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Automated recognition of object categories in images is a critical step for many 

real-world computer vision applications. Interest region detectors and region 

descriptors have been widely employed to tackle the variability of objects in pose, 

scale, lighting, texture, color, and so on. Different types of object recognition 

problems usually require different image features and corresponding learning 

algorithms. This dissertation focuses on the design, evaluation and application of new 

image features and learning algorithms for the recognition of biological, generic and 

social objects. The first part of the dissertation introduces a new structure-based 

interest region detector called the principal curvature-based region detector (PCBR) 

which detects stable watershed regions that are robust to local intensity perturbations. 

This detector is specifically designed for region detection for biological objects. 

Several recognition architectures are then developed that fuse visual information from 

disparate types of image features for the categorization of complex objects. The 

described image features and learning algorithms achieve excellent performance on 

the difficult stonefly larvae dataset. The second part of the dissertation presents studies 

of methods for visual codebook learning and their application to object recognition. 

The dissertation first introduces the methodology and application of generative visual 

codebooks for stonefly recognition and introduces a discriminative evaluation 

 



 

methodology based on a maximum mutual information criterion. Then a new 

generative/discriminative visual codebook learning algorithm, called iterative 

discriminative clustering (IDC), is presented that refines the centers and the shapes of 

the generative codewords for improved discriminative power. It is followed by a novel 

codebook learning algorithm that builds multiple codebooks that are non-redundant in 

discriminative power. All these visual codebook learning algorithms achieve high 

performance on both biological and generic object recognition tasks. The final part of 

the dissertation describes a socially-driven clothes recognition system for an 

intelligent fitting-room system. The dissertation presents the results of a user study to 

identify the key factors for clothes recognition.  It then describes learning algorithms 

for recognizing these key factors from clothes images using various image features. 

The clothes recognition system successfully enables automated social fashion 

information retrieval for an enhanced clothes shopping experience. 
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Image Features and Learning Algorithms for Biological, Generic 
and Social Object Recognition 

 
 

1 Introduction 

1.1 Background and Motivation 

As one of the most fundamental and active areas in computer vision, object 

recognition is commonly used as the general term for the problems of 

automatically categorizing an object in an image into a set of predefined classes. A 

typical object recognition system is composed of the following elements (Shapiro 

and Stockman 2001): 1. Low-level image feature extractor: the feature extractor 

extracts information relevant to classification from the data input by the sensor. 

Popular feature extractors include interest region detectors (Mikolajczyk et al. 

2005a), region descriptors (Mikolajczyk and Schmid 2005), texture analysis, 

segmentation (Shapiro and Stockman 2001), and so on. 2. High-level classifier: the 

image classifier uses the features extracted from the sensed object data to assign 

the object to one of the m designated classes (Duda et al. 2001). In many state-of-

the-art object recognition approaches, there is an additional “mid-level” process 

which generates informative and compact image representations based on the 

extracted low-level features. The image presentations are then input to the high-

level image classifier for object categorization. The most popular mid-level 

method is the visual codebook approach (Csurka et al. 2004 etc.).  

Although it is quite natural for humans to recognize thousands of object 

categories, object recognition continues to be a challenge for machine vision 

systems. The difficulty mainly lies in two aspects (see Figures 1−5): (1) large 

appearance variance in objects due to intrinsic variations, different poses, visual 

transformations, occlusions, noise, and so on; and (2) Inter-class similarity caused 

by some visual patterns shared by different classes.  

Interest region detectors and region descriptors have been widely employed to 

tackle these difficulties. An interest region (point) detector detects the regions that 
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are distinctive and invariant to image transformations (see Figure 6 and Figure 7). 

And for each interest region, a descriptor vector is computed that describes the 

color, textural or structural information within the region. These feature extractors 

are advantageous in their robustness to image variations and background clutter 

(see Section 2.2). They transform an original image into a bag of region descriptor 

vectors, e.g., bag-of-keypoints (Csurka et al. 2004). Thus the object recognition 

problem reduces to a multiple-instance classification problem (Dietterich et al. 

1997) that classifies the bag-of-keypoints image representation into one of the m 

designated classes. Various learning algorithms have been proposed to train image 

classifiers based on bags of keypoints, including visual codebook approaches (See 

Section 2.3) and discriminative feature selection methods (see Section 2.4), and so 

on. These image features and learning algorithms have achieved significant 

success in object recognition.  

In real-world object recognition tasks, the visual properties of the objects and 

the settings of the recognition problems may vary significantly in different 

domains. This dissertation focuses on the recognition of three types of objects: 

biological objects, generic objects and social objects. Specific challenges arise in 

each of these domains, as introduced below.   

Biological object recognition  

Population counts of insects that live in soils, lakes, streams and ocean are good 

measurements to the health of these ecosystems. But these measurements are 

usually not easily accessible in current environmental science applications. Manual 

insect classification is very difficult and time-consuming. It requires a great deal of 

domain knowledge which is only possessed by a few highly-experienced 

entomologists worldwide. The OSU “Bug-ID” project (BugID) employs cost-

effective computer vision and machine learning methods for automated rapid-

throughput image capture, recognition and sorting of insects. This dissertation 

presents work on a specific problem in this project: the automated recognition of 
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stonefly larvae, which are known to be a sensitive indicator of freshwater stream 

health. Example images of stoneflies are shown in Figure 1.  

Automated recognition of stoneflies is extremely challenging. First, there are 

large intra-class variations in the images. Geometric and photometric properties of 

the larvae change significantly with their age. The stonefly larvae consist of 

bloblike parts, very elongated legs, and wiry antennae. Bloblike insect parts may 

produce specularities, which in turn may be easily confused with the insect’s 

canonical photometric properties. Due to the multiple legs and antennae, the 

insects are highly articulated, and thus appear in different poses in the images. As 

an additional challenge, the image acquisition system cannot completely 

immobilize the insects while taking pictures. As a result, the insects are imaged 

from non-perfect dorsal views. Second, the differences between categories can be 

very small. For example, the appearance of two categories of stoneflies: Cal and 

Dor (shown in the top two rows in Figure 1) are so similar to each other that 

sometimes they are not distinguishable by human eyes. An experiment (Larios et 

al. 2008) showed that the biology students and faculty in the Oregon State insect 

ID group, who have been trained to recognize images of these two categories, 

achieve only 78.6% classification accuracy on images of these two categories. All 

these challenges make categorizing stonefly images an extremely difficult task.  

Generic object recognition 

Recognizing the generic categories of objects (e.g., cars, bikes, etc.) in images 

of natural scenes is a fundamental problem in computer vision. Benchmark object 

recognition datasets such as the Caltech (Caltech, see Figure 2), GRAZ (GRAZ, 

see Figure 3) and PASCAL datasets (PASCAL06, see Figure 4) have been 

collected and evaluated extensively by different research groups. These generic 

object recognition problems are quite challenging. First, the images in these 

datasets are photos of the objects taken in uncontrolled natural scenes; they usually 

contain very complex background clutter. The objects within a single class vary 

significantly in their size, pose, color, texture, and so on. Thus the recognition 
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system needs to be robust to background noise and invariant to image 

transformations. Second, oftentimes only a limited number of labeled training 

images are provided in these datasets. Therefore the learning algorithm is required 

to have low risk of overfitting.  

Social object recognition  

An intelligent fitting-room system called the “Responsive Mirror (RM)” (Zhang 

et al. 2008b; Begole et al. 2008) has been developed. The RM system enables 

online shopping capabilities during the in-store shopping experience using 

computer vision and machine learning techniques. The “social” comparison 

component in the RM system automatically retrieves the clothes that are most 

“similar” and “different” to the query clothes from the image dataset, as shown in 

Figure 5. A new social vision problem – socially-driven clothes recognition is 

defined in order to realize this function. Clothes recognition is difficult in a 

number of ways: the social nature of the problem definition; the real-time 

requirement; the low resolution of the images; the high intra-class variation in 

clothes images; the deformable configurations of the clothes, and so on. An 

additional challenge is the small number of clothes images available for system 

development due to the high cost of data collection. Similar to generic object 

recognition problems, the recognition system needs to be robust to overfitting.    

In summary, objects in different domains usually require different image 

features and learning algorithms to achieve satisfactory recognition performance. 

This dissertation focuses on the design, evaluation and application of new image 

features and learning algorithms for the recognition of biological, generic and 

social objects. The purpose is to develop novel object recognition methods that not 

only perform well on the specific object classes, but also generalize to other tasks 

of similar nature.  

1.2 Contributions 

The contributions of this dissertation are outlined as follows: 
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1. This dissertation presents a novel structure-based semi-local interest 

region detector – the PCBR detector – for the extraction of salient 

regions from non-rigid biological objects (Zhang et al. 2006; Deng 

et al. 2007). PCBR detects the regions that have a coherent interior 

and that are surrounded by distinctive curvilinear structure. PCBR 

complements previous intensity-based detectors and shows high 

robustness to local intensity perturbation and intra-class variation. 

The PCBR detector achieves excellent performance on various 

object recognition tasks. 

2. This dissertation describes new object recognition methods (Zhang 

et al. 2006; Martínez-Muñoz et al. 2009) that fuse disparate types of 

low-level image features for accurate recognition of complex 

objects. The image features generated by different combinations of 

interest region detectors and descriptors are selected via supervised 

learning to explore the most discriminative object patterns for 

recognition. These methods are general frameworks that can be 

applied to any object recognition tasks using bag-of-keypoints 

image representations. All of these methods achieve high 

performance on the challenging stonefly recognition dataset and 

generic object recognition datasets.   

3. The success of an object recognition system using bag-of-keypoints 

image representations highly relies on proper generalization of these 

image features. This dissertation studies a simple and efficient 

method of feature generalization – the visual codebook. Generative 

visual codebooks (Larios et al. 2008) are successfully adapted to the 

challenging stonefly recognition problem by building a separate 

codebook for each type of image feature and then concatenating the 

image attribute vectors generated from the codebooks. The 

Maximum Mutual Information (MMI) evaluation criterion (Zhang 
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and Deng 2008) is presented to measure the discriminative power of 

generative visual codebooks built from different combinations of 

region detectors and descriptors. We also present a novel 

generative/discriminative visual codebook learning algorithm 

(Zhang and Dietterich 2008) that refines the centers and shapes of 

the codebook entries using class label supervision for improved 

discriminative power. Finally, a new non-redundant visual 

codebook learning algorithm (Zhang et al. 2009) is developed which 

builds multiple codebooks that are non-redundant in discriminative 

power. All these new visual codebook learning algorithms advance 

the research in this direction. They also give high performance on 

real-world biological and generic object recognition datasets.  

4. Finally, this dissertation studies a class of largely unexplored object 

recognition problems: the recognition of objects with social 

meaning. It focuses on a specific problem in this class – clothes 

recognition – and presents a solution to this difficult problem 

(Zhang et al. 2008a; Zhang et al. 2008b; Zhang et al. 2008c). A user 

study is first conducted to identify the most important clothes 

factors human eyes perceive in term of clothing similarity. Then 

these factors are automatically recognized in clothes images by 

learning classifiers over the extracted low-level image features. This 

clothes recognition system achieves high performance on a 

simulated test dataset; it also successfully enables social clothes 

retrieval and comparison in physical stores. Our research not only 

explores the application of image features and learning algorithms 

in intelligent computer-human interaction, but also benefits future 

research on the automated visual recognition of other social objects.  
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1.3 Dissertation Outline 

The dissertation starts with a literature review (Chapter 2) of state-of-the-art 

interest region detectors and region descriptors, visual codebook learning 

algorithms and recognition methods based on discriminative image feature 

selection. Chapter 3 presents the new PCBR detector and recognition architectures 

developed for the stonefly recognition problem. Chapter 4 describes the new 

unsupervised and supervised visual codebook learning algorithms and their 

application in real-world object recognition tasks. Then this dissertation moves to 

the socially-driven clothes recognition problem in Chapter 5 and presents an 

efficient clothes recognition system for intelligent clothes recommendation in 

fitting room. This dissertation concludes in Chapter 6 with proposals for future 

research directions.  
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Figure 1. Example images in stonefly larvae, with rows corresponding to the nine 
categories: Cal, Dor, Hes, Iso, Mos, Pte, Swe, Yor and Zap. 
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Figure 2. Example images in Caltech dataset with rows corresponding to different 
categories: airplanes, faces, motorbikes, cars, leaves, leopards, and background 

scenes.  
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Figure 3. Example images in GRAZ dataset with rows corresponding to bikes, 
persons, and background categories.  
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                     (a)                                                         (b) 

    
                       (c)                                                         (d) 

    
                      (e)                                                         (f) 

     
                      (g)                                                         (h) 

 

Figure 4. Example images in PASCAL 2006 dataset containing objects from 
different categories: (a) bikes, (b) cars, buses and person, (c) cows, (d) horses and 

person, (e) sheeps, (f) cat, (g) dog and person, (h) bike and motorbike.   
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Figure 5. Illustration of clothes image retrieval using socially-driven clothes 

recognition.  
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2 Literature Review 

2.1 Overview 

As introduced in Chapter 1, object recognition has long been an active area in 

computer vision and machine learning. A complete object recognition system is 

usually composed of a low-level image feature extractor, a high-level image 

classifier, and often an intermediate level of image representation.  

