Calibrating and Re-Calibrating a Global Vegetation Model

Thomas G. Dietterich Eric Chown

MAPSS (Neilson, 1995)

Predictions

- LAI in each pixel (LAI_{tree}, LAI_{grass}, LAI_{shrub})

Classification into one of 74 possible biomes
 tall grass prarie, desert, conifer forest, etc.

MAPSS (2)

Optimization model:

- find LAI values that achieve "water balance" and "light balance"
- Water Balance
 - (soil water in soil water out) = 0 over 12 months
 - soil water always ≥ 0
- Light Balance
 - amount of light reaching forest floor matches grass
 LAI

Hydrology Model

Rainfall-Snowfall

- canopy interception and through-fall
- snow accumulation and melt
- separate modeling of saturated and unsaturated soil water flow
- separate modeling of deep, medium, and shallow soil water pools
- transpiration from shallow soil for grasses and shrubs, from shallow and medium for trees
- Each 10x10km cell is independent (no lateral flows)

Calibration

MAPSS is an aggregate model

- Transpiration and soil water flow equations chosen empirically
 - $-\alpha e^{\beta X}$
 - must set two parameters in each equation
- Criteria
 - correctly predict boundaries of major biomes
 - correctly predict seasonality of water flows
 - correctly predict observed LAI

22 quantitative sites; overall qualitative behavior

Manual Calibration

- Calibrate grass transpiration parameters and unsaturated deep and middle water parameters
 - use data from praries, where trees and shrubs are absent and there is no saturated water flow
- Calibrate tree transpiration parameters
 - forests with unsaturated soil only
 - separately for different climate zones
- Calibrate shrub transpiration parameters
 - shrub savanah with unsaturated soil
- Calibrate top layer saturated water flow
 - shrublands where middle and deep water flow are "lost"
- Calibrate deep saturated water flow
 - grasslands where middle flow can be ignored
- Calibrate middle saturated water flow
 - grasslands where all flows occur

Automated Re-Calibration

Goal: Determine how stable the model parameterization is

Method:

- Use calibrated model (known parameter values) to generate predicted LAI values over USA
- Apply optimization algorithm to see if we can recover these parameter values

Automated Calibration

Define error measure

 $J(\Theta) = \frac{(\widehat{LAI}_{tree} - LAI_{tree})^2 +}{(\widehat{LAI}_{grass} - LAI_{grass})^2 +} \\ (\widehat{LAI}_{shrub} - LAI_{shrub})^2 + \\ (RUNOFF - RUNOFF)^2$

Global Optimization Algorithms

Non-gradient search (Powell's method)
 Gradient search (conjugate gradient)
 Simulated Annealing

All FAIL on this problem!
 – nonlinearlities and complex interactions

Automated Model Decomposition

Identify parameter subsets that can be calibrated independently (sequentially)
 Identify sites that we are confident correspond to those parameter subsets
 Apply simulated annealing to parameter subsets

Method

Automated program analysis to identify paths through the simulation that only involve small numbers of parameters
 Empirical method of identifying data points that belong to a path (with high probability)

Optimization of parameter subsets

Transpiration Parameter Results

Iteration	Grass	Tree1	Tree2	Tree3	Shrubs	SlopeG	SlopeT	SlopeS
1	4.265					3.792		
2	4.249	3.748				1.417	1.001	
3	4.259		3.502			4.999	1.003	
4	4.278			2.750		3.496	1.032	
5	4.252				9.254	2.248		3.002
6					9.246			3.002
7	4.249					1.998		
8	4.251					2.072		
Target	4.250	3.750	3.500	2.750	9.275	2.000	1.000	3.000
Range	2 – 8.5	1.5 – 5	1.5 – 5	1.5 – 5	1.2 – 4	4 – 15	0 – 5	0 – 5

Soil Water Flow Results

Unsaturated

Saturated

lter	Deep1	Deep2	Mid1	Mid2	Top1	Top2	Deep1	Deep2	Mid1	Mid2	Top1	Top2
1	0.786	11.476	0.286	2.744								
2	0.704	11.607	0.125	2.337								
3	0.194	9.971	0.491	2.994								
4	0.443	10.934	0.597	2.939								
5	0.371	10.293	0.640	5.051								
6	0.443	10.933	0.604	2.944	0.834	2.530						
7	0.274	9.754	0.603	3.644			0.849	11.447				
8	0.201	9.982	0.504	3.003			0.857	10.128	0.816	3.087	0.613	0.719
Target	0.200	10.000	0.500	3.000	0.800	2.500	0.800	10.000	0.800	3.000	0.500	1.000
Range	0 – 1	1 – 20	0 – 1	1 – 7.5	0 – 1	1 – 7.5	0 – 1	1 – 20	0 – 1	1 – 5	0 – 1	0.5 – 3

Lessons Learned

- Data is too sparse to support fully-automated calibration
- Complex models cannot be calibrated simply by wrapping a clever optimization algorithm around the system (black box optimization)
- Automated re-calibration is possible, but requires a divide-and-conquer strategy
- Associating data with paths through a complex model can be automated
- Calibration of model subcomponents is possible, but requires extensive hand-tweaking of optimization parameters
- MAPSS calibration is stable except for middle layer saturated flow parameters, which are under-constrained.