
Learning Bayesian Networks:Learning Bayesian Networks:
NaNaïïve and nonve and non--NaNaïïve Bayesve Bayes

Hypothesis SpaceHypothesis Space
–– fixed sizefixed size
–– stochasticstochastic
–– continuous parameterscontinuous parameters
Learning AlgorithmLearning Algorithm
–– direct computationdirect computation
–– eagereager
–– batchbatch



Multivariate Gaussian ClassifierMultivariate Gaussian Classifier

The multivariate Gaussian Classifier is The multivariate Gaussian Classifier is 
equivalent to a simple Bayesian networkequivalent to a simple Bayesian network
This models the joint distribution P(This models the joint distribution P(xx,y) under ,y) under 
the assumption that the class conditional the assumption that the class conditional 
distributions P(distributions P(xx|y) are multivariate gaussians|y) are multivariate gaussians
–– P(y):  multinomial random variable (KP(y):  multinomial random variable (K--sided coin)sided coin)
–– P(P(xx|y): multivariate gaussian mean |y): multivariate gaussian mean µµkk covariance covariance 

matrix matrix ΣΣkk

y x



NaNaïïve Bayes Modelve Bayes Model

Each node contains a probability tableEach node contains a probability table
–– yy:  P(:  P(yy = = kk))
–– xxjj:  P(:  P(xxjj = = vv | | yy = = kk)  )  ““class conditional probabilityclass conditional probability””

Interpret as a generative modelInterpret as a generative model
–– Choose the class Choose the class kk according to P(according to P(yy = = kk))
–– Generate each feature Generate each feature independentlyindependently according to P(xaccording to P(xjj==vv | | yy==kk))
–– The feature values are The feature values are conditionally independentconditionally independent

P(P(xxii,,xxjj | | yy) = P() = P(xxii | | yy) ) ·· P(P(xxjj | | yy))

y

x3x2x1 xn
…



Representing P(Representing P(xxjj||yy))
Many representations are possibleMany representations are possible
–– Univariate GaussianUnivariate Gaussian

if if xxjj is a continuous random variable, then we can use a normal is a continuous random variable, then we can use a normal 
distribution and learn the mean distribution and learn the mean µµ and variance and variance σσ22

–– MultinomialMultinomial
if if xxjj is a discrete random variable, is a discrete random variable, xxjj ∈∈ {{vv11, , ……, , vvmm}, then we construct }, then we construct 
the conditional probability tablethe conditional probability table

–– DiscretizationDiscretization
convert continuous convert continuous xxjj into a discrete variableinto a discrete variable

–– Kernel Density EstimatesKernel Density Estimates
apply a kind of nearestapply a kind of nearest--neighbor algorithm to compute P(neighbor algorithm to compute P(xxjj | | yy) in ) in 
neighborhood of query pointneighborhood of query point

P(xP(xjj==vvmm | | y = y = K)K)……P(xP(xjj==vvmm | | y = y = 2)2)P(xP(xjj==vvmm | | y = y = 1)1)xxjj==vvmm

…………………………

P(xP(xjj==vvmm | | y = y = K)K)……P(xP(xjj==vv22 | | y = y = 2)2)P(xP(xjj==vv22 | | y = y = 1)1)xxjj==vv22

P(xP(xjj==vvmm | | y = y = K)K)……P(xP(xjj==vv11 | | y = y = 2)2)P(xP(xjj==vv11 | | y = y = 1)1)xxjj==vv11

yy=K=K……yy=2=2yy = 1= 1



Discretization via Mutual InformationDiscretization via Mutual Information
Many discretization algorithms have been studied.  One Many discretization algorithms have been studied.  One 
of the best is mutual information discretizationof the best is mutual information discretization
–– To discretize feature xTo discretize feature xjj, grow a decision tree considering only , grow a decision tree considering only 

splits on splits on xxjj.  Each leaf of the resulting tree will correspond to a .  Each leaf of the resulting tree will correspond to a 
single value of the discretized single value of the discretized xxjj..

–– Stopping rule (applied at each node).  Stop whenStopping rule (applied at each node).  Stop when

–– where where SS is the training data in the parent node; is the training data in the parent node; SSll and and SSrr are the are the 
examples in the left and right child.  K, Kexamples in the left and right child.  K, Kll, and K, and Krr are the are the 
corresponding number of classes present in these examples.  corresponding number of classes present in these examples.  II
is the mutual information, is the mutual information, HH is the entropy, and is the entropy, and NN is the number is the number 
of examples in the node.of examples in the node.