Various image features, image representations and image classifiers have been 

proposed for the recognition of biological, generic and social objects. This section 

briefly reviews and summarizes the related literature to give the background and 

motivation of the approaches presented in this dissertation. Section 2.2 describes 

the state-of-the-art low-level image feature extractors − interest region detectors 

and region descriptors − along with their performance evaluations. Section 2.3 

presents the object recognition framework using a specific mid-level 

representation – the visual codebook. Both mid-level image representations 

(Sections 2.3.2, 2.3.3 and 2.3.4) and high-level image classification algorithms 

(Section 2.3.5) based on the image representations are introduced. Section 2.4 

presents several methods that select a small number of most discriminative low-

level image features in a new image for recognition. These methods are highly 

related to the classification algorithms introduced in Chapter 3 and Chapter 4.  

2.2 Interest Region Detectors, Region Descriptors and 

Performance Evaluation  

2.2.1 Interest Region Detectors 
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(a) 

 

         
(b) 

 

         
(c) 

          
(d) 

 

Figure 6. Examples of regions detected on stonefly images by: (a) Harris-Affine, (b) 
Hessian-Affine, (c) Kadir’s salient detectors and (d) PCBR. 
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(a) 

    
(b) 

            
(c) 

   
(d) 

             
(e) 

 

Figure 7. Examples of regions detected on generic objects by: (a) Harris-Affine, (b) 
Hessian-Affine, (c) Kadir’s salient, (d) MSER detectors and (e) PCBR. 
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Real-world object recognition datasets usually contain significant 

appearance variation in images due to different pose, visual transformation, 

occlusion, noise signals, and so on, as shown in Figure 1−5. In order to obtain 

relatively invariant and compact representations of objects, various interest region 

detectors have been applied to images to extract “salient” patterns that are 

distinctive and repeatable. Some region detectors identify specific visual attributes 

based on image intensity, such as corners or blobs, or areas exhibiting a significant 

amount of complexity. Some other detectors identify regions based on the shape or 

structure information in images. Examples of regions detected on stoneflies and 

generic objects are shown in Figure 6 and Figure 7.    

Intensity-based region detectors 

Mikolajczyk and Schmid (2004) proposed two related detectors which detect 

interest points in scale-space, and then determine an elliptical region for each 

point. Interest points are either detected with the Harris detector (Harris-Affine) or 

with a detector based on the Hessian matrix (Hessian-Affine). The Harris detector 

usually finds corner points, while the Hessian detector focuses on blobs and ridges. 

In both cases scale selection is based on the Laplacian, and the shape of the 

elliptical region is determined with the second moment matrix of the intensity 

gradient. Examples of Harris-Affine and Hessian-Affine detections are shown in 

Figure 6 (a) (b) and Figure 7 (a) (b).  

Lowe (2004) proposed the Difference-of-Gaussians (DoG) detector: The 

image is first convolved with Gaussian filters at different scales, and then the 

difference of successive Gaussian-blurred images is computed. Keypoints are then 

taken as maxima/minima of the Difference of Gaussians (DoG) that occur at 

multiple scales. The DoG detector also detects blob and ridge regions.  

Instead of detecting specific visual patterns, the salient region detector in 

Kadir et al. (2004) identifies the regions exhibiting a significant amount of 

complexity based on the probability distribution function of the intensity values 

http://en.wikipedia.org/wiki/Difference_of_Gaussians
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computed over the region. Examples of Kadir’s salient regions are shown in Figure 

6 (c) and Figure 7 (c).   

The Intensity Extrema Region (IBR) detector by Tuytelaars and Van Gool 

(2004) starts with intensity extrema at multiple scales and defines the surrounding 

region as the extrema in intensity changes along rays emanating from the detected 

point. The Maximally Stable Extremal Region (MSER) by Matas et al. (2002) is 

another intensity-based detector commonly-used for image matching and 

recognition. An MSER region is a connected component of an appropriately 

thresholded image. The word ‘extremal’ refers to the property that all pixels inside 

the MSER have either higher (bright extremal regions) or lower (dark extremal 

regions) intensity than all the pixels on its outer boundary. Examples of MSER 

regions are shown in Figure 7 (d). 

Structure-based region detectors 

Intensity-based region detectors prefer to detect patterns like corners and 

blobs that are often too local and lack discriminative power. Several structure-

based detectors have been proposed that rely on the edge or shape information for 

detection. The edge-based region (EBR) detector by Tuytelaars and Van Gool 

(2004) fits a parallelogram defined by a Harris corner point and points on two 

adjacent edge contours (extracted by the Canny edge detector). Scale-invariant 

shape features (SISF) (Jurie and Schmid 2004) detects circles at different locations 

and scales by evaluating salient convex arrangements of Canny edges based on a 

measure of how well a circle is supported by surrounding edges.  

In this dissertation, we present a new structure-based region detector – the 

PCBR detector – that detects semi-local watershed regions within the multi-scale 

principal curvature images. PCBR regions are robust to image transformations and 

informative for object categorization. Examples of PCBR detections are shown in 

Figure 6 (d) and Figure 7 (e). Details of the PCBR detector will be introduced in 

Section 3.2.   
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2.2.2 Region Descriptors  

As introduced in Chapter 1, for each region detected by the interest region 

detector, a descriptor vector is affiliated that describes the pixel intensities, color, 

texture, or edge information within the region. There are many possible descriptors 

that emphasize different image properties.  

Agarwal et al. (2004) uses 13×13 patches extracted around each interest 

point as the region descriptor. Viola and Jones (2001) employed rectangular Haar-

like features for face detection and proposed a very efficient algorithm to compute 

them using the integral image.  

Differential descriptors have also been employed to represent interest 

regions due to their representational power and computational efficiency. Freeman 

and Adelson (1991) developed steerable filters, which use derivatives computed by 

convolution with Gaussian derivatives of σ = 6.7 for an image patch of size 41. 

The filter bank descriptor in Shotton et al. (2008) convolves the image with a 17-

dimensional filter-bank at scale κ.  

The most successful region descriptor up to now is the scale invariant feature 

transform (SIFT) descriptor proposed by Lowe (2004), which is based on the 

gradient distribution in the detected regions. The descriptor is represented by a 3D 

histogram of gradient locations and orientations. The contribution to the location 

and orientation bins is weighted by the gradient magnitude. The quantization of 

gradient locations and orientations makes the descriptor robust to small geometric 

distortions and small errors in the region detection. SIFT descriptors are employed 

in most of the experiments in this dissertation. Several extensions to SIFT 

descriptor have been proposed including the gradient location and orientation 

histogram (GLOH) descriptor by Mikolajczyk and Schmid (2005), the PCA-SIFT 

descriptor by Ke and Sukthankar (2004), and the Color-SIFT descriptors in Van de 

Sande et al. (2008). Belongie et al. (2002) employed the SIFT idea and proposed 

the shape context descriptor that computes a histogram describing the edge 
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distribution in a region. These SIFT-style descriptors have been successfully 

applied to various image matching and object recognition applications.  

2.2.3 Performance Evaluation 

With the popularity of interest region detectors and descriptors, it is widely 

agreed that the evaluation of detectors and descriptors is important. Early work on 

the evaluation of region detectors was based on ground-truth verification, visual 

inspection, localization accuracy, theoretical analysis and performance on specific 

tasks. More general evaluation work was done by the INRIA group. In Schmid et 

al. (2000), two criteria for evaluating interest region detectors were proposed: 

repeatability and information content. Repeatability explicitly measures the 

geometrical stability of the detected interest points between different images of a 

given scene taken under varying viewing conditions. Information content measures 

the distinctiveness of the interest regions based on the entropy of the descriptors 

computed at the regions. Similar criteria were also used in Mikolajczyk et al. 

(2005a) to evaluate the robustness of affine covariant region detectors to changes 

in viewpoint, scale, illumination, defocus, and image compression. According to 

the evaluation results in Mikolajczyk et al. (2005a), MSER obtains the highest 

score in many tests, followed by Hessian-Affine. Recently, Haja et al. (2008) 

evaluated state-of-the-art region detectors with regard to their localization 

accuracy in position and region shape.  

Very little work has been done on the evaluation of region descriptors in the 

context of matching and recognition. The most complete evaluation work up to 

now is Mikolajczyk and Schmid (2005). The evaluation criterion is recall-

precision, i.e. the number of correct and false matches between two images. State-

of-the-art region descriptors are evaluated with respect to their robustness to affine 

transformations, scale changes, image rotation, image blur, JPEG compression and 

illumination changes. In most of the tests, the GLOH descriptor obtains the best 

results, closely followed by SIFT. 



20 
 

 

All the evaluation criteria introduced above were proposed mainly for 

matching or image registration; they are not appropriate in the context of object 

recognition. For example, the highly evaluated detectors do not necessarily detect 

regions valuable for image classification. Some work has been done on the 

evaluation of low-level image features for object recognition. Dorko and Schmid 

(2004) evaluate the discriminative power of the clusters of low-level image 

features using the classification likelihood and mutual information criteria. In 

Mikolajczyk et al. (2005b), the region features output by different combinations of 

detectors and descriptors are compared in the context of object class recognition. 

The clusters of low-level image features are evaluated based on their average 

cluster precision, location distributions and complementarity. The GLOH 

descriptor vectors (Mikolajczyk and Schmid 2005) computed on Hessian-Laplace 

(Mikolajczyk and Schmid 2004) regions perform best according to these 

evaluation criteria. The second-best score is obtained by Kadir’s salient regions 

(2004). These two detectors also have been shown to provide complementary 

image features for image classification. Motivated by previous work and the idea 

of visual codebook approaches, we present the Maximum Mutual Information 

(MMI) evaluation criterion to measure the discriminative power of generative 

codebooks built from different combinations of detectors and descriptors. This 

evaluation method will be introduced in Section 4.3.  

2.3 Learning Visual Codebooks  

2.3.1 General Framework 

As described in Chapter 1, the application of region detector and descriptor 

transforms the images into bags of region descriptor vectors. Visual codebooks (or 

vocabularies, dictionaries) are proposed to relate new descriptors found in testing 

images to the descriptors previously seen in training images. The idea of visual 

codebooks is motivated by the bag-of-words approach used in text categorization 

(Salton and McGill 1983). But unlike the text domain, where the codebook is 



21 
 

 

 

Figure 8. Illustration of the general framework of visual codebook learning 
approaches.  

already given, an object recognition system has to automatically learn the visual 

codebook from the training data.  

The general framework of visual codebook learning approaches is shown in 

Figure 8. The steps involved in training the system are: 

• Detection and description of interest regions, as described in Section 

2.2. 

• Construction of the visual codebook from the region descriptors 

extracted from the training images. Both unsupervised learning and 

supervised learning have been applied, as presented in Sections 2.3.2 

and 2.3.3. 
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• Construction of a fixed-length attribute vector for each training 

image based on the learned visual codebook. The length of the 

attribute vector is equal to the size of the codebook. The commonly 

used construction methods are presented in Section 2.3.4. 

• Learning of an image classifier from the attribute vectors that 

represent the training images. The classification algorithms employed 

in previous work are summarized in Section 2.3.5. 

In the testing stage, a testing image is classified according to the following 

steps:  

• Detection and description of interest regions, same as above. 

• Construction of the attribute vector for the testing image based on the 

visual codebook. 

• Application of the image classifier to the attribute vector of the 

testing image to predict its category. 

To handle the significant intra-class variations in the benchmark object 

recognition datasets, multiple region detectors and region descriptors have been 

applied on the images to extract different types of visual information for 

classification. It is natural to fuse visual information using visual codebooks. The 

standard fusing strategy is to build a separate visual codebook from each 

detector/descriptor combination; and then either concatenate these visual 

codebooks into a larger codebook or select the optimal combination of codebooks 

for the specific problem. For the sake of clarity, this section only describes the 

methodology of building a visual codebook from a single detector/descriptor 

combination. 

The following sections summarize the most influential visual codebook 

learning approaches. The focus is on the principle of visual codebook learning and 

its application to generic object recognition problems.   
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2.3.2 Unsupervised Visual Codebook Learning 

Many previous methods construct a visual codebook by pooling all the 

region descriptors from the training images and then applying an unsupervised 

clustering algorithm such as k-means (Csurka et al. 2004; Sivic and Zisserman 

2004; Zhang et al. 2007), Gaussian mixture models (GMM) (Dorko and Schmid 

2004; Larios et al. 2008; Perronnin 2008), on-line clustering with mean-shift (Jurie 

and Triggs 2005), and hierarchical clustering (Agarwal et al. 2004). Each cluster is 

treated as a codeword in the codebook. A new descriptor is assigned to the nearest 

codeword in the codebook according to its Euclidean distance or Mahalanobis 

distance to the centers of the clusters. The generative visual codebook’s advantage 

is its simplicity, its lower risk of overfitting, its computational efficiency and its 

invariance to image transformations. The proposed approaches have achieved 

good performance on various object recognition applications. This approach is also 

employed in this dissertation for the difficult stonefly recognition problem (see 

Section 4.2).  

2.3.3 Supervised Visual Codebook Learning 

The unsupervised codebook learning approaches presented above construct 

large generative codebooks to capture relevant variation of object parts for all the 

object categories. But in real-world applications, it is common that the generative 

codebook is suboptimal and not discriminative enough for a specific problem. 

