solution. Let prmin = minC∈C pr(C). Since for any C ∈ C,
pr(C) ≥ prmin, SOL is a (ρ + 1/prmin)-approximate solution of the COST EFFECTIVE CON-
CEPTUAL DESIGN problem.

In particular, if pr(C) = 1 for all C ∈ C, a ρ-approximation of the POPULARITY MAXIMIZA-
TION problem is a (ρ + 1)-approximation for the COST EFFECTIVE CONCEPTUAL DESIGN prob-
lem.

The POPULARITY MAXIMIZATION problem is also a version of the 0-1 KNAPSACK problem
with n objects, if we choose the value of each object OC to be u(C)pr(C) and its weight to be
w(C). Thus, in our experiments we use the FPTAS algorithm for the KNAPSACK problem [Ibarra
and Kim 1975] to solve this problem.

COROLLARY 6.2. An FPTAS algorithm that returns a (1+ε)-approximate solution to the POP-
ULARITY MAXIMIZATION problem is a (1+ ε+1/prmin)-approximation algorithm for the COST
EFFECTIVE CONCEPTUAL DESIGN problem over domains with mutually exclusive concepts whose
running time is polynomial in 1

ε and the number of concepts.

COROLLARY 6.3. A greedy algorithm that returns a 2-approximate solution to the POPULAR-
ITY MAXIMIZATION problem is a (2 + 1/prmin)-approximation algorithm for the COST EFFEC-
TIVE CONCEPTUAL DESIGN problem whose running time is O(|C| log |C|).

We call this algorithm the Approximate Popularity Maximization (APM) algorithm.
Concept annotation may incur multiple types of costs, which may be measured in different units,

therefore, cannot be represented using a single measure. APM can be used to solve the cost-effective
design problem in this case. The enterprise can categorize its cost elements into groups with compat-
ible cost measures and add a separate budget constraint for each cost group to the COST EFFECTIVE
CONCEPTUAL DESIGN problem. We call this problem MULTIPLY CONSTRAINED COST EFFEC-
TIVE CONCEPTUAL DESIGN. When there is no constraint regarding the overlap of concepts in the
domain, one may use existing PTAS algorithms for the MULTIPLY CONSTRAINED KNAPSACK
problem to obtain a PTAS algorithm for the MULTIPLY CONSTRAINED COST EFFECTIVE CON-
CEPTUAL DESIGN problem [Freville 2004]. Unfortunately, there is no FPTAS algorithm for the
MULTIPLY CONSTRAINED KNAPSACK problem unless P = NP [Korte and Schrader 1981].

Consider the case of the MULTIPLY CONSTRAINED COST EFFECTIVE CONCEPTUAL DESIGN
problem where the concepts are mutually exclusive. We define the problem of MULTIPLY CON-
STRAINED POPULARITY MAXIMIZATION similar to the problem of POPULARITY MAXIMIZA-
TION but with multiple budget constraints. Clearly, a PTAS algorithm for the MULTIPLY CON-
STRAINED KNAPSACK problem is also a PTAS algorithm for the MULTIPLY CONSTRAINED POP-
ULARITY MAXIMIZATION problem. Since the objective function of the new problem is identical
to the objective function of the POPULARITY MAXIMIZATION problem with a single budget con-
straint, according to Lemma 6.1, this algorithm will be a (1 + ε + 1/prmin)-approximation for
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the MULTIPLY CONSTRAINED COST EFFECTIVE CONCEPTUAL DESIGN problem and its running
time is polynomial in the number of concepts and exponential in ( 1ε ). In this paper, however, we
focus on the case where cost elements can be expressed through a single metric, and leave empirical
analysis of the MULTIPLY CONSTRAINED COST EFFECTIVE CONCEPTUAL DESIGN problem for
future work.

6.2. Approximate Annotation Benefit Maximization Algorithm (AAM)
In this section we present an FPTAS algorithm for the COST EFFECTIVE CONCEPTUAL DESIGN
problem over the domains with mutually exclusive concepts. Since in Theorem 5.3 we proved that
the problem is NP-hard, FPTAS is the optimal approximation guarantee for the problem unless
P = NP . The algorithm is based on the dynamic programing method of the 0-1 KNAPSACK
problem in addition to some scaling techniques. For simplicity in exposition of the algorithm, we
assume that pr(C) = 1 for each C ∈ C. However, in Remark 6.8 we state that our approach works
for an arbitrary pr function, given an additional property that usually holds in practice. Without loss
of generality, we can also assume that u(C) and d(C) are positive integers for all concepts.

Given a fixed constant N , we define the BOUNDED COST EFFECTIVE(C, B,N) problem as
follows.

max
S

f(N,S) = 1

N
(N

∑
C∈S

u(C) +
∑

C∈C−S
u(C)d(C)) (4)

s.t.
∑

C∈C−S
d(C) ≤ N

∑
C∈C−S

w(C) ≤ B

In addition to the cost constraint that we had previously, BOUNDED COST EFFECTIVE(C, B,N)
has a constraint over frequency of documents. Let 〈C, B, d, u, w〉 be an instance of COST EFFEC-
TIVE CONCEPTUAL DESIGN (C, B). For any value of N , the value of the optimal solution of
BOUNDED COST EFFECTIVE(C, B,N) on 〈C, B, d, u, w〉 is not more than the optimal solution of
the annotation benefit of COST EFFECTIVE CONCEPTUAL DESIGN on 〈C, B, d, u, w〉. Moreover,
for a fixed N , the objective function of the BOUNDED COST EFFECTIVE(C, B,N) is a separable
function. Thus it is easier to find the maximum value of BOUNDED COST EFFECTIVE(C, B,N) for
a fixedN rather than finding the optimal conceptual design of the COST EFFECTIVE CONCEPTUAL
DESIGN problem.

LEMMA 6.4. Let OPT be the value of the optimal solution of the COST EFFECTIVE CONCEP-
TUAL DESIGN (C, B) problem and let OPTbnd be the maximum value of an optimal solution of
BOUNDED COST EFFECTIVE(C, B,N) over different values of N . Then OPT = OPTbnd. More-
over, the same set of concepts (conceptual design) obtains the optimal value in both functions.

PROOF. Consider the COST EFFECTIVE CONCEPTUAL DESIGN problem and assume that AB
obtains its maximum value for set SOPT. Let NOPT =

∑
C/∈C−SOPT

d(C). Then, we have:

OPT(BOUNDED COST EFFECTIVE(C, B,NOPT)) = AB(SOPT) = OPT.

Thus, OPTbnd ≥ OPT. For the other direction, we know that the value of f(N,S) is at most
AB(S) for all feasible solutions S of BOUNDED COST EFFECTIVE(C, B,N). This implies that
OPTbnd ≤ OPT.

Hence, OPT = OPTbnd. It also implies that the set S that achieves the maximum value of
COST EFFECTIVE CONCEPTUAL DESIGN (C, B) obtains the maximum value of BOUNDED COST
EFFECTIVE(C, B,N) over different values of N as well.