I(xj;y) <
log2(N − 1)

N
+
∆

N

∆ = log2(3
K−2)−[K ·H(S)−Kl·H(Sl)−Kr·H(Sr)]



Kernel Density EstimatorsKernel Density Estimators
Define                                                  to Define                                                  to 
be the Gaussian Kernel with parameter be the Gaussian Kernel with parameter σσ
EstimateEstimate

where Nwhere Nkk is the number of training is the number of training 
examples in class examples in class kk..

P(xj|y = k) =

P
{i|y=k}K(xj, xi,j)

Nk

K(xj, xi,j) =
1√
2πσ

exp−
µ
xj − xi,j

σ

¶2



Kernel Density Estimators (2)Kernel Density Estimators (2)

This is equivalent to placing a Gaussian This is equivalent to placing a Gaussian 
““bumpbump”” of height 1/of height 1/NNkk on each trianing on each trianing 
data point from class data point from class kk and then adding and then adding 
them upthem up

xj

P
(x

j|y
)



Kernel Density EstimatorsKernel Density Estimators

Resulting probability densityResulting probability density
P

(x
j|y

)

xj



The value chosen for The value chosen for σσ is criticalis critical

σ=0.15 σ=0.50



NaNaïïve Bayes learns a ve Bayes learns a 
Linear Threshold UnitLinear Threshold Unit

For multinomial and discretized attributes (but For multinomial and discretized attributes (but 
notnot Gaussian), NaGaussian), Naïïve Bayes gives a linear ve Bayes gives a linear 
decision boundarydecision boundary

Define a discriminant function for class 1 versus Define a discriminant function for class 1 versus 
class Kclass K

h(x) =
P(Y = 1|X)
P (Y = K|X) =

P(x1 = v1|Y = 1)
P(x1 = v1|Y = K)

· · · P (xn = vn|Y = 1)
P(xn = vn|Y = K)

· P (Y = 1)
P(Y = K)

P (x|Y = y) = P(x1 = v1|Y = y)·P(x2 = v2|Y = y) · · · P(xn = vn|Y = y)



Log of Odds RatioLog of Odds Ratio

Suppose each xj is binary and define

P(y = 1|x)
P (y = K |x) =

P (x1 = v1|y = 1)
P(x1 = v1|y = K)

· · · P(xn = vn|y = 1)
P (xn = vn|y = K)

· P(y = 1)
P(y = K)

log
P(y = 1|x)
P (y = K |x) = log

P(x1 = v1|y = 1)
P(x1 = v1|y = K)

+ . . . log
P(xn = vn|y = 1)
P(xn = vn|y = K)

+ log
P (y = 1)

P(y = K)

αj,0 = log
P(xj = 0|y = 1)
P (xj = 0|y = K)

αj,1 = log
P(xj = 1|y = 1)
P (xj = 1|y = K)



Log Odds (2)Log Odds (2)

Now rewrite asNow rewrite as

log
P(y = 1|x)
P (y = K |x) =

X
j

(αj,1− αj,0)xj+ αj,0+ log
P(y = 1)

P (y = K)

log
P(y = 1|x)
P (y = K |x) =

X
j

(αj,1− αj,0)xj+
⎛⎝X
j

αj,0 + log
P(y = 1)

P(y = K)

⎞⎠

We classify into class 1 if this is We classify into class 1 if this is ≥≥ 0 and 0 and 
into class K otherwiseinto class K otherwise



Learning the Probability Learning the Probability 
Distributions by Direct ComputationDistributions by Direct Computation

P(P(yy==kk) is just the fraction of training examples ) is just the fraction of training examples 
belonging to class belonging to class k.k.
For multinomial variables, P(For multinomial variables, P(xxjj = = vv | | yy = = kk) is the ) is the 
fraction of training examples in class fraction of training examples in class kk where where xxjj
= = vv
For Gaussian variables,         is the average For Gaussian variables,         is the average 
value of value of xxjj for training examples in class for training examples in class kk.                 .                 
is the sample standard deviation of those points:is the sample standard deviation of those points:

µ̂jk

σ̂jk =

vuut 1
Nk

X
{i|yi=k}

(xi,j − µ̂jk)2

σ̂jk



Improved Probability Estimates via Improved Probability Estimates via 
Laplace CorrectionsLaplace Corrections