Therefore, some researchers have begun to introduce discriminative mechanisms 

into the visual codebook learning process. Winn et al. (2005) first apply k-means 

clustering with a large value K to construct a large codebook from manually 

segmented image patches. Then they employ the information bottleneck principle 

to merge the codewords whilst preserving their discriminative power. Perronnin 

(2008) also first learn a generative (universal) visual codebook on regularly 

sampled features and then employ MAP estimation to adapt the generative 

codebook to class-specific data; an SVM is learned to select among the generative 
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and adapted clusters. Moosmann et al. (2007) learn multiple, independent 

randomized decision trees to partition the low-level feature space. Class label 

supervision is employed to search for discriminative split points during the 

construction of trees. The leaves of the decision trees define the codewords. More 

recently, Yang et al. (2008) proposed a codebook learning framework that is 

integrated with classifier learning. In their work, visual codebooks have a 

restricted form as a sequence of visual bits. Each visual bit is a linear classifier that 

maps the low-level features to a binary bit for classification. The learning is 

performed in a sequential manner, where the performance of the classifier using 

previous visual bits is used to extract the next set of visual bits.  

Discriminative visual codebook learning approaches employ the class labels 

during the construction of codewords. They usually show higher performance in 

real-world object recognition applications. In this dissertation, two novel 

discriminative visual codebook learning algorithms (Zhang and Dietterich 2008; 

Zhang et al. 2009) are proposed (see Sections 4.4 and 4.5). Both algorithms 

achieve high performance on object recognition tasks.  

2.3.4 Building Image Attribute Vectors from Visual 

Codebooks 

Given the learned visual codebook, there are different ways to produce the 

image attribute vector from the low-level image features. The most common 

mapping method is the “histogram of occurrences” strategy (Csurka et al. 2004; 

Jurie and Triggs 2005; Moosmann et al. 2007; Zhang et al. 2007; Larios et al. 

2008). This method assigns each descriptor vector extracted from an image to the 

closest codeword; then accumulates the occurrences of each codeword to form a 

histogram attribute vector. Agarwal et al. (2004), Jurie and Triggs (2005) and 

Winn et al. (2005) employ a “binary indicator” vector, which is a binarized version 

of the histogram of occurrences vector. Each codeword’s feature is 1 if there is at 

least one descriptor that is assigned to the codeword occurs in an image, and 0 
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otherwise. A real-valued version of the histogram of occurrences strategy is 

employed in Perronnin (2008). Each of the descriptor vectors extracted from an 

image is assigned to the codewords in a probabilistic manner; and the probabilities 

are accumulated to form the image attribute vector for classification. Term 

frequency - inverse document frequency (tf-idf) strategy is used in Sivic and 

Zisserman (2004) motivated by the common application of weighting words in text 

retrieval. The tf term weights codewords occurring often in a particular image. It is 

exactly the histogram of occurrences as described previously. The idf term down-

weights the codewords that appear often in the entire image set.  

In this dissertation, both histogram of occurrences and tf-idf methods are 

employed in the new visual codebook learning methods. They will be introduced 

in more detail in Chapter 4.   

2.3.5 Image Classification Based on Image Attribute Vectors 

Standard learning algorithms, including nearest neighbor classifiers (Sivic 

and Zisserman 2004; Dorko and Schmid 2004; Winn et al. 2005), linear classifiers 

(Yang et al. 2008), Naïve Bayes classifiers (Csurka et al. 2004), and Support 

Vector Machines (Csurka et al. 2004; Jurie and Triggs 2005; Moosmann et al. 

2007) have been applied to the image attribute vectors to train the final classifier. 

Zhang et al. (2007) also employs a SVM as the image classifier, but its kernel 

function is based on the earth mover’s distance or χ2 distance for the specific 

“signature” based image representations. Some other classifiers were also 

employed in previous visual codebook approaches. Larios et al. (2008) employs an 

ensemble learning method − bagged logistic model trees − to classify stonefly 

images based on concatenated attribute vectors (see Section 4.2.2). Perronnin 

(2008) uses both sparse logistic regression (SLR) and a linear SVM as the image 

classifier. Agarwal et al. (2004) employs a Sparse Network of Winnows (SNoW) 

learning algorithm as the classifier to take advantage of the sparseness properties 

of the image attribute vectors.  
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In this dissertation, we study the discriminative properties of the image 

attribute vector; and employ ensembles of weak classifiers (Dietterich 2000) to 

classify the images. Both bagged decision lists (Section 4.4) and bagged decision 

trees (Section 4.5) are applied to efficiently select and combine the most 

discriminative attributes for image classification. These approaches are motivated 

by previous work on classifying images based on discriminative image features, as 

introduced in next section.  

2.4 Object Recognition Approaches Based on Discriminative 

Feature Selection 

Discriminative feature selection has been extensively explored in computer 

vision for object detection and recognition. The motivation is that oftentimes only 

a small number of the most discriminative low-level image features (region 

descriptors) are enough for high-accuracy classification. The difficulty is how to 

identify these features from the large image feature pool. This section introduces 

previous work in this direction that is most related to our approaches.  

As introduced in Chapter 1, the application of interest region detectors and 

descriptors transform the original images into bags of region descriptor vectors. 

The class labels are attached to the bags instead of to the descriptor vector 

instances. Chen et al. (2006) proposes the Multiple-Instance Learning via 

Embedded Instance Selection (MILES) algorithm for this multiple-instance 

learning problem (Dietterich et al. 1997).  MILES maps each bag into a fixed-

length attribute vector by measuring the similarities between the instances in the 

bag and all the instances in the training bags. A 1-norm SVM is employed to select 

discriminative image features and construct classifiers simultaneously.  

This feature mapping strategy is also used in Opelt et al. (2006). But instead of 

using an SVM to select the discriminative features, a modified AdaBoost (Freund 

and Schapire 1996) algorithm is employed to select multiple image features and 

learn the corresponding weak classifiers sequentially. The pseudo-code of this 
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boosting learning framework is shown in Figure 9. AdaBoost assigns weights to 

training images. Each iteration of boosting calls the Weak-Hypotheses-Finder 

function to select the most discriminative image attribute and learn its 

corresponding weak hypothesis (decision stump) according to the image weights. 

Then the error of the weak hypothesis (classifier) is calculated and the weights of 

the images are updated according to the correctness of the predictions made by the 

weak classifier. The weights of the correctly classified images are decreased and 

the weights of the incorrectly classified images are increased. Then the learning 

algorithm iterates to learn the next weak classifier using the updated weights. This 

boosting learning framework and its extensions are employed in our hierarchical 

recognition system based on multi-scale PCBR regions (Section 3.3.2) and in the 

non-redundant visual codebook learning method (Section 4.5).  

The Weak-Hypotheses-Finder function in Opelt et al. (2006) evaluates the 

discriminative power of all the image attributes based on the current image 

weights and selects the best one to learn the weak classifier. The pseudo-code of 

this algorithm is given in Figure 10. In the dissertation, this algorithm is modified 

and applied to calculate the MMI score (see Section 4.3) and learn a decision list 

classifier (see Section 4.4). The details of these algorithms will be introduced later.  

As presented in previous sections, Dorko and Schmid (2004) apply Gaussian 

mixture models (GMM) to build the visual codebook from region descriptors. 

Each codeword (cluster) is treated as a part classifier that assigns a new descriptor 

vector to the corresponding object part. Since most of the codewords are probably 

noisy, feature selection algorithms are applied to rank the part classifiers according 

to their discriminative abilities. One of the selection algorithms is based on mutual 

information (MI) criterion, which ranks the part classifiers based their information 

content for separating the background from the object-class. The mutual 

information of part classifier Ck and object-class O is 
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The part classifiers of highest rank are applied to classify a new image by 

simply counting the number of descriptor vectors that are positively labeled by 

these classifiers. In this dissertation, we modify the MI criterion in Equation (1) 

and apply it to evaluate the discriminative properties of the generative visual 

codebooks in Section 4.3.  
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Inputs: Training images (I1, l1), (I2, l2), … , (Im, lm), 
 
(li = +1 if image Ii contains at least one instance of the relevant object and li = −1 if
image Ii contains no relevant object). 
 
Initialization: Set the weights w1 = w2 = … = wm = 1. 
 
For t = 1, … , T 
 

1) Get a weak hypotheses ht according to weights w1, w2, …wm from the
Weak-Hypotheses-Finder (shown in Figure 10).  
 

2) Calculate the weighted error of the weak hypothesis: 
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where η is an additional weight factor to control the update of false classified 
positive examples. 
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Figure 9. Modified AdaBoost algorithm in Opelt et al. (2006). 
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and the class labels of the training images: L = (l1, l2, … , lm). 
 
(M is the total number of descriptor vectors extracted from the training images) 
 
Sorting: For each dimension (row) k of training attribute vectors A, sort the m
images in non-decreasing order of the attribute values, that is, find a permutation
πk(1),  πk(2), … ,  πk(m), such that:  
 

≤)1(, kka π  ≤≤L)2(, kka π )(, mk k
a π . 

 
Select the best weak hypothesis (Scanline): For all the attributes (ak) calculate
over all images Ii 
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i
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1
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and select the attribute ak where the maximum is achieved. 

 
Compute classification threshold:  at the position s where the Scanline reached a
maximum sum the threshold θ is set to: 

2
)1(,)(, ++

= sksk kk
aa ππθ  

 

Figure 10. Pseudo-code for the Weak-Hypotheses-Finder algorithm in Opelt et al. 
(2006). 
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3 Image Features and Learning Algorithms for Stonefly 

Recognition  

3.1 Overview 

As introduced in Chapter 1, the recognition of stoneflies is very challenging due 

to large intra-class variations in the images and small differences between 

categories. Figure 1 shows the examples of images belonging to different 

categories of stoneflies. The properties of stonefly larvae require high-precision 

recognition approach that is robust to deformations and variations. Motivated by 

the successful application of interest region detectors and region descriptors (see 

Section 2.2) in object recognition problems, we develop a similar bag-of-keypoints 

approach for the automated recognition of stoneflies.  

In order to handle the unique challenges posed by this biological object 

recognition problem, we design a new interest region detector called the PCBR 

detector (Zhang et al. 2006; Deng et al. 2007) which outperforms other state-of-

the-art detectors on the stonefly recognition problem. This new detector will be 

introduced in Section 3.2. We also design various object recognition architectures 

based on the bag-of-keypoints image representations. All these methods integrate 

different types of low-level image features to recognize the stoneflies with high 

accuracy. They will be described in Sections 3.3, 3.4 and 3.5.  

3.2 Principal Curvature-Based Region (PCBR) Detector 

3.2.1 Motivation 

As described previously, images of the stoneflies exhibit large intra-class 

variation. This variation causes considerable variation in local intensity. Therefore, 

local intensity properties are no longer stable detection cues for the identification 

and localization of interest regions. As shown in Figure 6, the state-of-the-art 

Harris-Affine and Hessian-Affine (Mikolajczyk and Schmid 2004) detectors and 
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salient region detector (Kadir et al. 2004) all fail in detecting the most 

characteristic regions in stonefly images. Their detections (corners or blobs) focus 

on the very local patterns in the images, which are suitable for image matching 

applications, but usually lack the discriminative power that is needed for object 

recognition approaches.  

The limitations of existing local detectors inspired our idea of developing a 

new interest region detector that captures semi-local structural cues, which tend to 

be more robust to intensity, color and pose variations. We present the Principal 

Curvature-Based Region (PCBR) detector (Zhang et al. 2006; Deng et al. 2007) 

which exploits the salient curvilinear structures to reliably detect the interest 

regions. Curvilinear structures are lines (either curved or straight) such as roads in 

aerial or satellite images or blood vessels in medical scans. We choose curvilinear 

structure as detection cues for three reasons. First, by generating a single response 

for both lines and edges, curvilinear structure produces a clear structural sketch of 

the object, which is termed as principal curvature image. It provides the basis for 

non-local detections. Second, it is a fairly stable feature that can be detected over a 

range of viewpoints, scales, and appearance changes. Third, it usually produces 

semi-local regions that are more characteristic for object classes compared with 

local patterns, such as corners and blobs. PCBR applies the watershed 

transformation to the principal curvature image across scale space to form the 

interest regions that have coherent interiors and that are surrounded by distinctive 

curvilinear structure. As shown in Figure 6, PCBR is able to reliably detect the 

regions corresponding to the most salient and characteristic patterns on stoneflies. 

More examples of PCBR detections on stoneflies are shown in Figure 11. 

The principles of the PCBR detector are introduced in Section 3.2.2. The 

approaches we used to improve the robustness of PCBR are described in Section 

3.2.3. The performance of the PCBR detector is extensively evaluated in Section 

3.2.4 in the context of image matching and object recognition. 
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Figure 11. Examples of PCBR detections on nine categories of stoneflies.  
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(a)                               (b)                                (c) 

 

         
                                         (d)                                      (e) 

 

Figure 12. The detection procedure of PCBR detector: (a) Original image. (b) 
Principal curvature image. (c) Cleaned binary image. (d) Watershed regions. (e) 

Detected regions represented by ellipses.  

3.2.2 PCBR Detection Procedure 

The basic detection procedure of PCBR is illustrated in Figure 12. The 

PCBR detector first employs Steger’s curvilinear detector algorithm (Steger 1998) 

to compute the structural sketch of the image, as shown in Figure 12 (b). We call it 

the principal curvature image, as it approximates the principal curvature of the 

image intensity surface. Steger’s algorithm computes the eigenvalues of the 

Hessian matrix at each pixel and then forms an image that is composed of one of 

the two eigenvalues. The Hessian matrix at a particular point x is, 
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where Ixx(x,σD),  Ixy(x,σD) and Iyy(x,σD) are the second-order derivatives of the 

image as computed by convolving the image with the appropriate second-

derivative of a Gaussian with scale σD. For each pixel x in an image, we compute 

the eigenvalues λ1(x) and λ1(x) of Equation (2).  The principal curvature response 

is given by either 

                                                     )0),(max()( 1 xx λ=P                                          (3) 

or  

                                                     )0),(min()( 2 xx λ=P                                          (4) 

Equation (3) provides a high response only for dark lines on a light 

background (or on the dark side of edges); while Equation (4) detects light lines 

against a dark background. The principal curvature image is formed by compute 

the principal curvature response at each pixel, as shown in Figure 12 (b).  

