The Nearest Neighbor Algorithm

Hypothesis Space

 variable size
 deterministic
 continuous parameters

 Learning Algorithm

 direct computation
 lazy

Nearest Neighbor Algorithm

Store all of the training examples

Classify a new example x by finding the training example (x_i, y_i) that is nearest to x according to Euclidean distance:

$$\|\mathbf{x} - \mathbf{x}_i\| = \sqrt{\sum_j (x_j - x_{ij})^2}$$

guess the class $\hat{y} = y_i$.

Efficiency trick: squared Euclidean distance gives the same answer but avoids the square root computation

$$\|\mathbf{x} - \mathbf{x}_i\|^2 = \sum_j (x_j - x_{ij})^2$$

Decision Boundaries: The Voronoi Diagram

- Nearest Neighbor does not explicitly compute decision boundaries. However, the boundaries form a subset of the Voronoi diagram of the training data
- Each line segment is equidistant between two points of opposite class. The more examples that are stored, the more complex the decision boundaries can become.

Nearest Neighbor depends critically on the distance metric

Normalize Feature Values:

 All features should have the same range of values (e.g., [-1,+1]). Otherwise, features with larger ranges will be treated as more important

Remove Irrelevant Features:

Irrelevant or noisy features add random perturbations to the distance measure and hurt performance

Learn a Distance Metric:

- One approach: weight each feature by its mutual information with the class. Let $w_i = I(x_i; y)$. Then $d(\mathbf{x}, \mathbf{x'}) = \sum_{i=1}^{n} w_i (x_i x'_i)^2$
- Another approach: Use the Mahalanobis distance: $D_M(\mathbf{x}, \mathbf{x}') = (\mathbf{x} - \mathbf{x}')^T \Sigma^{-1} (\mathbf{x} - \mathbf{x}')$
- Smoothing:
 - Find the k nearest neighbors and have them vote. This is especially good when there is noise in the class labels.

Reducing the Cost of Nearest Neighbor Efficient Data Structures for Retrieval (kd-trees) Selectively Storing Data Points (editing) Pipeline of Filters

kd Trees

A kd-tree is similar to a decision tree except that we split using the *median* value along the dimension having the *highest variance*. Every internal node stores one data point, and the leaves are empty

Log time Queries with kd-trees

- KDTree root;
- Node NearestNeighbor(Point P)
- PriorityQueue PQ; // minimizing queue
- float bestDist = infinity; // smallest distance seen so far
- Node bestNode; // nearest neighbor so far
- PQ.push(root, 0);
- while (!PQ.empty()) {
- (node, bound) = PQ.pop();
- if (bound >= bestDist) return bestNode.p;
- float dist = distance(P, node.p);
- if (dist < bestDist) {bestDist = dist; bestNode = node; }</pre>
- if (node.test(P)) {PQ.push(node.left, P[node.feat] node.thresh); PQ.push(node.right, 0); }
- else { PQ.push(node.left, 0);

PQ.push(node.right, node.thresh - P[node.feat]); }

- } // while
- return bestNode.p;
- } // NearestNeighbor

Example

New Distance	Best Distance	Best node	Priority Queue		
none	∞	none	(f,0)		
4.00	4.00	f	(c,0) (h,4)		
7.61	4.00	f	(e,0) (h,4) (b,7)		
1.00	1.00	е	(d,1) (h,4) (b,7)		

This is a form of A* search using the minimum distance to a node as an underestimate of the true distance

Edited Nearest Neighbor

- Select a subset of the training examples that still gives good classifications
 - Incremental deletion: Loop through the memory and test each point to see if it can be correctly classified given the other points in memory. If so, delete it from the memory.
 - Incremental growth. Start with an empty memory. Add each point to the memory only if it is not correctly classified by the points already stored

Filter Pipeline

 \blacksquare Consider several distance measures: D₁, D_2, \ldots, D_n where D_{i+1} is more expensive to compute than D_i Calibrate a threshold N_i for each filter using the training data Apply the nearest neighbor rule with D_i to compute the N_i nearest neighbors Then apply filter D_{i+1} to those neighbors and keep the N_{i+1} nearest, and so on

The Curse of Dimensionality

- Nearest neighbor breaks down in high-dimensional spaces, because the "neighborhood" becomes very large.
- Suppose we have 5000 points uniformly distributed in the unit hypercube and we want to apply the 5-nearest neighbor algorithm. Suppose our query point is at the origin.
- Then on the 1-dimensional line, we must go a distance of 5/5000 = 0.001 on the average to capture the 5 nearest neighbors
- In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
- In D dimensions, we must go (0.001)^{1/d}

The Curse of Dimensionality (2)

With 5000 points in 10 dimensions, we must go 0.501 distance along each attribute in order to find the 5 nearest neighbors

The Curse of Noisy/Irrelevant Features

- NNbr also breaks down when the data contains irrelevant, noisy features.
- Consider a 1D problem where our query x is at the origin, our nearest neighbor is x1 at 0.1, and our second nearest neighbor is x2 at 0.5.
- Now add a uniformly random noisy feature. What is the probability that x2' will now be closer to x than x1'? Approximately 0.15.

Curse of Noise (2) Location of x1 versus x2

Nearest Neighbor Evaluation

Criterion	Perc	Logistic	LDA	Trees	Nets	NNbr
Mixed data	no	no	no	yes	no	no
Missing values	no	no	yes	yes	no	somewhat
Outliers	no	yes	no	yes	yes	yes
Monotone transformations	no	no	no	yes	somewhat	no
Scalability	yes	yes	yes	yes	yes	no
Irrelevant inputs	no	no	no	somewhat	no	no
Linear combinations	yes	yes	yes	no	yes	somewhat
Interpretable	yes	yes	yes	yes	no	no
Accurate	yes	yes	yes	no	yes	no

Nearest Neighbor Summary

Advantages

- variable-sized hypothesis space
- learning is extremely efficient and can be online or batch
 - However, growing a good kd-tree can be expensive
- Very flexible decision boundaries
- Disadvantages
 - distance function must be carefully chosen
 - irrelevant or correlated features must be eliminated
 - typically cannot handle more than 30 features
 - computational costs: memory and classification-time computation