When we have very little training data, direct probability compuWhen we have very little training data, direct probability computation tation 
can give probabilities of 0 or 1.  Such extreme probabilities arcan give probabilities of 0 or 1.  Such extreme probabilities are e ““too too 
strongstrong”” and cause problemsand cause problems
Suppose we are estimate a probability P(z) and we have nSuppose we are estimate a probability P(z) and we have n00
examples where z is false and nexamples where z is false and n11 examples where z is true.  Our examples where z is true.  Our 
direct estimate isdirect estimate is

Laplace Estimate.  Add 1 to the numerator and 2 to the denominatLaplace Estimate.  Add 1 to the numerator and 2 to the denominatoror

This says that in the absence of any evidence, we expect P(zThis says that in the absence of any evidence, we expect P(z) = 0.5, ) = 0.5, 
but our belief is weak (equivalent to 1 example for each outcomebut our belief is weak (equivalent to 1 example for each outcome).).
Generalized Laplace Estimate.  If z has K different outcomes, thGeneralized Laplace Estimate.  If z has K different outcomes, then en 
we estimate it aswe estimate it as

P(z = 1)=
n1+ 1

n0+ n1+ 2

P(z = 1) =
n1

n0 + n1

P (z = 1) =
n1+ 1

n0+ · · ·+ nK−1+K



NaNaïïve Bayes Applied to Diabetes Diagnosisve Bayes Applied to Diabetes Diagnosis

Bayes nets and causalityBayes nets and causality
–– Bayes nets work best when arrows follow the direction of Bayes nets work best when arrows follow the direction of 

causalitycausality
two things with a common cause are likely to be conditionally two things with a common cause are likely to be conditionally 
independent given the cause; arrows in the causal direction captindependent given the cause; arrows in the causal direction capture ure 
this independencethis independence

–– In a NaIn a Naïïve Bayes network, arrows are often ve Bayes network, arrows are often notnot in the causal in the causal 
directiondirection

diabetes does not cause pregnanciesdiabetes does not cause pregnancies
diabetes does not cause agediabetes does not cause age

–– But some arrows are correctBut some arrows are correct
diabetes does cause the level of blood insulin and blood glucosediabetes does cause the level of blood insulin and blood glucose



NonNon--NaNaïïve Bayesve Bayes
Manually construct a graph in which Manually construct a graph in which 
all arcs are causalall arcs are causal
Learning the probability tables is still Learning the probability tables is still 
easy.  For example, P(Mass | Age, easy.  For example, P(Mass | Age, 
Preg) involves counting the number Preg) involves counting the number 
of patients of a given age and of patients of a given age and 
number of pregnancies that have a number of pregnancies that have a 
given body massgiven body mass
Classification:Classification:
P (D = d|A,P,M, I,G) =

P(I |D= d)P(G|I,D = d)P(D= d|A,M, P)
P (I,G)



Evaluation of NaEvaluation of Naïïve Bayesve Bayes
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LDALDA

yesyesyesyesAccurateAccurate

yesyesyesyesInterpretableInterpretable

yesyesyesyesLinear combinationsLinear combinations

nonononoIrrelevant inputsIrrelevant inputs

yesyesyesyesScalabilityScalability

nonononoMonotone transformationsMonotone transformations

yesyesnonoOutliersOutliers

nonononoMissing valuesMissing values

nonononoMixed dataMixed data

LogisticLogisticLMSLMSCriterionCriterion

• Naïve Bayes is very popular, particularly in natural language processing 
and information retrieval where there are many features compared to the 
number of examples

• In applications with lots of data, Naïve Bayes does not usually perform 
as well as more sophisticated methods



NaNaïïve Bayes Summaryve Bayes Summary
Advantages of Bayesian networksAdvantages of Bayesian networks
–– Produces stochastic classifiersProduces stochastic classifiers

can be combined with utility functions to make optimal decisionscan be combined with utility functions to make optimal decisions
–– Easy to incorporate causal knowledgeEasy to incorporate causal knowledge

resulting probabilities are easy to interpretresulting probabilities are easy to interpret
–– Very simple learning algorithmsVery simple learning algorithms

if all variables are observed in training dataif all variables are observed in training data

Disadvantages of Bayesian networksDisadvantages of Bayesian networks
–– Fixed sized hypothesis spaceFixed sized hypothesis space

may underfit or overfit the datamay underfit or overfit the data
may not contain may not contain anyany good classifiers if prior knowledge is wronggood classifiers if prior knowledge is wrong

–– Harder to handle continuous featuresHarder to handle continuous features