As described in Section 2.2.1, the Hessian matrix has been applied in several 

interest region detectors (Harris-Affine, Hessian-Affine: Mikolajczyk and Schmid 

2004) to find the salient patterns in the objects. However, the PCBR detector is 

different and complementary to these detectors. Rather than finding extremal 

“points”, PCBR applies the watershed transformation to ridges, valleys and cliffs 

of the image principal curvature surface to find semi-local “regions”. These 

regions are usually more robust to image deformations and more characteristic for 

object classes. The watershed algorithm provides a more efficient mechanism for 

defining structural regions than previous methods of fitting circles, ellipses, and 

parallelograms. However, the watershed algorithm is sensitive to noise and other 

small image perturbations. To improve robustness to noise, we “clean” the 

principal curvature image with a grayscale morphological close operation followed 

by a new hysteresis thresholding method based on local eigenvector flow, which 

will be introduced in the following section. The resulting binary image is usually 

clear single-line sketch of the image, as shown in Figure 12 (c). The watershed 
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transform is applied to the cleaned principal curvature image to segment the image 

into watershed regions (i.e., the catchment basins), as shown in Figure 12 (d). 

Finally, each watershed region is approximated with an ellipse having the same 

second moment to produce the PCBR detection, as shown in Figure 12 (e). 

3.2.3 Approaches to Improve the Robustness of PCBR  

Various methods have been applied to the PCBR detection procedure in 

order to improve its robustness to image deformations. These methods include 

principal curvature image pyramid in scale space, enhanced watershed transform, 

and searching for stable PCBR regions in scale space. These will be introduced in 

the following sections.  

Principal curvature image pyramid in scale space 

In order to improve the robustness of PCBR detector to image deformations, 

we compute the principal curvature images in scale space in a fashion similar to 

that of SIFT (Lowe 2004). We first double the size of the original image to 

produce our initial image, I11, and then produce increasingly Gaussian smoothed 

images, I1j , with scales of σ = kj−1 where k = 21/3 and j = 2, 3, …, 6. This set of 

images spans the first octave consisting of 6 images, I11 to I16. Image I14 is 

downsampled to half its size to produce image I21, which becomes the first image 

in the second octave. We apply the same smoothing process to build the second 

octave, and continue to create a total of n = log2(min(w, h)) − 3 octaves, where w 

and h are the width and height of the doubled image, respectively. Finally, we 

calculate a principal curvature image, Pij, for each smoothed image by computing 

the maximum eigenvalue (see Equation (3) and (4)) of the second derivative 

Hessian matrix at each pixel (Equation (1)). For computational efficiency, each 

smoothed image and its corresponding Hessian image are computed from the 

previous smoothed image using an incremental Gaussian scale. 

The result of the computation is the principal curvature image pyramid in 

scale space. We then calculate the maximum curvature over every three 
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consecutive principal curvature images to form the following set of 4 images in 

each of the n octaves: 

                                                                     (5)  

5432

25242322

15141312

...

nnnn MPMPMPMP

MPMPMPMP
MPMPMPMP

where .  ),,max( 11 +−= ijijijij PPPMP

A maximum curvature image MP is calculated by maximizing the principal 

curvature at each pixel over three consecutive principal curvature images. These 

maximum principal curvature images provide a more stable structural sketch of the 

images for the detection of PCBR regions.    

Enhanced watershed transform 

The watershed transform is an efficient technique that is widely employed 

for image segmentation. We apply the watershed transform to the principal 

curvature image to detect interest regions. However, the watershed transform is 

sensitive to noise (and other small perturbations) in the intensity image. A 

consequence of this is that the small image variations form local minima that result 

in many, small watershed regions. Figure 13 (a) shows the oversegmentation 

results when the watershed algorithm is applied directly to the principal curvature 

image. To achieve more stable watershed segmentation, we apply a grayscale 

morphological closing followed by hysteresis thresholding to obtain “cleaner” 

binary images for segmentation. 

The grayscale morphological closing operation removes small “potholes” in 

the principal curvature terrain, thus eliminating many local minima that result from 

noise and that would otherwise produce watershed catchment basins. But other 

than the small noisy basins, there are other variations that have larger zones of 

influence and cannot be removed by the morphological closing. In order to further 

eliminate  spurious or unstable  watershed regions,  we  threshold  the  principal  
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                 (a)                                                                 (b)                                 

Figure 13. (a) Watershed transform applied to original principal curvature images. 

(b) Watershed transform applied to the “cleaned” principal curvature images.   

curvature image to create a clean binarized principal curvature image. However, 

the principal curvature response can become weak due to the low contrast of an 

edge or curvilinear structure. These low contrast segments may potentially cause 

gaps in the thresholded principal curvature image, which in turn causes watershed 

regions to merge that should otherwise be separate. Fortunately, the directions of 

the eigenvectors provide a strong indication of where curvilinear structures appear 

and they are more robust to these intensity perturbations than the eigenvalue 

magnitude. Therefore, we apply a more robust eigenvector-guided hysteresis 

thresholding to help link structural cues and remove perturbations. 
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Figure 14. Illustration of how the eigenvector flow helps in connecting the weak 
principal curvature responses. 

 

Eigenvector-flow hysteresis thresholding works with a higher threshold and 

a lower threshold the same as traditional hysteresis thresholding. Pixels with a 

strong response act as seeds that expand out to include connected pixels that are 

above the lower threshold. Unlike traditional hysteresis thresholding, our low 

threshold is a function of the support that each pixel’s major eigenvector receives 

from neighboring pixels. The lower threshold is set on every pixel by comparing 

the direction of the major (or minor) eigenvector to the direction of the adjacent 

pixels’ major (or minor) eigenvectors. This can be done by taking the absolute 

value of the inner product of a pixel’s normalized eigenvector with that of each 

neighbor. If the average dot product over all neighbors is high enough, we set the 

low-to-high threshold ratio to 0.2; otherwise the low-to-high ratio is set to 0.7. 

These ratios were chosen empirically. 

Figure 14 illustrates how the eigenvector flow helps in the connection of 

weak curvilinear structure. The red arrows are the major eigenvectors, and the 

yellow arrows are the minor eigenvectors. At the point indicated by the large white 

arrow, we see that the principal curvature response is small and the ridge is almost 
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invisible. Nonetheless, the directions of the eigenvectors are quite uniform. This 

eigenvector-based active thresholding process yields better performance in 

building continuous ridges and in handling perturbations, which results in more 

stable regions as shown in Figure 13 (b). 

Select stable regions across scales 

To further improve the robustness of PCBR detections, we employ the key 

idea of the MSER detector (Matas et al. 2002) and keep only those regions that can 

be detected in at least three consecutive scales, as shown in Figure 15. Similar to 

the process of selecting stable regions via continuous thresholding as in MSER, we 

select the regions that are stable across scale changes. To achieve this, we compute 

the overlap errors of the detected regions across each triplet of consecutive scales 

in every octave. The overlap error is calculated in the same way as in (Mikolajczyk 

et al. 2005a). Overlapping regions that are detected at different scales normally 

exhibit some variation, especially for non-rigid biological objects. This variation is 

favorable for object recognition tasks, because it provides multiple descriptions of 

the same pattern, and these reduce the effect of the non-perfect localization of 

interest regions in objects (Haja et al. 2008). Therefore, we keep the overlapping 

regions and extract descriptor vectors for each region to provide more informative 

representations of local image features.  

To determine a threshold value for the permitted amount of overlap, we 

performed a sensitivity analysis of the SIFT descriptor. Three transformations 

(translation, rotation and minor axis enlargement) were applied to the detected 

regions in the INRIA image matching dataset (INRIA). Overlap errors and 

similarities of SIFT descriptors between the transformed regions and the originals 

are calculated. To keep regions that can be detected over local scales, only regions 

with overlap error less than 30% are chosen. However, as indicated in Figure 16, 

SIFT similarity decreases to 70% for regions that have an overlap error of 30%. 

Consequently, we keep all stable regions with an overlap error greater than 30% to 

maintain more descriptions for similar regions. We also notice that the similarity 
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Figure 15. Illustration of selecting stable PCBR regions across scales.   

of the SIFT descriptors is above 90% when the overlap error is less than 10%. 

These very similar regions are merged into a single region. 

3.2.4 Performance Evaluation of PCBR  

As introduced in Section 2.2, the performance of an interest region detector 

is evaluated using different criteria for different tasks. To evaluate the PCBR 

detector for both image matching and object recognition problems, we evaluate in 

three ways: 1) visual inspection, 2) repeatability measurement, and 3) maximum 

mutual information scores and curves.  

Visual Inspection 

Figure 11 in Section 3.2.1 shows the PCBR detections on stonefly images. 

We can see that rather than detecting regions clustered around a few distinctive  
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Figure 16. Sensitivity analysis of SIFT descriptors.   

 

areas in the image, PCBR usually outputs evenly distributed detections that are 

more characteristic and more robust to occlusion and local image perturbations. 

Figure 17 shows the PCBR detections on human faces, cars and motorbikes from 

the Caltech object categorization dataset (Caltech). Figure 18 presents the PCBR 

detections on two graffiti images from the INRIA dataset (INRIA). From these 

figures, it can be observed that PCBR regions are quite consistent across different 

views of the scene and robust to the variations of the objects.   
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Figure 17. Examples of interest regions detected by PCBR on generic objects: (a) 
human faces, (b) cars, and (c) motorbikes from Caltech dataset. 
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Figure 18. Examples of PCBR detections on graffiti images from INRIA dataset.  
 
 

Repeatability Evaluation 

The PCBR detector is designed for biological and generic object recognition 

rather than wide baseline matching (Shapiro and Stockman 2001), but we still 

evaluate its repeatability (see Section 2.2.3) and compare it to other detectors using 

the method introduced by Mikolajczyk et al. (2005a). The INRIA dataset and code 

are used for our experiments. Table 1 provides the average repeatability of the 

PCBR detector compared to other detectors. Average repeatability is determined 

from the repeatability vs. transformation curves as output by the INRIA evaluation 

code (with the overlap error parameter set to 20%). As we can see, the PCBR 

detector is comparable to other detectors in terms of repeatability.  

Evaluation via Maximum Mutual Information (MMI) Scores 

As introduced in Section 2.2, Repeatability evaluation criteria (Mikolajczyk 

et al. 2005a) and other similar methods are designed mainly for matching or image 

registration; they are not well-defined in the context of object class recognition. In 

this dissertation, we evaluate a detector directly based on the discriminative 

properties of the detections. 
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Table 1. Average repeatability of the PCBR detector and other detectors on the 

INRIA dataset. 

Images PCBR Hessian-

Affine 

Harris-

Affine 

MSER IBR EBR Kadir’s 

Salient 

Bikes 30.2  48.2 32.8 33.6 26.5 37.5 15.3 

Trees 10.7 20.4 9.8 11.5 9.6 3.9 2.1 

Boats 16.2 29.7 22.3 27.5 12.8 19.8 0.3 

Leuven 37.6 40.0 32.0 66.7 34.4 30.1 17.6 

Graffiti 35.5 17.7 13.0 51.7 19.7 16.7 2.1 

Walls 16.6 24.5 17.3 31.4 14.7 11.1 0 

 

 Our evaluation method is motivated by the successful application of “visual 

codebook” approaches (see Section 2.3) for object recognition. We present the 

Maximum Mutual Information (MMI) criterion, which efficiently measures the 

discriminative power of visual codebook entries for specific problems. The highest 

MMI evaluation is given to the detector that can consistently detect the most 

discriminative structural or textural patterns (e.g. two eyes in human faces and rear 

lights of cars) in object images. The detailed description of the MMI criterion is 

given in Section 4.3.   

The PCBR detector is evaluated on benchmark object categorization datasets 

and compared with other state-of-the-art detectors using the MMI criterion. The 

PCBR detector achieves MMI evaluation above average on all the object classes. It 

works especially well on highly structured objects, such as leaves and cars. PCBR 

is usually able to find several highly distinctive and discriminative patterns, e.g. on 

leopards and stoneflies. The MMI curves of PCBR and other detectors on 

stoneflies are shown in Figure 19. More results are given in Section 4.3. 
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Figure 19. MMI curves of PCBR (Curvilinear) detector and other state-of-the-art 
detectors on stonefly dataset.  

3.3 A Hierarchical Recognition System based on Multi-Scale 

PCBR Regions 

3.3.1 Multi-scale PCBR Regions and Descriptions 

For a lot of object recognition tasks, coarse-to-fine multi-scale descriptions 

of objects are usually more informative than single-scale description. This is 

biologically motivated — the human visual system selects and combines both 

coarse (global) and detailed (local) object features for recognition. Shokoufandeh 

et al. (1999) use saliency map graphs to capture the salient image structure using 

multi-scale wavelet transforms. Epshtein and Ullman (2005) proposes feature 

hierarchies based on mutual information feature selection and parameter 

adaptation. The work of Bouchard and Triggs (2005) models each object as a 
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hierarchy of parts and subparts with partial transformations (translation and scale 

transformations) that softly relate the parts and sub-trees to their parents. But there 

is a common weakness existing in these hierarchical object descriptions: all these 

descriptions are highly concrete models (trees or graphs). Applying these types of 

descriptions to classification requires graph matching or model instantiation 

algorithms. 

