Holdout and Cross-Validation Methods Overfitting Avoidance

Decision Trees

- Reduce error pruning
- Cost-complexity pruning
- Neural Networks
 - Early stopping
 - Adjusting Regularizers via Cross-Validation
- Nearest Neighbor
 - Choose number of neighbors
- Support Vector Machines
 - Choose C
 - Choose σ for Gaussian Kernels

Reduce Error Pruning

Given a data sets S

- Subdivide S into S_{train} and S_{dev}
- Build tree using S_{train}
- Pass all of the S_{dev} training examples through the tree and estimate the error rate of each node using S_{dev}
- Convert a node to a leaf if it would have lower estimated error than the sum of the errors of its children

Reduce Error Pruning Example

Cost-Complexity Pruning

 The CART system (Breiman et al, 1984), employs cost-complexity pruning: J(Tree,S) = ErrorRate(Tree,S) + α |Tree| where |Tree| is the number of nodes in the tree and α is a parameter that controls the tradeoff between the error rate and the penalty

 \blacksquare α is set by cross-validation

Determining Important Values of α

- Goal: Identify a finite set of candidate values for α. Then evaluate them via cross-validation
- Set $\alpha = \alpha_0 = 0$; t = 0
- Train S to produce tree T
- Repeat until T is completely pruned
 - determine next larger value of $\alpha = \alpha_{k+1}$ that would cause a node to be pruned from T
 - prune this node
 - − t := t + 1
- This can be done efficiently

Choosing an α by Cross-Validation

Divide S into 10 subsets S₀, ..., S₉
 In fold v

- Train a tree on $U_{i\neq v} S_i$
- For each α_k , prune the tree to that level and measure the error rate on S_v
- Compute $\underline{\varepsilon}_k$ to be the average error rate over the 10 folds when $\alpha = \alpha_k$
- Choose the α_k that minimizes $\underline{\epsilon}_k$. Call it α_* and let ϵ_* be the corresponding error rate
- Prune the original tree according to α_*

The 1-SE Rule for Setting α

Compute a confidence interval on ε_{*} and let U be the upper bound of this interval

Compute the smallest α_k whose $\varepsilon_k \leq U$. If we use Z=1 for the confidence interval computation, this is called the 1-SE rule, because the bound is one "standard error" above $\underline{\varepsilon}_*$

Notes on Decision Tree Pruning

- Cost-complexity pruning usually gives best results in experimental studies
- Pessimistic pruning is the most efficient (does not require holdout or cross-validation) and it is quite robust
- Reduce-error pruning is rarely used, because it consumes training data
- Pruning is more important for regression trees than for classification trees
- Pruning has relatively little effect for classification trees. There are only a small number of possible prunings of a tree, and usually the serious errors made by the treegrowing process (i.e., splitting on the wrong features) cannot be repaired by pruning.
 - Ensemble methods work much better than pruning

Holdout Methods for Neural Networks

- Early Stopping using a development set
 Adjusting Regularizers using a development set or via cross-validation
 - amount of weight decay
 - number of hidden units
 - learning rate
 - number of epochs

Early Stopping using an Evaluation Set

Split S into S_{train} and S_{dev}

Train on S_{train}, after every epoch, evaluate on S_{dev}. If error rate is best observed, save the weights

Reconstituted Early Stopping

Recombine S_{train} and S_{dev} to produce S
 Train on S and stop at the point (# of epochs or mean squared error) identified using S_{dev}

Reconstituted Early Stopping

- We can stop either when MSE on the training set matches the predicted optimal MSE or when the number of epochs matches the predicted optimal number of epochs
- Experimental studies show little or no advantage for reconstituted early stopping. Most people just use simple holdout

Nearest Neighbor: Choosing k

k=9 gives best performance on development set and on test set. k=13 gives best performance based on leave-one-out cross-validation

SVM Choosing C and σ (BR Data Set; 100 examples; Valentini 2003)

20% label noise

BR Data Set: Varying σ for fixed C

Summary

Holdout methods are the best way to choose a <u>classifier</u>

- Reduce error pruning for trees
- Early stopping for neural networks
- Cross-validation methods are the best way to set a <u>regularization parameter</u>
 - Cost-complexity pruning parameter α
 - Neural network weight decay setting
 - Number *k* of nearest neighbors in *k*-NN
 - C and σ for SVMs