Lemma 6.4 implies that in order to find a set with the maximum annotation benefit we can instead
solve BOUNDED COST EFFECTIVE(C, B,N) for all different values of N and return the set that
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obtains the maximum value. In other words, first we give an FPTAS for BOUNDED COST EFFEC-
TIVE(C, B,N), where N is a given fixed value. The first step is to check whether for the given N
there exists a feasible solution to BOUNDED COST EFFECTIVE(C, B,N). For the given N , a feasi-
ble solution has to contain all concepts C that d(C) > N . Let Srem = {C|d(C) > N} and Crem =
C−Srem. If w(Srem) > B, there is no feasible solution for BOUNDED COST EFFECTIVE(C, B,N).
Otherwise; we select all concepts in Srem and we setBrem = B−w(Srem) to be the leftover budget.
The problem is equivalent to optimize the bounded problem on Crem, Brem and N . Now, for each
C ∈ Crem we have d(C) ≤ N . To solve BOUNDED COST EFFECTIVE(C, B,N) optimally for the
given N , we can apply dynamic programming. Let Vinit(N) =

∑
C∈Crem u(C)d(C)/N . We can

rewrite the objective function of BOUNDED COST EFFECTIVE(C, B,N) as follows:∑
C∈S

v(C) + Vinit(N)

where v(C) = u(C)(1− d(C)/N) for each C ∈ Crem
Let Crem = {C1, · · · , Cn}. We define Q[i, P,X] to be the minimum required cost that we must

pay to obtain a solution of BOUNDED COST EFFECTIVE(C, B,N) of value at least P − Vinit if we
are only allowed to annotate concepts from the first i concepts of Crem. We can state the recursive
relation of Q[i, P,X] as follows:

(1) Q[0, 0, X] = 0 for all 0 ≤ X ≤ N
(2) Q[0, P,X] =∞ for all P > 0 and 0 ≤ X ≤ N
(3) Q[i, P,X] = min(Q[i− 1, P,X − d(Ci)],

Q[i− 1,min {P − v(Ci), 0} , X] + w(Ci))

To find the optimal solution of BOUNDED COST EFFECTIVE(C, B,N), we need to find the max-
imum value of V such that Q[n, V,N ] ≤ Brem. The running time of the described dynamic pro-
gramming is O(nV N) where V is the value of the optimal solution of the bounded problem for the
given N . The described dynamic programming is pseudo-polynomial and we can convert it to an
FPTAS via scaling techniques.

LEMMA 6.5. There exists a (1 + ε)-approximation algorithm to BOUNDED COST
EFFECTIVE(C, B,N) which runs in O(Nn3/ε).

PROOF. To eliminate the dependency of the running time on V , we scale v(C) for each C ∈
Crem. Let M = maxC∈Crem v(C) and λ = εM

n where n = |Crem|. We define v̂(C) = bv(C)/λc.
This implies that

λv̂(C) ≤ v(C) ≤ λ(v̂(C) + 1).

The maximal value of BOUNDED COST EFFECTIVE(C, B,N) over the scaled values is at most∑
C∈Crem v̂(C) <

∑
C∈Crem(n/ε)(v(C)/M) = O(n2/ε).
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Now, let Cscl be the set returned by dynamic programming after scaling and let Corg be the optimal
solution of the problem before scaling and OPT =

∑
C∈Corg v(C). Thus,∑

C∈Cscl

v(C) ≥ λ
∑
C∈Cscl

v̂(C)

≥ λ
∑

C∈Corg

v̂(C)

≥
∑

C∈Corg

v(C)− λ |Corg|

≥ OPT − λn

≥ OPT − εM ≥ (1− ε)OPT ≥ 1

(1 + ε)
OPT.

The first inequality comes from λv̂(C) ≤ v(C). The second one is because of the optimality of Cscl
over the scaled values. The third inequality is derived from v(C) ≤ λ(v̂(C) + 1).

Thus the proposed dynamic programing algorithm with the scaled profits is a (1 + ε)-
approximation whose running time is O(Nn3/ε).

Although we need to satisfy the document frequency constraint of BOUNDED COST EFFEC-
TIVE(C, B,N),

∑
C∈Crem−S d(C) ≤ N , for a given N we can allow S to violate the document

frequency constraint by ε; our ultimate goal is to maximize the annotation benefit of COST EFFEC-
TIVE CONCEPTUAL DESIGN (C, B). Later we show that the value ofAB for a (1+ε)-approximate
solution of BOUNDED COST EFFECTIVE(C, B,N), S, that violates the document frequency con-
straint by at most ε is comparable to the optimal solution of BOUNDED COST EFFECTIVE for the
given N .

LEMMA 6.6. There is a (1 + ε) approximation algorithm for BOUNDED COST
EFFECTIVE(C, B,N) that violates

∑
C∈Crem−S d(C) ≤ (1 + ε)N , and its running time is

O(n4/ε2).

PROOF. First we apply the scaling introduced in Lemma 6.5 and then scale d for concepts as
follows. Define d̂(C) = bd(C)/γc where γ = εN/n. Then we work with d̂(C), v̂(C) and N̂ =

bN/γc = bn/εc. Thus the running time of the algorithm on the scaled value is O(N̂n3/ε) =

O(n4/ε2). For the optimal solution Cs of the scaled instance, we have
∑
C∈Crem−Cscl d̂(C) ≤ N̂ .

Thus, ∑
C∈Crem−Cscl

d(C) ≤ γ(
∑

C∈Crem−Cscl

d̂(C) + (n− |Cscl|))

≤ γN̂ + γn

≤ N + γn = (1 + ε)N.

This implies that the returned solution Cscl may violate N by a factor of ε. Thus, we have a (1+ ε)-
approximation algorithm for BOUNDED COST EFFECTIVE(C, B,N) that may violate constraint∑
C∈Crem−Cscl d(C) ≤ N by ε and its running time is O(n4/ε2).

By Lemma 6.6, we have an algorithm that finds a solution Ss with value at least (1 + ε) times the
optimal solution of BOUNDED COST EFFECTIVE(C, B,N). However, Ss may violate the document
frequency constraint by ε. Suppose that Ss is the set returned by the algorithm after performing the
described scaling. Let Nr =

∑
C∈Ss d(C) and let Ns be the value of N for which Ss is returned in

our algorithm (since we allow the algorithm to violate the constraint by ε,Nr ≤ (1+ε)Ns). Suppose
that SOPT is the optimal solution of COST EFFECTIVE CONCEPTUAL DESIGN(C, B). Lemma 6.4
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Algorithm Approximation ratio Running time
APM 2 + ε O(n3/ε)
AAM 1 + ε O(n5/ε3)

Table I: Summary of approximation ratios and time complexities of approximation algorithms for
the COST EFFECTIVE CONCEPTUAL DESIGN problem.

and 6.6 imply that AB(SOPT) ≤ (1 + ε)f(Ns,Ss). Thus AB(Ss) = f(Nr,Ss) ≥ f(Ns,Ss)/(1 +
ε) ≥ (1/(1 + ε)2)AB(SOPT) ≥ (1 − 2ε)AB(SOPT) ≥ 1

(1+2ε)AB(SOPT) where f is the objective
function of the BOUNDED COST EFFECTIVEproblem. By maximizing BOUNDED COST EFFEC-
TIVE(C, B,N) over all possible values of N (0 < N ≤ Dtotal =

∑
C∈Crem d(C)), we can find a

(1 + ε)-approximation1 of COST EFFECTIVE CONCEPTUAL DESIGN(C, B) in O(Dtotal
n4

ε2 ).

THEOREM 6.7. The COST EFFECTIVE CONCEPTUAL DESIGN problem admits an FPTAS al-
gorithm.

