
OffOff--TheThe--Shelf ClassifiersShelf Classifiers

A method that can be applied directly to A method that can be applied directly to 
data without requiring a great deal of timedata without requiring a great deal of time--
consuming data preprocessing or careful consuming data preprocessing or careful 
tuning of the learning proceduretuning of the learning procedure

LetLet’’s compare Perceptron, Logistic s compare Perceptron, Logistic 
Regression, and LDA to ask which Regression, and LDA to ask which 
algorithms can serve as good offalgorithms can serve as good off--thethe--shelf shelf 
classifiersclassifiers



OffOff--TheThe--Shelf CriteriaShelf Criteria
Natural handling of Natural handling of ““mixedmixed”” data typesdata types
–– continuous, orderedcontinuous, ordered--discrete, unordereddiscrete, unordered--discretediscrete

Handling of missing valuesHandling of missing values
Robustness to outliers in input spaceRobustness to outliers in input space
Insensitive to monotone transformations of input featuresInsensitive to monotone transformations of input features
Computational scalability for large data setsComputational scalability for large data sets
Ability to deal with irrelevant inputsAbility to deal with irrelevant inputs
Ability to extract linear combinations of features Ability to extract linear combinations of features 
InterpretabilityInterpretability
Predictive powerPredictive power



Handling Mixed Data Types with Handling Mixed Data Types with 
Numerical ClassifiersNumerical Classifiers

Indicator VariablesIndicator Variables
–– sex: Convert to 0/1 variablesex: Convert to 0/1 variable
–– countycounty--ofof--residence: Introduce a 0/1 variable for each residence: Introduce a 0/1 variable for each 

countycounty
OrderedOrdered--discrete variablesdiscrete variables
–– example: {small, medium, large}example: {small, medium, large}
–– Treat as unorderedTreat as unordered
–– Treat as realTreat as real--valuedvalued

Sometimes it is possible to measure the Sometimes it is possible to measure the ““distancedistance”” between between 
discrete terms.  For example, how often is one value discrete terms.  For example, how often is one value 
mistaken for another?  These distances can then be mistaken for another?  These distances can then be 
combined via multicombined via multi--dimensional scaling to assign real valuesdimensional scaling to assign real values



Missing ValuesMissing Values

Two basic causes of missing valuesTwo basic causes of missing values
–– Missing at random:  independent errors cause Missing at random:  independent errors cause 

features to be missing.  Examples: features to be missing.  Examples: 
clouds prevent satellite from seeing the ground.clouds prevent satellite from seeing the ground.
data transmission (wireless network) is lost from timedata transmission (wireless network) is lost from time--toto--timetime

–– Missing for cause:  Missing for cause:  
Results of a medical test are missing because physician Results of a medical test are missing because physician 
decided not to perform it.decided not to perform it.
Very large or very small values fail to be recordedVery large or very small values fail to be recorded
Human subjects refuse to answer personal questionsHuman subjects refuse to answer personal questions



Dealing with Missing ValuesDealing with Missing Values
Missing at RandomMissing at Random
–– P(P(xx,,yy) methods can still learn a model of P() methods can still learn a model of P(xx), even when some ), even when some 

features are not measured.features are not measured.
–– The EM algorithm can be applied to fill in th emissing features The EM algorithm can be applied to fill in th emissing features with the with the 

most likely values for those featuresmost likely values for those features
–– A simpler approach is to replace each missing value by its averaA simpler approach is to replace each missing value by its average ge 

value or its most likely valuevalue or its most likely value
–– There are specialized methods for decision treesThere are specialized methods for decision trees

Missing for causeMissing for cause
–– The The ““first principlesfirst principles”” approach is to model the causes of the missing approach is to model the causes of the missing 

data as additional hidden variables and then try to fit the combdata as additional hidden variables and then try to fit the combined ined 
model to the available data.model to the available data.

–– Another approach is to treat Another approach is to treat ““missingmissing”” as a separate value for the as a separate value for the 
featurefeature

For discrete features, this is easyFor discrete features, this is easy
For continuous features, we typically introduce an indicator feaFor continuous features, we typically introduce an indicator feature that is 1 ture that is 1 
if the associated realif the associated real--valued feature was observed and 0 if not.valued feature was observed and 0 if not.