This section introduces a general coarse-to-fine object description based on 

multi-scale PCBR regions (Zhang et al. 2006). In Equation (2), the parameter σD 

represents the scale of the second-derivative of a Gaussian used to compute the 

Hessian matrix. To extract the coarse-to-fine object description, we apply the 

PCBR region detection algorithm at different scales, i.e., using different values of 

σD. Figure 20 shows the multi-scale PCBR region detections on a stonefly image. 

We can see that a larger scale produces fewer and coarser regions while a smaller 

scale results in more detailed and local image features.  

We employ both statistical measurements of region intensities and PCA-

SIFT (Ke and Sukthankar 2004) descriptors as the descriptions of the multi-scale 

PCBR regions. The statistical feature is composed of coefficient of variation, 

skewness, kurtosis, and moment invariants. The PCA-SIFT descriptors (see 

Section 2.2.2) are 36-dimensional and have been demonstrated to be more compact 

and distinctive than SIFT according to Ke and Sukthankar (2004). In addition, we 

describe the spatial configuration of the multi-scale PCBR regions with bins-based 

cluster index distribution histograms, inspired by the idea of shape context of 

Belongie et al. (2002). Basically, the construction of spatial relation descriptions 

takes three steps. First, cluster the PCA-SIFT descriptors from the positive training 

images using E-M to determine a GMM with K = 16 clusters (Duda et al. 2001). 

Second, mark the cluster index of each region in training and testing images using 

maximum likelihood. And third, discretize the distances and directions between  
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(a) Original image 

 
(b) Principal curvature image at scale σD = 4.0 

 
(c) Watershed regions at scale σD = 4.0 

 
(d) PCBR detections at scale σD = 4.0 

 
(e) PCBR detections at scale σD = 2.0 

 
(f) PCBR detections at scale σD = 1.0 

 
Figure 20. Multi-scale PCBR detections on a stonefly image.  

 



49 
 

 

regions into M = 36 bins with 12 distinct directions and 3 distance ranges. The 

sizes of the bins are fixed relative to the image sizes. Thus, the spatial 

configuration of regions in each image is described by a histogram R composed of 

D = K×M×K = 16×36×16 = 9216 elements. An element Ri,m,j  in R records the 

number of times a region with cluster index j falls into bin m with center region 

index i.  

3.3.2 Hierarchical Object Recognition System 

Based on the multi-scale PCBR regions and their descriptions, we designed a 

hierarchical object recognition system (Zhang et al. 2006) that uses the coarse-to-

fine image analysis to do classification. This system is illustrated in Figure 21. 

From the top layer to the bottom, we train layer classifiers L1, …, Ln based on the 

region descriptors obtained at scales s1, …, sn, which are in decreasing order 

(global to local). We then combine the outputs of the layer classifiers to predict the 

class labels of new images.  

Layer classifier 

According to the experiments, usually only a small portion of the PCBR 

regions are useful for classification. So we employ and improve the boosting 

feature selection algorithm proposed by Opelt et al. (2006), as introduced in 

Section 2.4. The layer classifiers are learned using the AdaBoost algorithm 

(Freund and Schapire 1996). Each iteration of AdaBoost evaluates all the 

unselected descriptors (intensity statistical descriptors, PCA-SIFT, and spatial 

relation descriptors) of the training images based on the current image weights to 

find the most discriminative dimension.  

We evaluate the statistical intensity descriptors and the PCA-SIFT 

descriptors in the same way as in Opelt et al. (2006) (see Figure 10).  The stability 

and discriminating power of a descriptor vector vj is evaluated in three steps. First, 

calculate the distances from vj to all the training images. This is done by finding 

the minimum distance aj,i from vj to all the descriptor vector in each training image 
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Figure 21. Illustration of hierarchical object recognition system based on multi-scale 

PCBR regions and descriptions  

Ii. We employ the Mahalanobis distance metric for the statistical intensity 

descriptor and Euclidean distance for PCA-SIFT. Second, sort the training images 

into ascending order according to their distance. Third, we apply the scanline 

algorithm to the sorted array of vj to calculate the maximal weighted sum, which is 

used as the evaluation of vj.  

Evaluating the spatial relation descriptors is simpler because there is no need 

to calculate the descriptor-to-image distances. The training images are directly 

sorted according to their spatial relation descriptor values.  

A perfect descriptor should have all the positive images (+1) sorted before 

all the negative images (–1) so that the descriptor vector gives a weak classifier 
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that is perfectly discriminative. The descriptor and threshold {v*, θ*} which has 

maximal score among all the available descriptor vectors is selected as the weak 

classifier for iteration t. We construct T weak classifiers at each layer. All these T 

weak classifiers are then combined into a strong classifier (called the layer 

classifier) using standard AdaBoost, as shown in Figure 9. For presence/absence 2-

class object recognition problems, it is not plausible to use negative descriptors to 

recognize positive examples. So we modify the original algorithm in Opelt et al. 

(2006) to select only among the features from positive images.  

Final classifier 

The final result of the hierarchical system is simply the sign of the sum of 

the outputs of layer classifiers, which is given by: 

                                                                                                  (6)      )(
1

∑=
=

n

i
iysignY

In our initial experiments, we also tried to set weights for layer classifiers, 

and employ the Voted Perceptron algorithm (Freund and Schapire, 1999) to adapt 

the weights to minimize the classification error on training images, but it overfits 

the data and the performance degrades. 

3.3.3 Experiment Results 

We experiment on biological and generic object recognition datasets in order 

to test the performance of the multi-scale PCBR regions and the hierarchical 

recognition system. We employed a four-layer system with scales {4.0, 3.0, 2.0, 

1.0} and the number of boosting iterations T = 100. The system is tested on six 

object classes in the Caltech dataset (Caltech): airplanes (1074), cars (rear) (526), 

cars (side) (123), faces (450), leaves (186) and motorbikes (826). The background 

set in Caltech contains 451 images. We also tested on a subset of the stonefly larva 

(see Section 3.1) set containing 70 Doroneuria (Dor) images (positive) and 57 

Hesperoperla (Hes) images (negative). Examples of the Caltech and stoneflies  
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Table 2. (a) ROC equal error rates of hierarchical recognition system and other 
approaches; (b) ROC equal error rates of the full hierarchical system compared to 

single-layer with spatial relation and 4-layer without spatial relation.  

 
 Dataset Hierarchical Fergus  Opelt  

Airplanes 90.6 90.2 88.9 

Cars (rear) 94.3 90.3 / 

Cars (side) 83.6 88.5 83.0 

Faces 98.8 96.4 93.5 

Leaves 97.5 / / 

Motorbikes 94.3 92.5 92.2 

Stoneflies 88.6 / / 

(a)  
 

Dataset 4-layer with spatial 1-layer 4-layer without spatial 

Airplanes 90.6 89.0 90.0 

Cars (rear) 94.3 91.0 89.2 

Cars (side) 83.6 81.6 80.3 

Faces 98.8 97.2 98.8 

Leaves 97.5 96.0 97.3 

Motorbikes 94.3 92.0 93.5 

Stoneflies 88.6 80.0 82.9 

(b) 
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images are shown in Figure 1 and Figure 2. Half of the images in each set are held 

out for testing. Recognition performance is evaluated by ROC equal error rates.  

The hierarchical system based on multi-scale PCBR region descriptions is 

tested on these datasets and compared with the constellation model of Fergus et al. 

(2003) and the boosting feature selection approach by Opelt et al. (2006). The 

results are summarized in Table 2 (a). The comparison indicates that our 

hierarchical object recognition system outperforms the other methods on most of 

the datasets.  

In order to test the value of the multi-scale object descriptions, we compared 

the equal error rates of the whole 4-layer system (denoted as 4-layer with spatial) 

to the best single layer classifier (1-layer). The results are summarized in the first 

two columns of Table 2 (b). In the third columns of Table 2 (b), we show the 

performance of the 4-layer system without spatial relation features (4-layer 

without spatial) to test the utility of the spatial configuration descriptor. We 

noticed that on all these datasets, there are significant gaps between the 

performance of the multi-layer system and that of the best one-layer classifier. 

This demonstrates that coarse-to-fine object description is more generic and 

informative for object classes than single scale description. On most of the datasets, 

spatial relation descriptors improve the performance of the system, thus supporting 

our assumption that the spatial configurations of the detected regions are also 

valuable cues for recognition.  

3.4 Stonefly Recognition Using Stacked Decision Tree 

Ensembles  

3.4.1 Stacked Decision Tree Ensembles 

As described in Chapter 1, the images of the stoneflies have large intra-class 

variations and small inter-class differences, so that the recognition of their 

categories is a very challenging task. It is even more challenging when we test on 
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multi-way classification of all nine categories of stoneflies: Cal, Dor, Hes, Iso, 

Mos, Pte, Swe, Yor and Zap, as shown in Figure 1. This problem is referred as the 

STONEFLY9 problem. It is different from most prior work that focuses on 

addressing general object categories that exhibit relatively large inter-category 

differences in terms of their intrinsic and contextual properties, as exemplified in 

benchmark datasets, e.g., Caltech (see Figure 2) and GRAZ (see Figure 3) datasets. 

Despite PCBR’s high performance on stoneflies, especially its multi-scale version 

(see Section 3.3), extracting only one type of image features is not sufficient to 

capture the subtle differences between the classes in STONEFLY9. Therefore, we 

extract different types of low-level image features and use an efficient algorithm to 

fuse visual information to tackle this difficult problem.  

Our method employs stacked decision tree ensembles (Martínez-Muñoz et al. 

2009). It involves two major steps: First, a number of diverse image features, 

including PCBR regions, are extracted from each stonefly image. Second, the low-

level image features are directly input to an ensemble of decision trees. The 

decision trees are capable of fusing disparate types of features without the need for 

their normalization which is usually a cause of many artifacts. Random forests are 

trained directly on each kind of feature. Each leaf node in the forest stores a 

histogram of the class labels of the training image features that reached this leaf. 

When a new image is encountered, the low-level features extracted from the new 

image are “dropped” through the learned forest until they reach leaf nodes. The 

class histograms at all such leaves are summed to produce a single class histogram. 

This histogram is then used as a feature vector in the second level of our stacked 

classifier — namely, in a boosted ensemble of decision trees — that makes the 

final prediction. 

3.4.2 Experimental Results 

The stacked decision tree ensembles recognition system is evaluated on the 

STONEFLY9 dataset to test its performance on this difficult recognition task. Four  
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Table 3. Classification accuracies of stacked decision tree ensembles recognition 
system on STONEFLY9  dataset.  

Dataset Our method visual codebook 

Hessian 84.5 66.0 

Kadir 88.9 76.1 

PCBR 88.8 71.9 

Edges 63.7 - 

Hessian + edges 88.6 - 

Kadir + edges 90.2 - 

PCBR + edges 90.8 - 

Hessian + Kadir 91.9 81.0 

Kadir + PCBR 92.2 80.8 

PCBR + Hessian 92.2 79.8 

All keypoints 93.6 83.9 

Edges + all keypoints 94.4 - 

 

 

types of features are extracted from stonefly images: Hessian-Affine (Mikolajczyk 

and Schmid 2004), salient regions (Kadir et al. 2004) and PCBR interest regions 

(see Section 3.2) described by SIFT descriptors (Lowe 2004), and edge features 

(Martínez-Muñoz et al. 2009). The experimental setup for STONEFLY9 consists 

of a stratified 3-fold cross validation using two folds for training and one for 

testing. The overall classification accuracies corresponding to different 

combinations of features are summarized in Table 3. As we can see, our decision-

tree based image classification method using raw features outperforms 

categorization methods that use standard visual codebook learning (see Section 2.3) 

on the STONEFLY9 dataset.  
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3.5 Stonefly Recognition Using Visual Codebooks  

Visual codebooks (see Section 2.3) have been successfully applied to object 

categorization tasks with bag-of-keypoints image representations. Based on 

extensive studies on visual codebook learning methods, we designed generative 

visual codebook (Larios et al. 2008) and discriminative visual codebook learning 

algorithms (Zhang et al. 2009) for the recognition of stonefly larvae. These 

algorithms achieve excellent performances on this difficult dataset. This section 

gives the brief introduction of the algorithms and the experimental results on 

stonefly dataset. The detailed description of the visual codebook learning 

algorithms and their application in object categorization will be presented in 

Chapter 4. 

3.5.1 Learning Generative Visual Codebooks  

The general framework of employing visual codebook learning for object 

recognition is illustrated in Figure 8 in Section 2.3. Following the standard 

unsupervised visual codebook learning approaches (see Section 2.3.2), we 

construct a separate generative codebook for each region detector and each class 

by fitting a Gaussian mixture model (GMM) to the feature pool via the 

Expectation-Maximization (EM) algorithm (Larios et al. 2008). The image 

attribute vectors are computed via the histogram of occurrences strategy (see 

Section 2.3.4). The attribute vectors obtained from different codebooks are 

concatenated to form the final image attribute vectors. These vectors are used to 

learn bagged logistic model trees to classify the images.  

We apply this approach to two stonefly recognition problems: STONEFLY2 

(Cal, Dor) and STONEFLY4 (Cal, Dor, Hes, Yor). The classification accuracy of 

the approach with different combinations of detectors is summarized in Table 4. 