Instead of checking all possible values of N which lead to a pseudo-polynomial algorithm, we
solve BOUNDED COST EFFECTIVE(C, B,N) for some specific values of N (which is polyno-
mial in the size of input) and still guarantees a (1 − ε)-approximation (in the relaxed ver-
sion we allow the solution to violate the document frequency constraint by a factor of ε).
Consider the set N = {N1, · · · , Np} such that Ni = Dmin(1/(1 − ε))i where Dmin =
minC∈Crem d(C) and Np−1 ≤ Dtotal ≤ Np. This implies that p < log(1−ε)−1(Dtotal/Dmin) +

1 = (logDtotal − logDmin)/(− log(1 − ε)) + 1 < O((logDtotal)/ε), where the last in-
equality comes from − log(1 − ε) = − ln(1 − ε)/ ln 2 > ε/ ln 2. Thus the number of dif-
ferent values of N we need to examine is polynomial in logDtotal and 1/ε. Suppose that
(NOPT,SOPT) is a pair that maximizes f , i.e, OPT = f(NOPT,SOPT) where OPT is the
value of an optimal solution of COST EFFECTIVE CONCEPTUAL DESIGN(C, B). Let Ng be the
smallest member of N that is greater than NOPT. Note that (Ng,SOPT) is a feasible solu-
tion to BOUNDED COST EFFECTIVE(C, B,Ng) and since Ng > NOPT, Ngf(Ng,SOPT) >
NOPTf(NOPT,SOPT). Thus f(Ng,SOPT) > (NOPT/Ng)OPT. Since our algorithm examines
N = Ng , the solution returned by our algorithm is at least (1 − ε) times the optimal solu-
tion of BOUNDED COST EFFECTIVE(C, B,Ng). Since NOPT > Ng−1, NOPT/Ng ≥ Ng−1/Ng
and thus f(Ng,SOPT) ≥ (Ng−1/Ng)OPT ≥ (1 − ε)OPT. This implies that the value of
an optimal solution of BOUNDED COST EFFECTIVE(C, B,Ng) is at least (1 − ε)OPT ≥

1
(1+ε)OPT. This fact along with Lemma 6.6 lead us to obtain an FPTAS algorithm for
COST EFFECTIVE CONCEPTUAL DESIGN problem with runtime O((n4 logDtotal)/ε

3). Note that
logDtotal ≤ log(nDmax) ≤ log n + logDmax where Dmax = maxC∈Cp d(C) and is polynomial
in the size of input. Hence the running time is bounded by O(n5/ε3).

Remark 6.8. We assumed that pr(C) = 1 for all C ∈ C. However, our approach also works for
a realistic function pr. For a given N , we define v(C) = u(C)(pr(C)− d(C)

N ) and the proof holds
as long as v(C) is a positive value for all concepts.

Figure 3 depicts the steps of AAM algorithms. Table I summarizes the approximation algorithms
we presented for COST EFFECTIVE CONCEPTUAL DESIGN problem over domains with mutually
exclusive concepts.

1We let ε′ = 2ε.
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AAM-algorithm 〈〈Input: 〈C, B,w, u, d, ε〉〉〉
〈〈C: set of concepts,B: available budget to annotator〉〉
〈〈w, u and d represent cost, popularity and frequency of concepts respectively.〉〉
〈〈ε: approximation guarantee is 1 + ε〉〉
Let Dmin = minC∈C d(C), Dtotal =

∑
C∈C d(C) and SOL = ∅.

〈〈Solving several instances of BOUNDED COST EFFECTIVE(N)〉〉

For (N = Dmin; N ≤ Dtotal; N = N
1−ε )

Crem ← C and Vinit = 0.
For each C ∈ C

If d(C) > N
Crem ← Crem \ C 〈〈Crem = {C ∈ C | d(C) ≤ N}〉〉
B ← B − w(C) 〈〈We have to pick C \ Crem in SOLbnd〉〉

If B < 0 〈〈Check whether BOUNDED COST EFFECTIVE(N) has feasible solution〉〉
break;

Give an arbitrary ordering to Crem,{C1, · · · , Cp}.
For each C ∈ Crem

v(C)← u(C)(1− d(C)
N ) 〈〈v(C): profit of C〉〉

Let Mrem = maxC∈Crem v(C) and nrem = |Crem|.
λ← εMrem

nrem
, γ ← εN

nrem
, N̂ ← bNγ c

For each C ∈ Crem
v̂(C)← bv(C)

λ c 〈〈Scale profit function〉〉

d̂(C)← bd(C)
γ c 〈〈Scale frequency function〉〉

For (X = 0; X ≤ N̂ ; X = X + 1)
Q[0, 0, X]← 0
〈〈SOLbnd[i, P,X] contains a set of concepts achievingQ[i, P,X]〉〉
SOLbnd[0, 0, X]← ∅

〈〈Dynamic programming (DP) on scaled values;Q represents the table of DP〉〉

For (X = 0; X ≤ N̂ ; X = X + 1)
For (P = 1; P ≤ Pmax; P = P + 1)

Q[0, P,X]←∞
For (i = 1; i ≤ nrem; i = i+ 1)

For (X = 0; X ≤ N̂ ; X = X + 1)
For (P = 0; P ≤ Pmax; P = P + 1)

Let P̂i ← min {P − v̂(Ci), 0}
If Q[i−1, P,X−d(Ci)] < Q[i−1, P̂i, X] + w(Ci)
Q[i, P,X]← Q[i− 1, P,X − d(Ci)]
SOLbnd[i, P,X]← SOL[i− 1, P,X − d(Ci)]

Else
Q[i, P,X]← Q[i− 1, P̂i, X] + w(Ci)

SOLbnd[i, P,X]← SOL[i− 1, P̂i, X] ∪ Ci
PN ← max

{
A | Q[nrem, A, N̂ ] ≤ B

}
〈〈Max profit with budgetB〉〉

If AB(SOLbnd[nrem, PN , N̂ ] > AB[SOL]) 〈〈CompareAB values〉〉

SOL ← SOLbnd[nrem, PN , N̂ ]

Return SOL

Fig. 3: Description of AAM algorithm
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Domain M1 M2 M3 N1
Before filtering 1281 888 5820 714

Number of Queries After filtering 98 187 1737 199
% Remaining 7.65% 21.06% 29.85% 27.87%

Before filtering 928 595 3650 537
Number of Distinct Queries After filtering 98 118 972 138

% Remaining 10.56% 19.83% 26.63% 25.70%

Table II: The original number of queries and the queries remaining after filtering out the ones whose
ranking quality is not improved by annotating all concepts in the domain.

7. EXPERIMENTS
7.1. Experiment Setting
Domains: To validate the accuracy of the annotation benefit function and the effectiveness of our

conceptual design algorithms, we use concepts from YAGO ontology version 2008-w40-2 [Schenkel
et al. 2007]. YAGO organizes its concepts using IS-A (i.e. parent-child) relationships in a DAG with
a single root. We define a level as a set of concepts that have the same distance (in terms of the
number of edges) from the root of the ontology. Most levels in the DAG generally contain a set
of mutually exclusive concepts. We select three domains from this ontology for our experiments.
All concepts in each domain are mutually exclusive and have at least one instance in our dataset.
Domain M1 consists of 7 concepts from the third level of the ontology. Example of concepts in M1
are object, causal agent and psychological feature. We use domain M1 to validate how accurately
the annotation benefit function estimates the effectiveness of answering queries over annotated col-
lections. Since some validation experiments require running brute-force algorithms, we have to use
a domain with a small number of concepts while contains as many documents in the dataset as pos-
sible. So we needs to select concepts in the top level in the ontology tree. Thus the concepts in M1
are vague for users.