Robust to Outliers in the Input Robust to Outliers in the Input 
SpaceSpace

Perceptron: Outliers can cause the Perceptron: Outliers can cause the 
algorithm to loop foreveralgorithm to loop forever
Logistic Regression: Outliers far from the Logistic Regression: Outliers far from the 
decision boundary have little impact decision boundary have little impact ––
robust!robust!
LDA/QDA: Outliers have a strong impact LDA/QDA: Outliers have a strong impact 
on the models of P(on the models of P(xx||yy) ) –– not robust!not robust!



Remaining CriteriaRemaining Criteria
Monotone Scaling:  All linear classifiers are sensitive to nonMonotone Scaling:  All linear classifiers are sensitive to non--linear linear 
transformations of the inputs, because this may make the data letransformations of the inputs, because this may make the data less ss 
linearly separablelinearly separable
Computational Scaling: All three methods scale well to large datComputational Scaling: All three methods scale well to large data a 
sets.sets.
Irrelevant Inputs: In theory, all three methods will assign smalIrrelevant Inputs: In theory, all three methods will assign smalll ll 
weights to irrelevant inputs.  In practice, LDA can crash becausweights to irrelevant inputs.  In practice, LDA can crash because the e the 
ΣΣ matrix becomes singular and cannot be inverted.  This can be matrix becomes singular and cannot be inverted.  This can be 
solved through a technique known as regularization (later!)solved through a technique known as regularization (later!)
Extract linear combinations of features:  All three algorithms lExtract linear combinations of features:  All three algorithms learn earn 
LTUs, which are linear combinations!LTUs, which are linear combinations!
Interpretability: All three models are fairly easy to interpretInterpretability: All three models are fairly easy to interpret
Predictive power: For small data sets, LDA and QDA often performPredictive power: For small data sets, LDA and QDA often perform
best.  All three methods give good results.best.  All three methods give good results.



Summary So FarSummary So Far
(we will add to this later)(we will add to this later)

yesyesyesyesyesyesAccurateAccurate

yesyesyesyesyesyesInterpretableInterpretable

yesyesyesyesyesyesLinear combinationsLinear combinations

nonononononoIrrelevant inputsIrrelevant inputs

yesyesyesyesyesyesScalabilityScalability

nonononononoMonotone transformationsMonotone transformations

nonoyesyesnonoOutliersOutliers

yesyesnonononoMissing valuesMissing values

nonononononoMixed dataMixed data

LDALDALogisticLogisticPercPercCriterionCriterion



The Top Five AlgorithmsThe Top Five Algorithms

Decision trees (C4.5)Decision trees (C4.5)
Neural networks (backpropagation)Neural networks (backpropagation)
Probabilistic networks (NaProbabilistic networks (Naïïve Bayes; ve Bayes; 
Mixture models)Mixture models)
Support Vector Machines (SVMs)Support Vector Machines (SVMs)
Nearest Neighbor MethodNearest Neighbor Method



Learning Decision TreesLearning Decision Trees
Decision trees provide a very popular and Decision trees provide a very popular and 
efficient hypothesis spaceefficient hypothesis space
–– Variable size: any boolean function can be Variable size: any boolean function can be 

representedrepresented
–– DeterministicDeterministic
–– Discrete and Continuous ParametersDiscrete and Continuous Parameters

Learning algorithms for decision trees can be Learning algorithms for decision trees can be 
described asdescribed as
–– Constructive Search: The tree is built by adding Constructive Search: The tree is built by adding 

nodesnodes
–– EagerEager
–– Batch (although online algorithms do exist)Batch (although online algorithms do exist)



Decision Tree Hypothesis SpaceDecision Tree Hypothesis Space
Internal nodes: test the value of particular features xInternal nodes: test the value of particular features xjj and and 
branch according to the results of the testbranch according to the results of the test
Leaf nodes: specify the class h(Leaf nodes: specify the class h(xx))

Features: Outlook (xFeatures: Outlook (x11), Temperature (x), Temperature (x22), Humidity (x), Humidity (x33), ), 
and Wind (xand Wind (x44))
xx = (sunny, hot, high, strong) will be classified as No.= (sunny, hot, high, strong) will be classified as No.