As we can see, our approach achieves promising performance on these difficult 

problems. PCBR is shown to be a good complementary detector to employ  
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Table 4. Classification accuracies of the generative codebook learning method on 
the stonefly dataset when applied with different combinations of detectors. A √  

indicates that the corresponding detector was used. 
 

Hessian Kadir PCBR Accuracy (%) 

STONEFLY4 STONEFLY2 

√   73.14 70.10 

 √  70.64 70.34 

  √ 71.69 79.03 

√ √  78.14 74.16 

√  √ 80.48 78.68 

 √ √ 78.31 68.83 

√ √ √ 82.42 79.73 

 

informative regions on the stoneflies. More details of this approach will be 

presented in Section 4.2. 

3.5.2 Learning Non-Redundant Visual Codebooks  

Most of the previous methods (see Section 2.3) construct a single codebook 

to describe the distribution of the low-level image features. But in real-world 

applications, data can be represented in many different ways; and oftentimes a 

single codebook is not enough to fully describe the different structures of the data. 

So we present methods to learn multiple codebooks that are non-redundant in 

discriminative power, motivated by the idea of boosting and multi-view clustering. 

The details of this method will be presented in Section 4.5. This non-redundant 

visual codebook learning algorithm is applied to the STONEFLY2 and 

STONEFLY4 problems, and also to the STONEFLY9 problem which involves the  
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Table 5. Classification accuracies of the non-redundant codebook learning method 
compared with other methods on stonefly recognition datasets. 

Dataset Boost Larios08 Opelt06 

STONEFLY2 97.85 79.37 70.10 

STONEFLY4 98.21 82.42 / 

STONEFLY9 95.09 / / 

 

multi-way classification of all the nine categories of stoneflies. The performance 

of this algorithm (Boost) is compared with other methods: Larios et al. (2008) and 

Opelt et al. (2006). The experiment uses the same 3-fold cross validation setting as 

in Larios et al. (2008). For a fair comparison, we also employ the same interest 

region detectors—Hessian-Affine regions (Mikolajczyk and Schmid 2004), salient 

regions (Kadir et al. 2004) and PCBR regions (see Section 3.2) — described by 

SIFT descriptors (Lowe 2004). The results are summarized in Table 5.  

From Table 5, we can see that our non-redundant codebook learning 

algorithm performs much better that the previous work (Larios et al. 2008; Opelt et 

al. 2006). Figure 22 shows the performance of our algorithm on the stonefly 

datasets versus the number of boosting iterations. We can see that by comparing 

the starting points of the curves (using a single codebook of size K = 100) that the 

addition of non-redundant codebooks significantly improves the discriminative 

power of the recognition system. For all three tasks, the learning converged within 

25 iterations and showed no sign of overfitting.  

In summary, the properties of the stonefly dataset pose the following 

requirements for the recognition system. (1) Due to the high complexity of the 

objects, a single image feature extractor is usually not able to extract sufficient 

visual information for classification. The recognition system needs to employ 

different types of feature extractors and combine the information explored by these  
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Figure 22. The performance of Boost-Resample non-redundant codebook learning 
algorithm on stonefly dataset versus the number of boosting iterations.  

extractors to achieve high performance. According to our experiments, the 

combination of the structure-based PCBR regions and intensity-based interest 

regions (Hessian-Affine, salient regions) works quite well. (2) Visual codebooks 

can provide compact and informative image representations for stoneflies. Their 

performance can be significantly improved by introducing non-redundancy in the 

construction process (see Section 4.5). (3) Due to the small between-class 

differences of the stoneflies, the image classifiers based on discriminative feature 

selection is preferred because they rely on a small number of discriminative low-

level image features or mid-level image attributes for high-precision classification. 

Ensemble learning techniques can be employed to reduce the variance of the 

classifier. For example, the boosting decision stumps (see Section 3.3), bagged 

decision lists (see Section 4.4) and the bagged decision trees (see Section 4.5) 

classifiers all achieved high performance on the stonefly recognition problem.  
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4 Visual Codebooks for Object Recognition  

4.1 Overview 

As discussed in Chapter 2, interest region detectors and descriptors have been 

computed to robustly represent images that are subject to noise and deformations. 

Each image is thus represented as a bag of interest region descriptors. In such tasks, 

the object recognition problem reduces to the problem of classifying a bag of low-

level features (interest region descriptors) into one or a subset of the possible 

object classes. Visual codebooks provide a way of generalizing a bag of low-level 

features (descriptors) to a fixed-length attribute vector, to which standard 

classifiers can be directly applied. A visual codebook can be constructed either by 

unsupervised clustering (see Section 2.3.2) or by discriminative learning (see 

Section 2.3.3).  

Generative visual codebooks have shown good performance on various visual 

object categorization tasks. We employ this unsupervised codebook learning 

method (Larios et al. 2008) to the difficult stonefly recognition problem. This 

method will be introduced in Section 4.2. Despite the high performance of these 

generative visual codebooks for object recognition, their discriminative 

characteristics are not well-studied by previous researchers (see Section 2.2). So 

we present the Maximum Mutual Information (MMI) evaluation criterion (Zhang 

and Deng 2008) to measure the discriminative power of codebook entries 

quantitatively. This evaluation method and evaluation results are introduced in 

Section 4.3.  

An advantage of unsupervised codebook learning is that there is little or no risk 

of overfitting the training images. But the generative codebook is not designed to 

discriminate between the different object categories in the specific problem; 

discriminative learning is mainly restricted to the final image classifier based on 

the codebook. Therefore, we present an Iterative Discriminative Clustering (IDC) 
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algorithm (Zhang and Dietterich 2008) to introduce discriminative mechanisms 

into the visual codebook learning process. This algorithm is combined with a 

bagged decision lists classifier which searches for a small number of codewords so 

that recognition is very efficient. These methods are introduced in Section 4.4.  

All the codebook learning methods introduced in Section 2.3 build one 

codebook by performing a single clustering on the low-level features. Instead we 

design the learning algorithm to build multiple visual codebooks that are non-

redundant in discriminative power (Zhang et al. 2009). Instantiation of this 

framework is successfully applied to stonefly recognition tasks. This method is 

presented in Section 4.5.  

4.2 Generative Visual Codebook Learning for Stonefly 

Recognition 

Our approach of generative visual codebook learning (Larios et al. 2008) 

follows the unsupervised learning approaches introduced in Section 2.3.2, but with 

several modifications and extensions. The key component of the system is the 

generative visual codebook learning algorithm based on Gaussian Mixture Model 

(GMM). It will be introduced in the following section.  

4.2.1 Generative Visual Codebook Learning  

Suppose there are F different combinations of detector/descriptor applied to 

the images. We construct a separate codebook for each detector/descriptor 

combination f and each class c. Let Vf,c be the low-level features extracted from 

detector/descriptor combination f in all cluster-set images from class c. We fit a 

Gaussian mixture model (GMM) to Vf,c via the Expectation-Maximization (EM) 

algorithm (Duda et al. 2001). A GMM with K components has the form 
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where v denotes a descriptor vector, the component probability distribution Cf,c,k is 

a multivariate Gaussian density function with mean µf,c,k and covariance matrix 

Σf,c,k (constrained to be diagonal). Each fitted component of the GMM defines one 

of K codewords. Given a new descriptor vector v, we compute the corresponding 

codeword k = keyf,c(v) by finding the k that maximizes p(v | µf,c,k, Σf,c,k). Note that 

we disregard the mixture probabilities P(k). This is equivalent to mapping v to the 

nearest cluster center µk under the Mahalobis distance defined by Σk.  

We initialize EM by fitting each GMM component to each cluster obtained 

by the k-means algorithm (Csurka et al. 2004; Duda et al. 2001). The k-means 

algorithm is initialized by picking random elements. The EM algorithm iterates 

until the change in the fitted GMM error from the previous iteration is less than 

0.05% or until a defined number of iterations is reached.  

After building the codebook, we next construct a set of training examples by 

applying the F detector/descriptor combinations to each training image. Then we 

follow the “histogram of occurrence” mapping method described in Section 2.3.4. 

We map each feature extracted from detector/descriptor combination f to the 

nearest codeword (as describe above) for each class c using keyf,c(v). We 

accumulate the codewords to form a histogram Hf,c and concatenate these 

histograms to produce the final attribute vector. With F detectors, C classes, and K 

mixture components, the number of attributes A in the final attribute vector (i.e., 

the concatenated histogram) is F×C×K. 

4.2.2 Experimental Results 

As presented in Section 3.5.1, we apply our generative visual codebook 

learning algorithm to the challenging STONEFLY2 and STONEFLY4 problems. 

Three region detectors are employed: Hessian-Affine regions (Mikolajczyk and 

Schmid 2004), Kadir’s salient regions (Kadir et al. 2004) and PCBR regions (see  
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Table 6. Comparison of the performance of the generative codebook learning 

method (Concatenate Histograms Feature & Logistic Model Trees (CHF&LMT)) 

and Opelt’s method (2006) on STONEFLY2 problem. 

Hessian Kadir PCBR Accuracy (%) 

Opelt CHF&LMT 

√   60.59 70.10 

 √  62.63 70.34 

  √ 67.86 79.03 

√ √ √ 70.10 79.37 

 

 

Section 3.2). All detected regions are described by SIFT descriptors (Lowe 2004). 

The concatenate histograms feature vectors are used to learn bagged logistic model 

trees (Landwehr et al. 2005) as the image classifier. This recognition system 

achieves good performance on the stonefly recognition problems, as shown in 

Table 4 in Section 3.5.1. It also outperforms state-of-the-art recognition method 

(Opelt et al. 2006) on the STONEFLY2 problem, as summarized in Table 6.  

4.3 Understanding Generative Visual Codebooks using MMI 

Curves 

4.3.1 Motivation 

As introduced in Section 2.3, visual codebooks have been successfully 

applied to object recognition as a mid-level process. This approach employs 

clusters of region descriptors as the codewords in the visual codebook. The 

recognition task is then accomplished by manipulating the codewords and 

selecting the most discriminative ones to build the final image classifier. Different 

combinations of interest region detectors and region descriptors will produce 
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different pools of low-level features to build the codebooks. Ideally, all the 

codewords should be consistent and informative to make classification a trivial 

task. The choice of low-level feature extractor has significant impact on the 

performance of recognition approaches (Dorko and Schmid 2004; Opelt et al. 2006; 

Mikolajczyk et al. 2005b). But it is not always obvious which detector and 

descriptor is the best for a given problem. Usually, the choice is made purely 

empirically. Given an object recognition problem, it would be much more rational 

to experiment only with low-level features that are promising for the problem, 

rather than trying every possibility.  

Different evaluation criteria (Dorko and Schmid 2004; Mikolajczyk et al. 

2005b) have been proposed to measure the discriminative ability of descriptor 

clusters, as introduced in Section 2.2.3. Motivated by previous work and the 

successful discriminative feature selection algorithm in Opelt et al. (2006), we 

introduce the Maximum Mutual Information (MMI) evaluation criterion (Zhang 

and Deng 2008), which measures the discriminative power of codewords 

quantitatively. This method is introduced in Section 4.3.2. MMI evaluation is 

closely related to the classification of image instances in the recognition task. It 

can be performed on any object recognition dataset efficiently without the 

requirement for prior knowledge of homographies. The MMI curves can clearly 

reveal the characteristics of codebooks for the specific object recognition problem. 

Additionally, comparison results are valuable guidelines for the design of the 

image classifier. Visual codebooks built from state-of-the-art interest region 

detectors are evaluated on benchmark datasets. The results are summarized in 

Section 4.3.3. The results can help future researchers to select suitable detectors 

for similar object recognition problems. 
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4.3.2 MMI Scores and MMI Curves 

Generative codebook learned by GMM algorithm 

Given a binary object recognition dataset composed of object (positive) 

images and background (negative) images, the positive images are partitioned into 

two disjoint sets, one is called the clustering set, denoted as IC. The other positive 

set is combined with all negative images to form the evaluation set IE. Then a 

specific interest region detector is applied to all the images. For each detected 

region, a SIFT descriptor (Lowe 2004) is computed to produce the clustering 

descriptor vectors FC and evaluation descriptor vectors FE.  

Like generative codebook learning in Section 4.2, our method first fits a 

Gaussian Mixture Model (GMM) to the descriptor vectors in FC. Each cluster Ck is 

described by a d-dimensional mean vector µk and a d×d diagonal covariance 

matrix Σk.  In our experiments, the number of clusters K is set to 50.   

MMI Score 

Given: a cluster Ck: (µk, Σk), the evaluation set IE of m images, the class 

labels of evaluation images LE = (l1, …, li, … , lm), with li }1,1{ −+∈ , and the SIFT 

vectors of evaluation images FE = (F1, …, Fi, … , Fm), we would like to evaluate 

the discriminative power of cluster Ck. In other words, that is, how well does the 

cluster reveal the categories of evaluation images. This is done by employing 

cluster Ck to classify the evaluation images and searching for the maximum mutual 

information (MMI) (MacKay 2003) between the classification results and the true 

class labels. The MMI score is treated as the evaluation score for Ck. In order to 

classify the evaluation images using cluster Ck, we employ an approach similar to 

the Weak-Hypotheses-Finder algorithm in Opelt et al. (2006). First, we calculate 

the distance from Ck to all the evaluation images. For cluster Ck: (µk, Σk) and image 

Ii, the distance between them is:  

                                    (8) k,ia ))()((min)),(min( 1
kijk

t
kij

j
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where vij∈Fi is the SIFT descriptor vector computed from region  j = 1, …, Ni. Ni 

is the total number of detected regions in image Ii.  