The popularities (u) and frequencies (d) of concepts in domain M1 are shown in figure 4.
We further select two larger domains from the YAGO ontology to evaluate the average-case
performance ratios and efficiency of our approximation algorithms. Domain M2 consists of 76
mutually exclusive concepts from the fourth level of the ontology, such as location and event.
Since we would like to evaluate our algorithms over domains with concepts that have more specific
meanings, i.e. concepts in lower level of ontology tree, we expand some relatively abstract concepts
such as whole to their descendants on the sixth level of the ontology and created a third domain,
called domain M3. This domain consists of 87 concepts such as person and animal. We also select
an additional domain, called N1, from the fifth level of YAGO with 10 concepts whose concepts
are not guaranteed to be mutually exclusive. We use this domain to validate the annotation benefit
formula for the domains with no constraint and measure the empirical approximation ratio of APM
over these domains.

Dataset: We use a semantically annotated version of the Wikipedia collection that is created from
the October 8, 2008 dump of English Wikipedia articles [Schenkel et al. 2007]. This collection uses
concepts from the YAGO ontology. It contains 2,666,190 Wikipedia articles, of which 1,470,661
are annotated. For each domain, we have selected all documents that contains an annotation of a
concept in the domain and created a dataset for that domain. The datasets for domain M1, M2, M3
and N1 contain 525,703, 399,792, 927,848 and 186,952 documents respectively. Each annotation
contains a confidence value that indicates the accuracy of the annotation. We have used the average
confidence values over all annotations of a concept to compute its annotation accuracy. The
accuracies of annotations are between 0.75-0.95 for in domain M1, between 0.8-0.95 in domain
M2 and M3, and between 0.8-0.94 in domain N1.

Query Workload: We use a subset of the Bing query log whose target URLs are Wikipedia articles
[Elena Demidova and Xuan Zhou and Irina Oelze and Wolfgang Nejdl 2010]. Each query contains
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up to 6 keywords and has one to two relevant answers that are the Wikipedia URL. Because the
query log does not list the concept behind each query, we adopt an automatic approach to find the
concepts associated with the query. Given a domain, for each query we find the concept from the
domain whose instance(s) match the query terms in its relevant answers. We ignore the queries that
match instances from multiple concepts in their relevant answers as these queries do not comply
with our query model.

The effectiveness of answering some queries may not be improved from semantically annotating
the collection [Chu-Carroll et al. 2006; Sanderson 2008]. For instance, all candidate answers for
a query may contain matched instances of the same concept. In order to reasonably evaluate our
algorithms, we have not considered the queries whose rankings are the same over the unannotated
version and the fully annotated version (i.e. annotating all concepts in the domain) of the collec-
tion. Table II shows the original number of queries and the queries remaining after filtering out the
ones whose ranking quality is not improved by annotating all concepts in the domain. Overall, the
more concepts there are in a domain, the greater the fraction of queries whose ranking quality is
improved by annotation. Since most concepts in a domain with few concepts, such as M1, contain
many entities, all matches to most queries refer to entities from a single concept. Therefore, annotat-
ing concepts in these domains does not disambiguate many queries. On the other hand, annotating
concepts in domains with a relatively large number of concepts, such as M3 and N1, disambiguates
many queries and improves their ranking quality. Real-world domains usually contain many con-
cepts. This method leads to collecting 98 (98 unique), 187 (118 unique), 1737 (972 unique), and
199 (138 unique) queries for domain M1, M2, M3, and N1 respectively. Examples of queries for
each domains is shown in Table III.

We use two-fold cross validation to train the u values for concepts in each domain. Because
some concepts may not appear in the query workload, we smooth the u values using the Bayesian
m-estimate method with smoothing parameter 1 and uniform priors [Hastie et al. 2009].

û(C) =
P̂ (C|QW ) +mp

m+
∑
C P̂ (C|QW )

,

where P̂ (C|QW ) is the probability that C occurs in the query workload and p denotes the prior
probability. We set the value of the smoothing parameter, m, to 1 and use uniform prior.

Retrieval System: We index the datasets using Lucene (lucene.apache.org) and use BM25 as the
underlying retrieval algorithm [Manning et al. 2008]. Given a query, we first rank its candidate
answers using BM25. Then, we apply the information about the concepts in the query and
documents to return the documents whose matching instances have the same concept as the concept
of the query or to filter out the non-relevant candidate answers for the query if using domain M1,
M2 and M3, as explained in Section 4. We performed our experiments on a Linux server with
250 GB of main memory and two quad core processors. We implemented our retrieval system and
optimization algorithms using JAVA 1.7.0 51.

Effectiveness Metrics: Most queries in our query workloads have one relevant answer and the
maximum of number of relevant answers per query in the workload is 2. Hence, we measure the
effectiveness of answering queries over the dataset using precision at 3 (p@3). Since many of our
queries have a single relevant answer, we also use mean reciprocal rank (MRR), which is 1

r where r
is the rank of the first relevant answer to the query in the ranked list [Manning et al. 2008]. The value
of MRR is larger for ranked lists where the first relevant answer appears at higher positions in the
list. We have not defined the Annotation Benefit function based on MRR. However, it will provide
additional insights on how accurately the Annotation Benefit function measures the effectiveness
and user satisfaction from conceptual designs and the the ranking qualities delivered by our cost
effective conceptual design algorithms. We measure the statistical significance of our results using
the paired-t-test at a significant level of 0.05. The statistically significant improvements are marked

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: June 2014.



39:25

Domains Queries

M1

object:“Rosetta Stone”
causal agent:“Israeli Prime Ministers”
causal agent:“Noah”
causal agent:“Scottie Pippen”
group:“Wizard of Oz and Emerald City”
group:“Niall Noigiallach”
psychological feature:“Final Fantasy 7 info on the remake”
psychological feature:“The book of Revelation”
relation:“NATO”
relation:“What is NATO”

M2

agent:“Carson Kit”
arrangement:“Tarzan”
event:“Final Fantasy 7 info on the remake”
event:“Jesus Christ crucifixion”
message:“Book of Matthew”
message:“Shadow Wikipedia”
personality:“Larry King”
shape:“Liberty Statue in Paris”
written communication:“The Adventures of Tom Sawyer”
written communication:“The story of Robin Hood”

M3

artifact:“Book of Esther”
artifact:“Hebrews”
event:“Final Fantasy 7 info on the remake”
event:“When was Muhammad born”
person:“Hilary Clinton biography”
person:“Michael Jordan”
person:“Noah”
social group:“way of the master radio”
social relation:Prime Minister of Pakistan”
written communication:“Planet of Apes”

N1

area:“largest city in the USA”
area:“New York City”
dramatic conposition:“essays Macbeth blood”
dramatic conposition:“Degrassi”
literary composition:“Gone With The Wind”
literary composition:“Dracula”
literary composition:“Phantom of the opera the book”
series:“American Idol”
series:“Desperate Housewives”
series:“Ultraman”

Table III: Examples of annotated queries for domain M1, M2, M3, and N1.

in bold in the reported results.