Decision Tree Hypothesis Space (2)Decision Tree Hypothesis Space (2)
If the features are continuous, internal nodes If the features are continuous, internal nodes 
may test the value of a feature against a may test the value of a feature against a 
thresholdthreshold



Decision Tree Decision BoundariesDecision Tree Decision Boundaries

Decision Trees divide the feature space into Decision Trees divide the feature space into 
axisaxis--parallel rectangles and label each rectangle parallel rectangles and label each rectangle 
with one of the K classeswith one of the K classes



Decision Trees Can Represent Any Decision Trees Can Represent Any 
Boolean FunctionBoolean Function

In the worst case, exponentially many nodes will In the worst case, exponentially many nodes will 
be needed, howeverbe needed, however



Decision Trees Provide VariableDecision Trees Provide Variable--
Sized Hypothesis SpaceSized Hypothesis Space

As the number of nodes (or depth) of tree As the number of nodes (or depth) of tree 
increases, the hypothesis space growsincreases, the hypothesis space grows
–– Depth 1 (Depth 1 (““decision stumpdecision stump””) can represent any ) can represent any 

boolean function of one featureboolean function of one feature
–– Depth 2: Any boolean function of two features Depth 2: Any boolean function of two features 

and some boolean functions involving three and some boolean functions involving three 
features:features:

(x(x11 ∧∧ xx22) ) ∨∨ ((¬¬ xx11 ∧∧ ¬¬ xx22))



Objective FunctionObjective Function
Let Let hh be a decision treebe a decision tree
Define our objective function to be the number of Define our objective function to be the number of 
misclassification errors on the training data:misclassification errors on the training data:

J(J(hh) = | { () = | { (xx,,yy) ) ∈∈ S : S : hh((xx) ) ≠≠ yy } |} |
Find Find hh that minimizes J(that minimizes J(hh))
–– Solution: Just create a decision tree with one path from root toSolution: Just create a decision tree with one path from root to

leaf for each training exampleleaf for each training example
–– Bug: Such a tree would just memorize the training data.  It woulBug: Such a tree would just memorize the training data.  It would d 

not generalize to new data pointsnot generalize to new data points
–– Solution 2: Find the Solution 2: Find the smallestsmallest tree tree hh that minimizes J(that minimizes J(hh).).
–– Bug 2: This is NPBug 2: This is NP--HardHard
–– Solution 3: Use a greedy approximationSolution 3: Use a greedy approximation



Learning Algorithm for Decision TreesLearning Algorithm for Decision Trees

GrowTree(S)

if (y= 0 for all hx, yi ∈ S) return new leaf(0)
else if (y = 1 for all hx, yi ∈ S) return new leaf(1)
else

choose best attribute xj
S0 := all hx, yi ∈ S with xj = 0;
S1 := all hx, yi ∈ S with xj = 1;
if S0 = ∅ return new leaf(majority(S));
else if S1 = ∅ return new leaf(majority(S));
else return new node(xj,GrowTree(S0),GrowTree(S1))



Choosing the Best Attribute (Method 1)Choosing the Best Attribute (Method 1)
Perform 1Perform 1--step lookahead search and choose step lookahead search and choose 
the attribute that gives the lowest error rate on the attribute that gives the lowest error rate on 
the training datathe training data

ChooseBestAttribute(S)

choose j to minimize Jj, computed as follows:

S0 := all hx, yi ∈ S with xj = 0;
S1 := all hx, yi ∈ S with xj = 1;
y0 := the most common value of y in S0
y1 := the most common value of y in S1
J0 := number of examples hx, yi ∈ S0 with y 6= y0
J1 := number of examples hx, yi ∈ S1 with y 6= y1
Jj := J0+ J1 (total errors if we split on this feature)

return j



Choosing the Best AttributeChoosing the Best Attribute
An ExampleAn Example

x1 x2 x3 y
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Training 
Examples



Choosing the Best Attribute (3)Choosing the Best Attribute (3)
Unfortunately, this measure does not always work well, Unfortunately, this measure does not always work well, 
because it does not detect cases where we are making because it does not detect cases where we are making 
““progressprogress”” toward a good treetoward a good tree



A Better Heuristic from Information TheoryA Better Heuristic from Information Theory
Let Let VV be a random variable with the following probability be a random variable with the following probability 
distributiondistribution

The The surprisesurprise S(V=v)S(V=v) of each value of of each value of VV is defined to beis defined to be

S(V=v) =  S(V=v) =  –– loglog22 P(V = v)P(V = v)

An event with probability 1 has zero surpriseAn event with probability 1 has zero surprise
An event with probability 0 has infinite surpriseAn event with probability 0 has infinite surprise
The surprise is equal to the asymptotic number of bits of The surprise is equal to the asymptotic number of bits of 
information that need to be transmitted to a recipient who information that need to be transmitted to a recipient who 
knows the probabilities of the results.  Hence, this is also knows the probabilities of the results.  Hence, this is also 
called the called the description lengthdescription length of of VV..