Given the distances between Ck and evaluation images (ak,1, …, ak,i , … , 

ak,m), all the evaluation images can be sorted based on these distances. That is, we 

find a permutation π = (π(1), … , π(i), …, π(m)) such that 

                                ak,π(1) ≤ … ≤ ak,π(i) ≤ … ≤ ak,π(m)                                  (9)        

Then the sorted class labels are  

        lk,π = (lk,π(1), … , lk,π(i), … , lk,π(m)), lk,π(i) }1,1{ −+∈                              (10)  

The sorted label array illustrates the discriminative power of cluster Ck. A 

perfect cluster should have all the positive images (+1) ranked first followed by all 

the negative images (−1); while a poor cluster can never discriminate between 

them, so gives randomly ordered labels. From the view of Information Theory 

(MacKay 2003), the sorted label array lk,π indicates how much information the 

distance-based sorting can tell about the class labels. This is quantitatively 

measured by the maximum mutual information (MMI) (Dorko and Schmid 2004) 

between the sorted array and the true class labels: 

                                       ))((max ,sMIMMI k,
s

k πl= .                                                 (11) 

MI(lk,π,s) calculates the mutual information between the classification results 

Ck,s and the true image class LE. Ck,s is given by a decision stump (Opelt et al. 2006) 

which sets the threshold at position s (1≤ s ≤ m) in the sorted label array and 

classifies the images before s to be positives and those after s to be negatives. The 

search for the maximum in Equation (11) can be sped up by exploiting the fact that 

the maximum can only possibly be obtained between +1 followed by a −1 in the 

sorted label array. Using the sorted label array lk,π, the mutual information 

Equation (11) can be calculated as in Dorko and Schmid (2004) (See Equation (1) 

in Section 2.4). MMI scores measure the discriminative power of codewords. A 

perfectly discriminative codeword is assigned a full MMI score of 1.0, while a 

non-discriminative codeword will have a score near 0.   
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The MMI Curve 

For each detector, we sort the codewords into decreasing order of their MMI 

scores and plot the sorted scores as a function of their position in the ordering. We 

call such a plot an MMI curve (see Figure 23 − Figure 25). A detector’s 

performance and suitability for object recognition can be measured by the Area-

Under-Curve (AUC) and the shape of the MMI curve. The MMI curve for a 

perfect detector is a horizontal line at full score (this also gives maximum AUC). If 

a detector produces an MMI curve that is above average but relatively flat, such as 

the MMI curve for DoG (Lowe 2004) on the cars dataset in Figure 23, it indicates 

that most of the detected regions are fairly distinctive and discriminative and only 

a few of the detections are very noisy. Under this situation, classifiers that assume 

equal contributions from all features, such as Nearest Neighbor and Neural 

Networks, are probably able to tolerate the noise and give high recognition 

performance. On the other hand, consider a detector that generates a curve that has 

very high scores for the top ranking clusters but relatively low scores for the 

following clusters. For example, see the MMI curve for PCBR detector (noted as 

curvilinear) on stoneflies in Figure 19. This curve shows that the detector can only 

find a few highly distinctive and discriminative regions while at the same time 

producing many uninformative detections. In this case, the classifiers mentioned 

above will probably fail. Instead, this detector may work well with algorithms that 

perform discriminative feature selection (see Section 2.4). These algorithms are 

able to achieve high classification accuracy using only a small part of the relevant 

features. In summary, MMI curves are valuable guidelines for the selection of 

detectors and the design of the image classifiers. 

4.3.3 Evaluation Results and Conclusions 

We evaluate the performance of visual codebooks built from several state-

of-art interest region detectors: (1) Harris-Laplace, Hessian-Laplace, and their 

affine-invariant versions: Harris-Affine and Hessian-Affine from Mikolajczyk and 
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Schmid (2004); (2) Difference-of-Gaussian (DoG) detector from Lowe (2004) ; (3) 

Maximally Stable Extremal Regions (MSER) from Matas et al. (2002);  and (4) 

PCBR Regions (denoted as Curvilinear in figures) detector (see Section 3.2). 

These detectors have been described in previous sections. 

We experimented with four benchmark object recognition datasets: Caltech 

(Caltech), Caltech 101 (Caltech101), GRAZ (GRAZ) and Stonefly larvae (Bug-ID) 

(see Chapter 3). Some objects are highly textured (e.g. leopards), some are 

structured (e.g. leaves); and these datasets differ greatly in their complexity. Each 

experiment is repeated 10 times with random selection of the clustering and 

evaluation sets, and the results are the average of 10 iterations. The MMI curves 

are shown in Figure 23 − Figure 25.  

We can see that all the detectors work fairly well on simple objects, such as 

leaves. More than half of the codewords have mutual information above 0.15, and 

some codewords achieve very high mutual information scores (> 0.5). But for 

relatively complex problems, such as leopards and stoneflies, the performance of 

detectors inevitably degrades a lot. Most of the codewords have mutual 

information scores below 0.05.  

Different detectors exhibit different characteristics and performance for 

different object classes, which are illustrated by the shapes of their MMI curves.  

 DoG has the best overall performance for most of the datasets (except 

leaves set). This demonstrates DoG’s ability to detect discriminative regions in 

natural scenes, and its robustness to various planar transformations and limited 

view changes. In Figure 24, we can see that on the leopards set, DoG performs far 

better than other detectors. On the leaves set, DoG is outperformed by the Hessian 

detectors and the PCBR detector.  
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Figure 23. MMI curves of state-of-the-art detectors on the leaves and cars datasets.  
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Figure 24. MMI curves of state-of-the-art detectors on the faces and leopards 
datasets.    
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Figure 25. MMI curves of state-of-the-art detectors on the bikes dataset.    

 

The PCBR detector has evaluation scores above average on all the object 

classes. It works especially well on highly structured objects, such as leaves and 

cars. PCBR is usually able to find several highly distinctive and discriminative 

patterns, e.g. on the leopards and stoneflies sets. This implies its utility for feature 

selection methods. Its high-performance in combination with other intensity-based 

local detectors has been demonstrated on the stonefly recognition dataset, as 

presented in Chapter 3.  

On most of the datasets, Harris-Laplace and Hessian-Laplace have similar 

MMI curves; also do Harris-Affine and Hessian-Affine. This can be explained by 

their similar local intensity-based detecting principles. But on leaves set in Figure 

23, the Hessian detectors score much higher than the corresponding Harris 
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detectors. Harris-Laplace works much better than all the other detectors in this 

family.  

In addition to evaluating the relative performance of detectors, MMI curves 

also reveal the intrinsic characteristics of the visual codebooks. MMI curves for 

DoG are fairly good and quite flat; this indicates that most of the codewords are 

informative, so they can be recommended for use with the classifiers that assume 

equal contribution from all features; PCBR has a similar MMI curve on cars set, as 

do the Hessian detectors on the leaves set. On the other hand, we also notice that 

some other detectors produce quite different MMI curves on some datasets. MSER 

is not stable on all the object classes in the sense that most of the codewords score 

relatively low, while it has the ability to extract a few highly distinctive and 

discriminative codewords in cars set. As shown in Figure 23, its MMI curve starts 

at 0.82, which is about 0.3 units higher than any other method. Similarly for the 

PCBR and Hessian-Affine detectors on the Stoneflies set. Their MMI curves all 

start with very high scores but then soon drop down to noise detections. For these 

codebooks, classifiers based on discriminative feature selection are more 

promising. So even if a detector fails to give stable detections (low repeatability), 

it is still possible that it can produce a small number of highly distinctive and 

discriminative codewords if it fits the object class. In summary, the characteristics 

of the visual codebooks generated by different interest region detectors can be 

explored directly by the shapes of their MMI curves. 

We also extensively studied the robustness of our MMI evaluation criteria to 

several key factors: (1) the density of detection; (2) the size of regions and (3) the 

size of the codebook. The MMI criterion is robust to these factors in that the 

relative ranking of the detectors are mostly invariant to different settings. For 

example, we show the evaluation results on leaves set with K=100 and K=20 in 

Figure 26. Comparing the curves, we can see little difference between the rankings.  
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Figure 26. MMI curves of state-of-the-art detectors on the leaves dataset with 
codebooks of different sizes K: Top: K = 100; Bottom: K = 20.    
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Table 7. Classification accuracies of generative codebooks learned from different 

detector/descriptor combinations. 

Class Har-

Lap 

Hes-

Lap 

Har- 

Aff 

Hes- 

Aff 

DoG MSER PCBR 

Leaves 98.9 99.6 98.5 99.3 99.3 92.7 99.6 

Cars 96.4 96.4 96.4 94.1 98.3 97.2 93.6 

Faces 97.05 97.9 96.8 98.8 99.7 99.1 99.7 

Leopards 80.65 80.6 79.6 80.7 79.4 80.8 82.1 

Bikes 72.05 75.6 71.6 67.3 70.3 69.4 61.3 

Stoneflies 80.8 78.7 70.2 80.9 83.0 70.2 69.4 
 
 

 

To validate the MMI evaluation results, we also employ the boosting feature 

selection classifier introduced in Section 2.4 (Opelt et al. 2006) to select the high-

scoring codewords and test their combined classification accuracy on real-world 

problem. The evaluation set is divided into two non-overlapping sets. One set is 

used as a training set to train the image classifier; the other is used for testing. 

Then decision stumps are learned on the training set as described in Section 3.3.2. 

Each iteration of AdaBoost searches among the unused codewords and selects the 

one that has the highest MMI score. The boosted decision stumps are then applied 

to the testing images to evaluate the performance of the detector. The results are 

given in Table 7. We can see that the results are consistent to the comparison of 

the detectors using the MMI curves. 
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4.4 Generative/Discriminative Learning of Visual Codebooks  

4.4.1 Motivation 

There are two major challenges for any approach to object recognition: (a) 

Small training sets. In most benchmark datasets, it is usual to have fewer than 200 

training examples of each object class. This is one reason that generative methods 

for codebook learning (see Section 2.3.2 and Section 4.2) have been popular: they 

are less prone to overfit the data. (b) Low signal-to-noise ratio. Due to the 

complexity of object recognition problems, even using state-of-the-art interest 

region detectors and region descriptors, only a small fraction of the extracted 

descriptors are discriminative, while the others are noisy (see the MMI curves in 

Figure 23 – Figure 25 in Section 4.3). This is the main motivation for developing 

discriminative visual codebook learning methods that exploit the class labels to 

identify discriminative features. The challenge is to do this without causing 

overfitting.  

As introduced in Section 2.3.3, discriminative mechanisms have been 

employed to learn visual codebooks. In this dissertation, we introduce a new 

efficient codebook learning method called the Iterative Discriminative Clustering 

(IDC) algorithm (Zhang and Dietterich 2008) that combines the best of generative 

and discriminative learning to address the challenges in object recognition. This 

algorithm is presented in Section 4.4.2. The learned codebook benefits from 

generative initialization in its robustness to overfitting and obtains higher test set 

accuracy from discriminative learning. Unlike previous methods, which treat all 

elements of the descriptor vector as equally important, our method learns a cluster-

specific full-rank distance metric that improves cluster generalization and 

discriminative power. In addition, we employ an efficient rule learning algorithm, 

decision lists, to create the final classifier. This algorithm is described in Section 

4.4.3. This classifier can achieve high performance by identifying the logic 

conjunctions of small number of informative codewords from the highly noisy 
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feature pool. Extensive experiments on three well-recognized object recognition 

benchmark datasets show performance that matches or exceeds state-of-the-art 

codebook and instance selection based object recognition approaches. The results 

are summarized in Section 4.4.4. 

4.4.2 Generative Initialization and Discriminative Refinement 

of Codebooks 

Generative initialization of the codebook  

Similar to the generative visual codebook described in Section 4.2, a 

discriminative visual codebook DVC has the form 

         == },,,,{ 1 KkDVC EEE LL };,,,,,,,{ 11 ><><>< KKkk WxWxWx LL      (12) 

where xk and Wk are the representative value and the distance metric, respectively, 

of codeword Ek. A separate codebook DVCf,c is learned for each 

detector/descriptor combination f and each object class c. The codebook DVCf,c is 

initialized by k-means clustering on the region descriptor vectors of type f from the 

training images of class c. Full rank covariance matrices and the Mahalanobis 

distance are employed during clustering. Each representative value, xk, is 

initialized to the corresponding cluster center, and each distance metric, Wk, is 

initialized to the inverse of the corresponding covariance matrix. So the distance 

from an initial codeword Ek to a descriptor vector x is measured by the 

Mahalanobis distance metric (Duda et al. 2001): 

                                                     (13) 2/1))()((),( xxWxxxE −−= kk
t

kkd

Iterative discriminative clustering (IDC) algorithm 

The main contribution of our codebook learning method is to apply 

supervised learning directly to construct problem-specific discriminative 

codebooks for image classification. Our Iterative Discriminative Clustering (IDC) 

algorithm combines and adapts the idea of the EM-DD algorithm (Zhang & 
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Goldman 2001) for multiple-instance learning and Relevant Component Analysis 

(RCA) (Shental et al. 2002) for distance metric learning.  