Cost Metrics: We use two types of costs for concept annotation in our experiments. We hypothesize
that the cost of running an annotator for a concept may be proportional to its frequency in a collec-
tion. It is true that some concepts, such as phone numbers, are both frequent and quick to extract.
However, if all other conditions, such as the complexity of the concept extraction program, are the
same, then the more frequent concepts are likely to take more computational resources and time for
extraction. For instance, one may use a fast and easy-to-build classifier to separate the documents
about sports from the ones about science in a large collection, and run extractors for concepts scien-
tist and athlete only on their relevant sub-collections [Huang and Yu 2010]. Given that the extractors
for scientist and athlete are almost equally complex and the sub-collection on sports contains more
documents than the one on science, it will take more time and computational resources to extract
instances of athlete than scientist. We call this type of cost assignment frequency-based cost. We
also evaluate our algorithms by assigning randomly generated costs to the concepts in a domain. We
call this type of cost assignment random cost. We report the average p@3 over 40 sets of random
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Fig. 4: Popularities (u) and frequencies (d) of concepts in domain M1

Frequency-based Cost Random Cost
Budget Oracle PM AM Oracle PM AM

0.1 0.146 0.146 0.146 0.190 0.188 0.190
0.2 0.207 0.207 0.207 0.208 0.205 0.208
0.3 0.218 0.218 0.218 0.216 0.216 0.216
0.4 0.218 0.218 0.218 0.218 0.218 0.218

Table IV: Average p@3 for Oracle, PM, and AM over domain M1.

Frequency-based Cost Random Cost
Budget Oracle PM AM Oracle PM AM

0.1 0.271 0.271 0.271 0.442 0.440 0.442
0.2 0.491 0.491 0.491 0.513 0.509 0.513
0.3 0.551 0.551 0.551 0.543 0.542 0.542
0.4 0.551 0.551 0.551 0.549 0.549 0.549
0.5 0.551 0.551 0.551 0.551 0.551 0.550
0.6 0.551 0.551 0.551 0.551 0.551 0.551

Table V: Average MRR for Oracle, PM, and AM over domain M1.

costs for each budget. We use a range of budgets between 0 and 1 with step size of 0.1, where 1
means sufficient budget to annotate all concepts in a domain.

7.2. Model Validation
In this section, we investigate whether the Annotation Benefit function accurately estimates the
likelihood of improvement in effectiveness of answering queries over annotated collections.

7.2.1. Domain with Mutually Exclusive Concepts. We use three algorithms in this set of experi-
ments. Given complete information about the relevant answers of queries, Oracle checks all possible
designs in a domain whose costs do not exceed a fixed budget and delivers the design with max-
imum p@3 or MRR over all queries. Clearly, Oracle cannot be used in a real-world setting as
a query interface does not know the relevant answers for the queries at query time. Because the
designs returned by Oracle deliver the maximum possible effectiveness for answering queries, we
use its results to measure how accurately practical methods predict the amount of improvement in
effectiveness of answering queries achieved by a design. AM is a brute force algorithm that picks
the design with maximum Annotation Benefit over a domain given a fixed budget. An intuitively
appealing heuristic for finding a design is to select the concepts that are most queried by users. The
PM algorithm implements this heuristic. PM is a brute force algorithm that finds the design with
the maximum value of

∑
C∈S u(C)pr(C) over a domain given a fixed budget. Since all these algo-
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rithms use exhaustive search methods, running them over a domain with a large number of concepts
is not practical. Thus, we evaluate these algorithms only over domain M1. In order to precisely eval-
uate the estimation accuracy of the Annotation Benefit function, we assume that AM has the exact
values of concept frequencies. We will explain how to estimate the frequencies of concepts without
fully annotating them in Section 7.3.

Table IV and V show the values of p@3 and MRR over domain M1 delivered by AM and PM
using frequency-based and random costs. We have omitted the results of Oracle, AM, and PM for
budgets from 0.5-0.9 in table IV and from 0.7-0.9 in table V, because their results are the same as
the ones for budgets 0.4 and 0.6 in these tables. Since the number of concepts in domain 1 is rather
small, there are few feasible solutions that can exhaust the budget, given a modest or large budget.
Hence, all algorithms find the same or very similar designs for these budgets over domain M1.

The designs returned by Oracle, AM, and PM deliver the same values of p@3 for answering
queries over all budgets for frequency-based cost. In this setting, AM and PM pick the same designs
for all budgets between 0.1 and 0.8. The designs selected by AM and PM are different for budget
0.9. Nonetheless, both designs contain 6 out of 7 available concepts in the domain. Answering
queries over an annotated collection that contains annotation for all but one of the concepts in the
domain will be as effective as answering queries over the fully annotated collection. Therefore, they
both achieve the same values of p@3 andMRR. Further, the cost distribution in the frequency based
cost setting is very skewed in domain M1. Since the number of concepts is rather small in domain
M1 and the cost distribution is skewed, there are very few feasible solutions that can maximize the
objective functions of either AM or PM given a small budget. For example, with budget equal to 0.2,
there are only two feasible designs that exhaust the budget and one of them maximizes the objective
functions of both AM and PM.

Table IV and V shows that the designs produced by AM deliver more effective results for queries
than the ones generated by PM for budgets 0.1 - 0.2 using random cost metric. Since the cost distri-
bution of random costs is not as skewed as the cost distribution for frequency-based costs, there are
more feasible solutions for both objective functions than the frequency-based cost setting for small
budgets. For example, PM and AM include causal agent and psychological feature, respectively,
in their designs for budget equal to 0.1. These designs are not feasible in the frequency-based cost
setting. Since causal agent is quite frequent in the collection, the matching instances of this concept
appear in most of the top candidate answers for queries with this concept. Hence, AM does only
slightly worse than PM in returning answers whose matching instances belong to causal agent for
queries with this concept. Because AM picks psychological feature in its design, it is able to effec-
tively answer the queries from this concept. PM, however, does not pick this concept in its design.
Because this concept is not very frequent in the collection, the matching instances of most candidate
answers for queries with this concept belong to other concepts. Hence, the PM design returns con-
siderably less effective results for these queries than the AM design. AM returns the same designs
as Oracle for budgets 0.1 and 0.2 in the random cost setting.

As the budget becomes larger, both algorithms pick almost all useful (relatively popular and/or
frequent) concepts. Thus, overall, the ranking qualities provided by the designs from these methods
are almost the same for larger budgets. The designs generated by Oracle, AM, and PM deliver equal
values of p@3. Since MRR is more sensitive to the position of the top relevant answer than p@3,
the values of MRR for the Oracle designs are different from the ones for the designs of AM and
PM in budget 0.3. In this budget, all methods pick the same designs and deliver the same ranking in
most runs. There are some runs where the designs selected by Oracle are different from that of AM
and PM. For instance, in one of the runs, Oracle picks object, causal agent, and group, but AM and
PM choose relation causal agent, and group as their designs. It seem reasonable to select relation
because it has a higher popularity and frequency than object. It turns out that the concept of the
matching entities in many non-relevant answers for queries whose entities belong to psychological
feature is object. Hence, extracting entities of concept object helps the query interface to return more
effective results for queries of both concept object and psychological feature. The documents that
contain instances of concept relation does not appear as non-relevant answers of most concepts.
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Frequency-based Cost Random Cost
Budget Oracle AM-N APM Oracle AM-N APM

0.1 0.191 0.191 0.191 0.173 0.173 0.160
0.2 0.229 0.229 0.229 0.205 0.205 0.196
0.3 0.238 0.238 0.238 0.230 0.230 0.230
0.4 0.238 0.238 0.238 0.235 0.235 0.235
0.5 0.238 0.238 0.238 0.237 0.237 0.237
0.6 0.238 0.238 0.238 0.238 0.238 0.238

Table VI: Average p@3 for Oracle, AM-N, and APM (ε = 0.001) over Domain N1.

