The Nearest Neighbor Algorithm

1 Hypothesis Space
— variable size
— deterministic
— continuous parameters

1 Learning Algorithm
— direct computation
— lazy

Nearest Neighbor Algorithm

1 Store all of the training examples

1 Classify a new example x by finding the training
example (x,, y;) that is nearest to x according to

Euclidean distance:

I — x| = \/ij — zi5)°
J

guess the class y = y.

1 Efficiency trick: squared Euclidean distance
gives the same answer but avoids the square
root computation

Ix — x;||12 = _(zj — zi5)?

J

Decision Boundaries: The Voronoil Diagram

1 Nearest Neighbor does not explicitly compute decision boundaries.
However, the boundaries form a subset of the Voronoi diagram of

the training data

8 Each line segment is equidistant between two points of opposite
class. The more examples that are stored, the more complex the

decision boundaries can become.

Nearest Neighbor depends critically
on the distance metric

18 Normalize Feature Values:

— All features should have the same range of values (e.g., [-1,+1]).
Otherwise, features with larger ranges will be treated as more
Important

1 Remove lrrelevant Features:
— lrrelevant or noisy features add random perturbations to the

distance measure and hurt performance
1 Learn a Distance Metric:

— One approach: weight each feature by its mutual information
with the class. Let w;=1(x;y). Then d(x,x’) = 2" wi(X; — X})?
— Another approach: Use the Mahalanobis distance:
Dy (X,X") = (X = xX)TZ(x — X7)
1 Smoothing:

— Find the k nearest neighbors and have them vote. This is
especially good when there is noise in the class labels.

Reducing the Cost of Nearest Neighbor

1 Efficient Data Structures for Retrieval (kd-
trees)

1 Selectively Storing Data Points (editing)
1 Pipeline of Filters

kd Trees

1 A kd-tree is similar to a decision tree except that we split
using the median value along the dimension having the

highest variance. Every internal node stores one data
point, and the leaves are empty

Log time Queries with kd-trees

KDTree root;
Node NearestNeighbor(Point P)
{
PriorityQueue PQ; // minimizing queue
float bestDist = infinity; // smallest distance seen so far
Node bestNode; /[nearest neighbor so far
PQ.push(root, 0);
while ('PQ.empty()) {
(node, bound) = PQ.pop();
if (bound >= bestDist) return bestNode.p;
float dist = distance(P, node.p);
if (dist < bestDist) {bestDist = dist; bestNode = node; }
if (node.test(P)) {PQ.push(node.left, P[node.feat] - node.thresh);
PQ.push(node.right, 0); }
else { PQ.push(node.left, 0);
PQ.push(node.right, node.thresh - P[node.feat]); }
} I/ while
return bestNode.p;
} I/ NearestNeighbor

Example

Best Distance Priority Queue

= e Joo
0 ()
z

0 (1))
e [e Jenemen

1 This is a form of A* search using the minimum distance to a node as an
underestimate of the true distance

Edited Nearest Neighbor

1 Select a subset of the training examples
that still gives good classifications

— Incremental deletion: Loop through the
memory and test each point to see if it can be
correctly classified given the other points in
memory. If so, delete it from the memory.

— Incremental growth. Start with an empty
memory. Add each point to the memory only
If It IS not correctly classified by the points
already stored

Filter Pipeline

1 Consider several distance measures: D,,
D,, ..., D, where D,,, IS more expensive to
compute than D,

1 Calibrate a threshold N, for each filter
using the training data

1 Apply the nearest neighbor rule with D, to
compute the N nearest neighbors

1 Then apply filter D,,, to those neighbors
and keep the N.,, nearest, and so on

The Curse of Dimensionality

Nearest neighbor breaks down in high-dimensional spaces, because the
“neighborhood” becomes very large.

Suppose we have 5000 points uniformly distributed in the unit hypercube
and we want to apply the 5-nearest neighbor algorithm. Suppose our query
point is at the origin.

Then on the 1-dimensional line, we must go a distance of 5/5000 = 0.001 on
the average to capture the 5 nearest neighbors

In 2 dimensions, we must go ,/0.001 to get a square that contains 0.001 of
the volume.

In D dimensions, we must go (0.001)/d

I

The Curse of Dimensionality (2)

1 With 5000 points in 10 dimensions, we must go
0.501 distance along each attribute in order to
find the 5 nearest neighbors

The Curse of Noisy/lrrelevant Features

NNbr also breaks down when the data contains irrelevant, noisy
features.

Consider a 1D problem where our query x is at the origin, our
nearest neighbor is x7 at 0.1, and our second nearest neighbor is x2
at 0.5.

Now add a uniformly random noisy feature. What is the probability
that x2” will now be closer to x than x7? Approximately 0.15.

-
e
c
O

-

e}
[5
Q
(72]

Q9
(&)

Rt

AN
X

et
©

£
et
£

.-a
@©

0
(@)
[.

(a8

Curse of Noise (2)

Location of x7 versus x2

0.1 versus 0.5

0.1 versus 1.0

10
Number of noisy dimensions

Nearest Neighbor Evaluation

Criterion

Logistic

LDA

Trees

Mixed data

Missing values

Outliers

Monotone transformations
Scalability

Irrelevant inputs

Linear combinations
Interpretable

Accurate

no

no

no

yes
yes
yes
yes
yes
somewhat

no

no
no

yes
somewhat
yes

no

yes

no

no
somewhat
yes

no

no

no
somewhat
no

no

Nearest Neighbor Summary

1 Advantages
— variable-sized hypothesis space

— learning is extremely efficient and can be online or
batch

1 However, growing a good kd-tree can be expensive
— Very flexible decision boundaries

1 Disadvantages
— distance function must be carefully chosen
— Irrelevant or correlated features must be eliminated
— typically cannot handle more than 30 features

— computational costs: memory and classification-time
computation