0.80.80.20.2
P(V = 1)P(V = 1)P(V = 0)P(V = 0)



EntropyEntropy
The The entropyentropy if if VV, denoted , denoted H(V)H(V), is defined as, is defined as

This is the average surprise describing the result of one This is the average surprise describing the result of one 
trial of trial of VV (one coin toss).  It can be viewed as a measure (one coin toss).  It can be viewed as a measure 
of uncertaintyof uncertainty

H(V ) =
1X

v=0

−P (V = v)log2P(V = v)



Mutual InformationMutual Information
Consider two random variables Consider two random variables AA and and BB that are not that are not 
necessarily independent.  The necessarily independent.  The mutual informationmutual information
between between AA and and BB is the amount of information we learn is the amount of information we learn 
about about BB by knowing the value of by knowing the value of AA (and vice versa (and vice versa –– it is it is 
symmetric).  It is computed as follows:symmetric).  It is computed as follows:

I(A;B) = H(B)−
X
a
P(A= a) ·H(B|A= a)

Consider the class Consider the class yy of each training example and the of each training example and the 
value of feature value of feature xx11 to be random variables.  The mutual to be random variables.  The mutual 
information quantifies how much information quantifies how much xx11 tells us about tells us about yy..



Choosing the Best Attribute Choosing the Best Attribute 
(Method 2)(Method 2)

Choose the attribute Choose the attribute xxjj that has the highest that has the highest 
mutual information with mutual information with yy..

Define          to be the expected remaining Define          to be the expected remaining 
uncertainty about uncertainty about yy after testing after testing xxjj

argmax
j

I(xj; y) = H(y) −
X
v
P(xj = v)H(y|xj = v)

= argmin
j

X
v
P (xj = v)H(y|xj = v)

J̃(j)

J̃(j) =
X
v
P(xj = v)H(y|xj = v)



Choosing the Best Attribute Choosing the Best Attribute 
(Method 2)(Method 2)

ChooseBestAttribute(S)

choose j to minimize J̃j, computed as follows:

S0 := all hx, yi ∈ S with xj = 0;
S1 := all hx, yi ∈ S with xj = 1;
p0 := |S0|/|S|;
n0 := |S0|;
n0,y := number of examples in S0 with class y

p0,y := n0,y/n0 probability of examples from class y in S0;

H(y|xj = 0) := −
P
y p0,y logp0,y;

compute p1 and H(y|xj = 1) in the same way
J̃j := p0H(y|xj = 0)+ p1H(y|xj = 1)

return j



NonNon--Boolean FeaturesBoolean Features

Multiple discrete valuesMultiple discrete values
–– Method 1: Construct multiway splitMethod 1: Construct multiway split
–– Method 2: Test for one value versus all of the othersMethod 2: Test for one value versus all of the others
–– Method 3: Group the values into two disjoint sets and Method 3: Group the values into two disjoint sets and 

test one set against the othertest one set against the other

RealReal--valued variablesvalued variables
–– Test the variable against a thresholdTest the variable against a threshold

In all cases, mutual information can be In all cases, mutual information can be 
computed to choose the best splitcomputed to choose the best split



Efficient Algorithm for RealEfficient Algorithm for Real--Valued Valued 
FeaturesFeatures

To compute the best threshold To compute the best threshold θθjj for attribute for attribute jj
–– Sort the examples according to xSort the examples according to xijij.  .  

Let Let θθ be the smallest observed xbe the smallest observed xijij valuevalue
Let nLet n0L0L:=0 and n:=0 and n1L1L:=0 be the number of examples from class :=0 be the number of examples from class 
yy=0 and =0 and yy=1 such that x=1 such that xijij < < θθ
Let nLet n0R0R := N:= N00 and nand n1R1R := N:= N11 be the number of examples from be the number of examples from 
class class yy=0 and =0 and yy=1 such that x=1 such that xijij ≥≥ θθ

–– Increase Increase θθ
Let yLet yii be the class of the next instancebe the class of the next instance

–– if yif yii = 0, then n= 0, then n0L0L++ and n++ and n0R0R----
–– else nelse n1L1L++ and n++ and n1R1R——

Compute J(Compute J(θθ) from n) from n0L 0L ,, nn1L 1L ,, nn0R 0R ,, and nand n1R 1R ..
Remember the smallest value of J and the corresponding Remember the smallest value of J and the corresponding θθ