Frequency-based Cost Random Cost
Budget Oracle AM-N APM Oracle AM-N APM

0.1 0.380 0.380 0.380 0.327 0.327 0.298
0.2 0.457 0.457 0.457 0.401 0.400 0.377
0.3 0.475 0.475 0.474 0.452 0.451 0.450
0.4 0.475 0.475 0.474 0.465 0.464 0.464
0.5 0.475 0.475 0.474 0.473 0.472 0.472
0.6 0.475 0.475 0.474 0.475 0.475 0.475

Table VII: Average MRR for Oracle, AM-N, and APM (ε = 0.001) over Domain N1.

and extracting them do not improve the effectiveness of answering queries of other concepts as
much. We have made the simplifying assumption that the frequency of a concept in the collection
is proportional to the number of its instances in the top non-relevant answers for queries of other
concept. This observation shows that such assumption might not always hold. We observe a similar
situation in budget 0.5. Although, MRR is not the objective function of the AM algorithm, AM
delivers higher values of MRR than PM and close to Oracle overall.

7.2.2. Domains without constraints regrading the overlap of concepts. We use two algorithms in
this set of experiments. Oracle is the same algorithm used in validation experiments for domains
with mutually exclusive concepts. AM-N is a brute force algorithm that picks the design with maxi-
mum Annotation Benefit over a domain with no constraint given a fixed budget. Since PM heuristic
is very similar to AM-N, we do not report its results in this section.

Table VI and VII show the values of p@3 and MRR, respectively, over domain N1 delivered
by Oracle and AM-N using frequency and random cost metrics. All results for budget 0.7-0.9 are
omitted as they are the same as the results over budget 0.6. Note that since the number of concepts
in domain N1 is larger than domain M1, this increases the running time of Oracle. Due to limited
amount of time, we perform the experiment over domain N1 using 20 sets of random costs.

Overall, ranking quality delivered by AM-N is the same as Oracle. AM-N and Oracle pick the
same design for all budgets for frequency-based cost. Intuitively, more popular and accurately an-
notated concepts should deliver a better ranking quality for domains without any constraint because
query interface can use only the annotations for the concept of each query to improve the ranking
quality of its answers. As opposed to the domain with mutually exclusive concepts, query interface
cannot use annotations of concepts other that the concept in the query to filter non-relevant answers.
AM-N generally picks the same designs as Oracle for runs of random costs. AM-N chooses dif-
ferent designs from Oracle in a few runs. For instance, in one of the run, PM picks area which is
slightly more popular than dramatic composition where Oracle picks the latter instead. However,
both designs lead to almost the same amount of improvement in ranking qualities for queries. These
results confirms our assumption that Annotation Benefit formula is suited as an objective function
for domains with not constraint.

7.3. Effectiveness of Approximation Algorithms
7.3.1. Parameters Estimation. In addition to the popularities (u) of concepts in the query work-

load, AAM requires the value of the frequency (d) for each concept in the collection. The exact
frequency of a concept, however, cannot be determined before annotating all its instances. One may
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Domain Domain M1 Domain M2 Domain M3
APM AAM APM AAM APM AAM

0.1 0.146 0.146 0.196 0.230 0.145 0.145
0.2 0.177 0.207 0.203 0.237 0.164 0.165
0.3 0.218 0.218 0.205 0.239 0.175 0.176
0.4 0.218 0.218 0.203 0.241 0.183 0.196
0.5 0.218 0.218 0.237 0.241 0.175 0.198
0.6 0.218 0.218 0.239 0.241 0.202 0.202
0.7 0.218 0.218 0.241 0.241 0.202 0.202
0.8 0.211 0.218 0.235 0.241 0.202 0.202
0.9 0.218 0.218 0.241 0.241 0.202 0.202

Table VIII: Average p@3 for AAM (with ε = 0.1) and APM (with ε = 0.001) using frequency-based
costs.

Domain Domain M1 Domain M2 Domain M3
APM AAM APM AAM APM AAM

0.1 0.271 0.271 0.461 0.585 0.311 0.310
0.2 0.383 0.491 0.521 0.616 0.377 0.369
0.3 0.551 0.551 0.549 0.642 0.419 0.406
0.4 0.551 0.551 0.535 0.646 0.445 0.476
0.5 0.551 0.551 0.637 0.646 0.430 0.484
0.6 0.551 0.551 0.641 0.646 0.503 0.503
0.7 0.551 0.551 0.646 0.646 0.503 0.503
0.8 0.510 0.551 0.638 0.644 0.503 0.503
0.9 0.551 0.551 0.646 0.646 0.503 0.503

Table IX: Average MRR for AAM (with ε = 0.1) and APM (with ε = 0.001) using frequency-
based costs.

Domain Domain M1 Domain M2 Domain M3
APM AAM APM AAM APM AAM

0.1 0.179 0.189 0.221 0.240 0.192 0.202
0.2 0.201 0.207 0.223 0.240 0.193 0.202
0.3 0.215 0.214 0.226 0.240 0.194 0.202
0.4 0.218 0.217 0.227 0.240 0.195 0.202
0.5 0.218 0.218 0.229 0.241 0.197 0.202
0.6 0.218 0.218 0.231 0.241 0.197 0.202
0.7 0.218 0.218 0.232 0.241 0.198 0.202
0.8 0.218 0.218 0.234 0.241 0.199 0.202
0.9 0.218 0.218 0.237 0.241 0.202 0.202

Table X: Average p@3 of AAM (with ε = 0.3) and APM (with ε = 0.001) using random costs.

estimate the values of frequencies for concepts from previous rounds of annotating the collection
[Gulhane et al. 2011], or using fast and easy-to-develop classification algorithms [Huang and Yu
2010]. We estimate the frequencies of concepts using a small sample of randomly selected doc-
uments from the collection. For each domain, we calculate the frequency of each concept over a
random sample of 384 documents from the collection which corresponds to an estimation error rate
of 5% under the 95% confidence level. Similar to computing concepts’ popularities, we smoothed
the value of d using Bayesian m-estimate with smoothing parameter of 1 and uniform priors to
smooth the estimations, particularly for the concepts with the estimated frequencies of 0 [Hastie
et al. 2009].

7.3.2. Domains With Mutually Exclusive Concepts. Tables VIII, X, IX, and XI show the values
of p@3 and MRR for the APM and AAM algorithms for all mutually exclusive domains using
frequency-based and random costs, respectively. Generally, the designs generated by AAM im-
prove the values of p@3 and MRR significantly more than the designs produced by APM, over all
domains and both types of cost metrics. As discussed in Section 4, the optimal design should bal-
ance three types of impacts. First, it should contain the most popular concepts so the query interface
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Domain Domain M1 Domain M2 Domain M3
APM AAM APM AAM APM AAM

0.1 0.388 0.438 0.517 0.641 0.479 0.502
0.2 0.471 0.512 0.532 0.643 0.482 0.503
0.3 0.534 0.541 0.554 0.644 0.486 0.503
0.4 0.550 0.549 0.565 0.645 0.488 0.503
0.5 0.551 0.551 0.568 0.645 0.491 0.503
0.6 0.551 0.551 0.585 0.645 0.493 0.503
0.7 0.551 0.551 0.594 0.645 0.494 0.503
0.8 0.551 0.551 0.609 0.646 0.495 0.503
0.9 0.551 0.551 0.622 0.646 0.503 0.503

Table XI: Average MRR of AAM (with ε = 0.3) and APM (with ε = 0.001) using random costs.

can return potentially relevant answers to as many queries as possible. Second, if a concept is very
frequent, most candidate answers for queries with this concept contain matching instances of this
concept. Hence, if the concept is relatively costly, the optimal design should not include these con-
cepts as they may not worth annotating. Third, it should contain relatively frequent and inexpensive
concepts so that the query interface can eliminate many non-relevant answers from the list of results
for the queries whose concepts are not in the design.

In our experiments, the designs produced by APM have larger overall popularities (u values) than
the designs selected by AAM, across all domains and cost metrics. We have observed that in general
the most popular concepts in users’ queries may not be the most frequent ones in the collection. The
designs picked by AAM do not normally include the most popular concepts. Instead, they contain
a larger number of relatively popular concepts than the designs selected by APM over all domains
and cost metrics. Generally, relatively popular concepts are also rather frequent. Since the overall
frequencies of the designs produced by AAM are generally larger than the ones selected by APM,
they help the query interface to eliminate more non-relevant answers from the results of the queries
whose concepts are not included in these designs. Because these designs include relatively popular
concepts, they also help the query interface to return the relevant answers to a relatively large number
of queries.

In a small number of cases, the designs generated by APM deliver a larger p@3 than the ones
produced by AAM. Although the differences between AAM and APM in these cases are not statis-
tically significant, it is interesting to explore the reasons behind these improvements. The designs
generated by APM for budget 0.3 and 0.4 over domain M1 using random costs deliver larger values
of p@3 than the designs of AAM. In both budgets, the relative effectiveness improvement of APM
over AAM in each budget is due to a single run where APM selects a design with larger value of
Annotation Benefit than the design picked by AAM. This illustrates the fact that both methods are
approximation algorithms and sometimes they may return quite different answers from their optimal
solutions.

Generally, the differences between the ranking quality achieved by the designs of AAM and APM
are smaller for larger budgets across all domains and cost metrics. This is mainly due to the fact that
AAM and APM can afford to include most of the popular and frequent concepts in their designs
for medium or large budgets. Adding the concepts that are rare in the collection or query workload
does not improve the effectiveness of answering queries considerably. Because domain M1 has a
relatively small number of concepts, both algorithms pick similar designs given a smaller amount
of budget for this domain than other domains.

In some cases, the designs generated by APM deliver smaller values of p@3 and MRR for larger
budgets. For instance, the design for budget 0.8 delivers a smaller value of p@3 than the one for
budget 0.7 over domain M1 when frequency-based cost is used. Given sufficient budget, APM may
replace reasonably popular and frequent concepts with more popular and less frequent concepts. As
discussed in Section 4 and the beginning of this section, this may have a negative impact on p@3
for answering queries over the annotated collection.
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ε 0.5 0.3 0.1 0.01 0.001
Domain M1 1 2 2 - -

AAM Domain M2 1 5 102 - -
Domain M3 4 15 128 - -
Domain M1 1 2 2 2 5

APM Domain M2 1 2 2 3 12
Domain M3 4 14 15 15 23

Table XII: Average running times of AAM and APM (in minutes)

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 348 492 635 - -

AAM Domain M2 1667 6498 84139 - -
Domain M3 1326 5608 63466 - -
Domain M1 184 184 184 215 1976

APM Domain M2 184 184 184 215 4933
Domain M3 184 184 184 471 7732

Table XIII: Average memory usages of AAM and APM (in MB)

The values of p@3 andMRR for the designs generated by AAM over domain M2 and domain M3
when random costs are used are almost the same over all budgets greater than 0.1. The distribution
of frequencies and popularities of concepts are very skewed in these domains, where relatively small
number of concepts (e.g. 10 concepts in domain M2) have a large portion of the total frequency and
popularity in the domain. Since the costs are assigned randomly, in most runs AAM is able to pick
these concepts using a relatively small budget. AAM adds new concepts to this set given larger
budgets. The new concepts, however, do not improve the effectiveness of answering queries over
the annotated collection.

APM cannot find the set of more popular concepts given a small or moderate budget. The algo-
rithm used in APM has two main steps [Korte and Schrader 1981]. It separates concepts into two
sets, popular and unpopular. It then uses a dynamic programming method to find the optimal solu-
tion from the set of popular concepts. If there are still some budget left, it greedily picks concepts
from the set of unpopular concepts until the budget is exhausted. The decision of how to partition
concepts into these two sets is based on an approximation, which is not accurate in many cases.
Hence, in some cases the concepts that belong to the optimal design may placed in the set of un-
popular concepts. The greedy algorithm used to pick the concepts in the unpopular set sorts them
based on the ratio of u(C)×pr(C)

w(C) , where u is the popularity, pr is the accuracy, and w is the cost
of concept C, and select the top concepts. This method leaves out some desired concepts that are
relatively popular but expensive.

7.3.3. Domains Without Constraint. We investigate the effectiveness of the version of APM al-
gorithm introduced in Section 6.1 for domains without any constraint. Table VI and VII shows the
values of p@3 and MRR over domain N1 delivered by Oracle, AM-N, and APM using frequency-
based and random costs. Overall, the results delivered by APM are the same as that of Oracle and
AM-N except at budget 0.1 and 0.2 of random cost. APM generally selects the same designs as
that of PM. Hence, it delivers the same ranking qualities as the optimal solutions. Since APM is an
approximation algorithm, it cannot find solutions that maximizes concept popularity in some runs
of random cost. For example, APM picks the design consists of literary composition where AM-N
picks the design with series and dramatic composition in one of the runs. The overall popularity of
the latter design is larger than the former one. Thus, APM cannot answer queries as effectively as
AM-N does. As the costs are quite skewed in frequency-based runs, APM almost always picks the
same designs as AM-N in these runs.
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ε 0.5 0.3 0.1 0.01 0.001
Domain M1 0.209 0.209 0.209 - -

AAM Domain M2 0.229 0.238 0.239 - -
Domain M3 0.188 0.188 0.188 - -
Domain M1 0.204 0.205 0.204 0.204 0.204

APM Domain M2 0.233 0.233 0.229 0.222 0.222
Domain M3 0.184 0.183 0.182 0.184 0.184

Table XIV: Average p@3 over all budgets for AAM and APM using different values of ε

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 0.325 0.501 0.513 - -

AAM Domain M2 0.636 0.635 0.635 - -
Domain M3 0.451 0.449 0.451 - -
Domain M1 0.497 0.501 0.497 0.497 0.497

APM Domain M2 0.595 0.595 0.584 0.586 0.586
Domain M3 0.445 0.444 0.439 0.444 0.444

Table XV: Average MRR over all budgets for AAM and APM using different values of ε

7.4. Efficiency and Scalability of Approximation Algorithms
This section studies the efficiency and scalability of our approximation algorithms. We show the
efficiency and scalability of AAM and APM using frequency-based costs over domains M1, M2
and M3. Our experiments over the random based costs show similar results for the scalability of the
algorithms. Since the running time and memory consumption of APM is similar over the domains
with mutually exclusive concepts and the domains without any constraints, we report the scalability
results for APM only over the domains with mutually exclusive concepts.