RealReal--Valued FeaturesValued Features

Mutual information of Mutual information of θθ = 1.2 is 0.2294= 1.2 is 0.2294

yi 0 0 1 0 1 1 0 1 1
xij 0.2 0.4 0.7 1.1 1.3 1.7 1.9 2.4 2.9

n0,L= 3 n0,R = 1
n1,L= 1 n1,R = 4

Mutual information only needs to be computed at Mutual information only needs to be computed at 
points between examples from different classespoints between examples from different classes



Handling Missing Values:Handling Missing Values:
Proportional DistributionProportional Distribution

Attach a weight wAttach a weight wii to each example (to each example (xxii,y,yii). ). 
–– At the root of the tree, all examples have a weight of 1.0At the root of the tree, all examples have a weight of 1.0

Modify all mutual information computations to  use weights insteModify all mutual information computations to  use weights instead ad 
of countsof counts
When considering a test on attribute When considering a test on attribute jj, only consider those examples , only consider those examples 
for which xfor which xijij is not missingis not missing
When splitting the examples on attribute When splitting the examples on attribute jj::
–– Let pLet pLL be the probability that a nonbe the probability that a non--missing example is sent to the left missing example is sent to the left 

child and pchild and pRR be the probability that it is sent to the right childbe the probability that it is sent to the right child
–– For each example (For each example (xxii,y,yii) that is missing attribute ) that is missing attribute jj, sent it to both , sent it to both 

children.  Send it to the left child with weight wchildren.  Send it to the left child with weight wii := w:= wii ·· ppLL and to the right and to the right 
child with weight wchild with weight wii := w:= wii ·· ppRR

When classifying an example that is missing attribute When classifying an example that is missing attribute jj::
–– Send it down the left subtree.  Let P(Send it down the left subtree.  Let P(ŷŷLL||xx) be the resulting prediction) be the resulting prediction
–– Send it down the right subtree.  Let P(Send it down the right subtree.  Let P(ŷŷRR||xx) be the resulting prediction) be the resulting prediction
–– Return pReturn pLL ·· P(P(ŷŷLL||xx) + p) + pRR ·· P(P(ŷŷRR||xx))



Handling Missing Values: Handling Missing Values: 
Surrogate SplitsSurrogate Splits

Choose an attribute Choose an attribute jj and a splitting threshold and a splitting threshold θθjj
using all examples for which xusing all examples for which xijij is not missingis not missing
–– Let uLet uii be a variable that is 0 if (be a variable that is 0 if (xxii,,yyii) is sent to the left ) is sent to the left 

subtree and 1 if (subtree and 1 if (xxii,,yyii) is sent to the right subtree) is sent to the right subtree
–– For each remaining attribute For each remaining attribute qq, find the splitting , find the splitting 

threshold threshold θθqq that best predicts uthat best predicts uii.  Sort these by their .  Sort these by their 
predictive power and store them in node xpredictive power and store them in node xjj of the of the 
decision treedecision tree

When classifying a new data point (When classifying a new data point (x,x,yy) that is ) that is 
missing xmissing xjj, go through the list of surrogate splits , go through the list of surrogate splits 
until one is found that is not missing in until one is found that is not missing in xx.  Use x.  Use xqq
and and θθqq to decide which child to send to decide which child to send xx to.to.



Failure of Greedy ApproximationFailure of Greedy Approximation
Greedy heuristics cannot distinguish random Greedy heuristics cannot distinguish random 
noise from XORnoise from XOR x1 x2 x3 y

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0



Decision Tree EvaluationDecision Tree Evaluation

yesyes

yesyes

yesyes

nono

yesyes

nono

nono

yesyes

nono

LDALDA

nonoyesyesyesyesAccurateAccurate

yesyesyesyesyesyesInterpretableInterpretable

nonoyesyesyesyesLinear combinationsLinear combinations

somewhatsomewhatnonononoIrrelevant inputsIrrelevant inputs

yesyesyesyesyesyesScalabilityScalability

yesyesnonononoMonotone transformationsMonotone transformations

yesyesyesyesnonoOutliersOutliers

yesyesnonononoMissing valuesMissing values

yesyesnonononoMixed dataMixed data

TreesTreesLogisticLogisticPercPercCriterionCriterion



Decision Tree SummaryDecision Tree Summary

Hypothesis SpaceHypothesis Space
–– variable size (contains all functions)variable size (contains all functions)
–– deterministicdeterministic
–– discrete and continuous parametersdiscrete and continuous parameters
Search AlgorithmSearch Algorithm
–– constructive searchconstructive search
–– eagereager
–– batchbatch