7.4.1. Efficiency. Table XII shows the average running time of APM and AAM algorithms over
domain M1, M2, and M3 with budget 0.1 to 0.9 using various several values between 0.5 - 0.001 for
ε. As we expect, the smaller the value of ε is, the longer the running times of both algorithms are.
APM is generally more efficient than AAM, particularly for smaller values of ε. This observation
confirms our comparative analysis of the time complexities of these algorithms in Section 6. We set
the value of ε to 0.1 for AAM and 0.001 for APM in our experiments to evaluate the improvement
in effectiveness of answering queries achieved by the designs produced by AAM and APM for
frequency-based cost, reported in Section 7.3, we set the value of ε to 0.1 and 0.001, respectively.
According to Table XII, the running times of the algorithms for these values of ε are reasonable for
a design-time task. As we have to run AAM 40 times per budget in the experiments using random
costs, reported in Section 7.3, we set the value of ε to 0.3 in AAM for these experiments. Table XII
indicates that the running time of AAM with this value of ε is reasonable for a design time task.

Both APM and AAM use dynamic programming approach and keep a table in the main memory
to maintain the solutions of their subproblems. Table XIII shows the average memory usage of
APM and AAM algorithms over domains M1, M2, and M3 using values from 0.5 - 0.001 for ε.
Similar to running time, the smaller the value of ε is, the larger the memory AAM and APM need.
Interestingly, AAM uses smaller amount of memory over domain M3 than M2 even though the size
of M2 is smaller than M3. We have found that the distributions of costs and frequencies of concepts
in domain M3 is more skewed than that of domain M2. Thus, the size of Crem for domain M3 tends
to be smaller than the one for domain M2. Hence, the amount of memory space required to construct
the dynamic programming table for AAM in domain M3 is smaller than the one for M2. The size
of the main memory table becomes very large (e.g for some budgets it exceeds the available main
memory) for ε ≤ 0.01 in AAM and for ε ≤ 0.001 in APM. Our results in Section 7.3 indicates that
one does not need such small values for ε, particularly for AAM, in order to find effective designs.
Hence, in this paper we have not used such values for epsilon for APM and AAM.
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Domain Budget
p@3 MRR

AAM APM AAM APM0.5 0.3 0.1 0.5 0.3 0.1

M1

0.1 0.146 0.146 0.146 0.146 0.271 0.271 0.271 0.271
0.2 0.207 0.207 0.207 0.177 0.491 0.491 0.491 0.383
0.3 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.4 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.5 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.6 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.7 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.8 0.218 0.218 0.218 0.211 0.551 0.551 0.551 0.510
0.9 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551

M2

0.1 0.232 0.230 0.230 0.196 0.590 0.585 0.585 0.461
0.2 0.233 0.233 0.237 0.203 0.616 0.614 0.616 0.521
0.3 0.239 0.239 0.239 0.205 0.642 0.642 0.642 0.549
0.4 0.241 0.241 0.241 0.203 0.646 0.646 0.646 0.535
0.5 0.241 0.241 0.241 0.237 0.646 0.646 0.646 0.637
0.6 0.241 0.241 0.241 0.239 0.646 0.646 0.646 0.641
0.7 0.241 0.241 0.241 0.241 0.646 0.646 0.646 0.646
0.8 0.241 0.241 0.241 0.235 0.646 0.646 0.644 0.638
0.9 0.241 0.241 0.241 0.241 0.646 0.646 0.646 0.646

M3

0.1 0.147 0.143 0.145 0.145 0.302 0.292 0.310 0.311
0.2 0.165 0.165 0.165 0.164 0.369 0.369 0.369 0.377
0.3 0.179 0.179 0.176 0.175 0.409 0.409 0.406 0.419
0.4 0.196 0.196 0.196 0.183 0.476 0.476 0.476 0.445
0.5 0.198 0.197 0.198 0.175 0.493 0.484 0.484 0.430
0.6 0.202 0.202 0.202 0.202 0.500 0.503 0.503 0.503
0.7 0.202 0.202 0.202 0.202 0.502 0.503 0.503 0.503
0.8 0.202 0.202 0.202 0.202 0.503 0.503 0.503 0.503
0.9 0.202 0.202 0.202 0.202 0.503 0.503 0.503 0.503

Table XVI: Average ranking for AAM with ε = 0.5, 0.3, 0.1 and APM with ε = 0.001 using
frequency-based cost.

7.4.2. Scalability. One may have to set ε to values larger than 0.3 or 0.1 for AAM and 0.001 for
APM in order to find the desired designs for large domains in reasonable amount of time and using
modest memory overheads. Hence, we empirically examine the effect of changes on the values of
ε on the effectiveness of the algorithms. Tables XIV and XV show the average values of p@3 and
MRR for APM and AAM algorithms over domains M1, M2, and M3 using values between 0.5 and
0.001 for ε. The average values of p@3 and MRR delivered by the designs of AAM is relatively
stable across different values of ε in domains M1, M2, and M3. Except for some cases, e.g. ε = 0.5
in domain M3, generally, the ranking qualities delivered by the designs of AAM and APM tend to
improve when using smaller value of ε.

Furthermore, Table XVI indicate that AAM with relatively small values of ε, i.e. 0.5 and 0.3,
generally provides better ranking qualities than APM with considerably smaller values of ε, and a
comparable ranking quality to AAM using ε = 0.1. With this choice of ε, AAM requires signif-
icantly less amount of resources than the that of ideal value of ε or that of APM with ε = 0.001
while sustaining its effectiveness.

8. CONCLUSIONS & FUTURE WORK
Extracting and annotating the occurrences of entities in an unstructured or semi-structured text
collection by their concepts improves the effectiveness of answering queries over the collection.
Nonetheless, annotating the occurrences of a concept and maintaining the annotated collection are
resource intensive. Thus, an enterprise may have to select a subset of the concepts for annotation,
called a conceptual design, whose cost of extraction does not exceed its budget and improves the
effectiveness of answering queries the most. To surpass the intuition-based approaches to concep-
tual design, we introduced and formalized this problem, proved it to be NP-hard, in the number
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of relevant concepts in general case. We proposed two efficient approximation algorithms for it:
Approximate Popularity Maximization (APM) and Approximate Annotation-benefit Maximization
(AAM). We proved that if concepts are mutually exclusive, APM has a constant factor approxima-
tion ratio and AAM is a fully polynomial time approximation scheme. If there is not any constraint
regrading the overlap of concepts, APM is a fully polynomial time approximation scheme. Our
empirical studies over real-world data sets, concepts, and query workloads showed that APM and
AAM efficiently compute conceptual designs and return effective designs over real-world concepts.
with AAM delivering more effective results over domains with mutual exclusive concepts.

We plan to extend this work in multiple directions. First, the information needs behind some
queries may be more complex than finding information about a single entity. For example, a user
may ask about the relationships between multiple entities. We plan to extend our model to consider
the dependencies between occurrences of multiple concepts in the input queries and the collection.
For instance, assume that the references to concept job appear mostly in queries that also refer
instances of concept person. Given limited resources, it may worth extracting only person instead
of both person and job, as the extracted instances of person may also improve the effectiveness of
answering queries about instances of job. Similarly, because some concepts often occur together in
documents, extracting one of them may make annotating the rest less costly. For instance, if concepts
person and job appear together in a collection quite frequently, it will be less time-consuming to
develop and/or run the extractor of job, given that the instances of person are already annotated
in the collection. We plan to represent this problem using a collection of precedence-constrained
knapsack problems [Johnson and Niemi 1983] and leverage the approximation algorithms for the
precedence-constrained knapsack problem to solve this extension of cost-effective design problem.
We also plan to improve estimating the frequencies of concepts using relatively inexpensive concept
extraction programs, e.g. simple classifiers that do not use deep parsing, that can deliver a reasonable
estimation of the ratio of documents that may contain instances of certain concepts in a rather short
amount of time [Huang and Yu 2010].
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