The IDC algorithm is applied separately to each codeword Ek = < xk ,Wk > in 

a codebook. Let c be the class of the codebook. Consider a training image i 

represented by its bag of region descriptor vectors Bi. Let p be the descriptor 

vector in Bi that is closest to Ek according to d(Ek, Bij); we will call p the nearest 

neighbor point from image i. Let {NN+}k be the set of all nearest neighbor points p 

for codeword k drawn from positive examples of class c, and let {NN−}k be the 

corresponding set drawn from negative training examples (i.e., examples of other 

classes c’≠ c). If {NN+}k is compact and well-separated from {NN−}k, then Ek is a 

compact, discriminative entry, because it has consistent nearest neighbor points in 

images of class c, and it is far away from the images of other classes. Otherwise, if 

{NN+}k
 has high variance or {NN+}k and {NN−}k overlap, then Ek is suboptimal in 

term of discrimination, and we seek to improve its performance with supervised 

learning. 

The idea of the learning algorithm is to locally adapt the representative value 

and the distance metric of entry Ek with the goal of making it discriminative. We 

limit the adaptation to the local neighborhood of entry Ek to avoid situations in 

which all codewords converge to the same global maximum and the learned 

codebook has low discriminative power. The pseudo-code for the IDC algorithm is 

given in Figure 27. IDC algorithm iterates between the following two steps: in the 

“nearest neighbors search” step, the nearest neighbor point sets {NN+}k and 

{NN−}k
 are computed for codeword Ek based on the representative value and 

distance metric from the previous iteration. In the following “entry updates” step, 

the representative value of Ek is updated to be the mean of the positive nearest 

neighbor points; and the Relevant Component Analysis (RCA) algorithm (Shental 

et al. 2002) is employed to learn a new distance metric to sphere and better 

separate the point sets {NN+}k and {NN−}k.  

Distance metric learning using RCA algorithm  
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RCA learns a linear transformation to assign large weights to the relevant 

dimensions and small weights to the irrelevant dimensions. Here the “relevant 

dimensions” are the dimensions that help to discriminate between the sets: {NN+}k
 

and {NN−}k. The learned entry Ek is analogous to the “weighted cluster” in 

Domeniconi et al. (2007), such that the data points in a cluster are tightly grouped 

according to the L2 norm distance weighted by Wk. The distance between the 

learned entry Ek and an image indicates the confidence for whether the image 

contains the object part corresponding to Ek. This distance can be used as a feature 

value for image classification, as shown in Equation (17). 

Convergence criteria 

The adaptation of a codeword is limited to its local neighborhood using 

early-stopping conditions. The two steps of the IDC algorithm iterate until one of 

the following two stopping conditions is satisfied: 1. it reaches the maximal 

number of iterations: MaxI; we set it small to encourage local maxima. 2. When 

the updated codeword is not more discriminative than the original one. The 

discriminative power is measured by the difference between the average distances 

from the codeword to the nearest neighbor points in {NN+}k
 and {NN−}k.  

After the algorithm stops, we also verify the relative distance from the new 

representative value, xk
*, to the original one, xk, and only keep the new entry if it is 

within a certain neighborhood of xk:        

                                             L
k

kk
T≤

−
2

2*

x

xx
                                                      (14) 

Codebook compression 

The IDC algorithm described above is applied to each codeword in the 

codebook. It is usual that this causes several codewords to converge to the same 

point. In this case, only one of them is kept. Learned codewords that are close to 

each other are merged if the following two conditions are met: 
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Input: Bags of descriptor vectors of m training images:    
    D  = {<B1, l1>, …,<Bi, li> , …,<Bm, lm>}; 
    Initial codebook of class c: DVC = 
    {<x1,W1>, … , <xk, Wk>, … , <xK, WK>}; 
Learning: 
 for (k = 1; k ≤ K; k ++) 
    Ek = <xk, Wk>;     // initial codeword     
    while (not converged) 
        {NN+}k

 = {};  {NN−}k = {}; 
         for (each bag Bi ∈D)  
             // nearest neighbors search           
            ;                    ),(minarg ijkd

iij
BEp BB ∈=

             if (li == c)  then Add  p  to {NN+}k; 
             else Add  p  to {NN−}k;               
         xk = Mean ({NN+}k);      // entry updates 
         Wk = RCA ({NN+}k, {NN−}k);  
         Ek = <xk, Wk>; 

 

Figure 27. Pseudo-code for the Iterative Discriminative Clustering algorithm. 

  

                                          
12

2
2

1

2
21

sT≤
+

−

xx

xx
                                                 (15) 
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−

WW
WW                                          (16) 

where the norm is the Frobenius-norm. This process eliminates redundancy in the 

codebook and improves classification efficiency.  
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Parameter setting 

We tested the performance of the recognition system for different settings of 

the parameters. The performance is quite robust. For example, changing MaxI  = 3 

to MaxI = 10 makes less than 0.5% point difference in the classification error rates 

on the Caltech motorbikes vs. general background problem. The size of the initial 

codebook K, which is the most sensitive parameter, also has little impact on the 

classification accuracy (see Figure 30). Thus we adopted a single set of parameter 

values for all experiments:  

K = 200;  

MaxI = 5;  

TL = 50 (reject fewer than 10% of new codewords); 

1sT  =  = 0.01 (merge 10% − 50% of the codewords). 
2sT

Computational complexity 

The IDC algorithm requires O(K|D|) per iteration, where K is the size of the 

initial codebook, which is usually set at several hundred, and D is the set of 

descriptor vectors extracted from training images. Typically, K << |D|. So the IDC 

algorithm is much more efficient than the approach in Opelt et al. (2006) whose 

complexity is O(|D|2). Furthermore, since we use sparsely detected interest regions, 

|D| is much smaller than for densely sampled regions. Thus, our codebook 

learning algorithm is also more efficient than the algorithms based on dense 

sampling (Jurie and Triggs 2005; Perronnin 2008). Our nonoptimized MATLAB 

implementation takes less than one hour to learn a 200-words codebook from 

~100,000 regions detected from ~1,000 images. 

Feature mapping based on the learned codebook 

As in the recognition system described in Section 4.2, a separate codebook is 

learned for each object class (including the background class) and each 

detector/descriptor combination. All these separate codebooks are concatenated to 
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construct the final codebook; suppose it has M codewords. Then a new image Bi = 

{Bij: j=1,…,Ni} is mapped to an image attribute vector Ai according to its 

minimum distances to the codewords, that is:  

                                                      (17)  
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Note that in Equation (17) and also in the IDC algorithm, we compute the 

minimum distance over a set of points to learn and access the codebook.  This is a 

potential source of overfitting. We considered employing a low percentile cutoff 

rather than the minimum distance. But that approach risks ignoring the most 

informative detected regions. On balance, we chose to use the minimum distance 

approach, but then to introduce additional methods to reduce the risk of overfitting. 

We apply unsupervised codebook initialization followed by local generalization of 

codewords to avoid making overly strong use of the class labels. And we apply 

Bagging (Breiman 1996) to avoid overfitting in the image classifier. Our excellent 

test set performance shows no overfitting. 

4.4.3 Bagged Decision Lists Classifier 

Based on the learned codebook, we have chosen bagged decision lists as our 

classifier. This classsifier combines and adapts the boosting feature selection 

method from Opelt et al. (2006) and the idea of cascaded classifiers framework 

(Viola and Jones 2001). The decision list classifier is better suited to this problem 

than other standard classifiers for two reasons. First, decision lists favor situations 

in which the conjunctions of a small number of features are capable of 

discriminating the two classes. This matches our experience and the results of the 

previous work presented in Section 2.4. Second, decision lists are flexible 

classifiers — they can adjust their complexity as necessary to fit the data. 
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Figure 28. Illustration of the decision list classifier. 

Decision list   

A decision list is a variable-length sequence of decision nodes. As shown in 

Figure 28. Each node N is defined by an image attribute index kN, a classification 

threshold θN, and a class label CN for prediction. An image i is classified by node N 

into class CN if  

                                          ;, NikN
a θ≤                                                                          (18) 

where is the value of the image attribute vector Ai at dimension kN. An 

example is classified by processing it against each node in the decision list until 

one of the nodes is able to classify the example. 

ikN
a ,

Training 

Given all the attribute vectors for training images, the decision list is grown 

by starting with the empty list and adding decision nodes one at a time until all 

these training examples are correctly classified. The detailed steps of the algorithm 

are as follows: 
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1. Find the best decision node: The algorithm calls the function 

“NodeFinder” to search for the image feature dimension and corresponding 

threshold and class label that has the highest overall performance. The pseudo-

code for the NodeFinder algorithm is given in Figure 29. The NodeFinder function 

is similar to the “Weak_Hypotheses_Finder” algorithm Opelt et al. (2006) shown 

in Figure 10, but it differs in several ways: 

First, instead of searching for the feature dimension k* and corresponding 

threshold θ* that maximize the classification accuracy, our algorithm searches for 

the k* and θ* that maximize the “coverage”, that is, the number of training 

examples covered by this node under the constraint that all of them are correctly 

classified. Second, in order to improve the robustness of our algorithm to 

overfitting, a safety margin (σ=3 in all experiments) is employed when computing 

the threshold θ*. This heuristic ensures that a node can only make predictions 

when we have high confidence. 

2. Split the current training set based on the selected node: the correctly 

classified examples are removed from the training set; all the unclassified or 

misclassified examples are passed to the next node. 

3. Repeat steps 1 & 2, adding new decision nodes to the list until the training 

set is empty, i.e., all the training examples have been correctly classified.  

Classification 

Applying the learned decision list to a new image is similar to the training 

process. Its region descriptor vectors are first mapped to the image attribute vector 

according to Equation (17). The resulting attribute vector is passed down the 

decision list until the image is classified by a decision node. Classification is 

efficient because most of the examples are classified by the nodes that appear early 

in the decision list.  
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Inputs: Training image attribute vectors: A =     , 
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the class labels of the training images: L = (l1, l2, … , lm). 
 
(M is the number of image attributes, i.e. the size of the final codebook; and m is the
number of training images). 
 
Sorting: For each dimension (row) k of training attribute vectors A, sort the m
images in non-decreasing order of the attribute values, that is, find a permutation
πk(1),  πk(2), … ,  πk(m), such that:  
 

≤)1(, kka π  ≤≤L)2(, kka π )(, mk k
a π . 

 
Search for the maximal-coverage dimension:  
 
For each image attribute k, compute the maximal coverage: MC(k) =

| , under the constraint that the classification precision is 100%, i.e., |max
1

)(∑
=

p

j
j

p k
lπ

==)1(k
lπ  ====L)2(k

lπ )( pk
lπ . 

 
k* = .   // the maximal-coverage dimension )(arg kMCmax

k
 

If k* classifies positive examples, C* = +1; else, C*= −1. 
 
 
Compute classification threshold:   

2/)( )1(,)(,
*

*
*

*
* σπσπθ

−+−
+= sksk

kk
aa  

with s be the position where k* achieves highest MC value. 
 
 
Output: Decision node: [k*, θ*, C*]. 

 

Figure 29. Pseudo-code for the NodeFinder algorithm 
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Bagged decision lists (BDL)   

Note that because the decision lists can grow to be arbitrarily long, they can 

have high variance, which can lead to overfitting and poor performance. So we 

perform 200-fold bagging. This is accomplished by drawing 200 bootstrap 

replicates (Breiman 1996) of the training images and learning a separate decision 

list for each replicate training data set. A new image is classified by each of the 

200 decision lists, which then vote to determine the overall prediction. 

Computational complexity   

Learning a decision list has complexity O(Kmlogm), where K is the size of 

the codebook and m is the number of training examples. Since both K and m are on 

the order of several hundred, learning a decision list classifier is not expensive. In 

our experiments, the MATLAB implementation of the decision list learning 

algorithm takes several minutes to learn a decision list. Applying the learned 

codebook and classifier to a new image typically requires less than one minute. 

4.4.4 Experimental Results 

Our generative/discriminative codebook learning method is tested on three 

families of object recognition problems: the Caltech dataset (Caltech), the UIUC 

cars side dataset (UIUCCar), and the GRAZ-01 (GRAZ) dataset. All of the 

problems are binary object present versus object absent decision problems. Our 

approach could be easily applied to multi-class recognition problems by using 

divide-and-conquer techniques, e.g., the “One vs. the Rest” strategy or the Error 

Correcting Output Coding method in Dietterich and Bakiri (1995). Three interest 

region detectors are employed to extract the regions from object images: the 

Hessian-Affine detector (Mikolajczyk and Schmid 2004), Kadir’s salient region 

detector (Kadir et al. 2004), and the PCBR detector (see Chapter 2 and Chapter 3). 

Each region is re-represented by steerable filters (Freeman and Adelson 1991) 

introduced in Section 2.2.2. 
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Figure 30. Recognition accuracy of IDC-BDL on Caltech cars vs. empty road scenes 
problem (Caltech) for different codebook sizes K.    

On the test datasets, our method is compared to state-of-the-art generic 

object recognition approaches based on discriminative image feature selection 

(Chen et al. 2006; Dorko and Schmid 2004; Opelt et al. 2006), as introduced in 

Section 2.4; and to the constellation model in Fergus et al. (2007).  

Before presenting the results, we first report the results of a sensitivity study 

for the most important parameter K, the size of the initial codebook. The 

experiment was performed on the Caltech cars (rear) versus empty road scenes 

problem. The results are shown in Figure 30. The relatively flat curve 
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demonstrates that the performance of the learned codebook is very robust to the 

setting of K. This is probably due to the automatic codebook compression step in 

the IDC algorithm. Consequently, in all our experiments, we set K = 200. Similar 

robustness was observed for other parameters in our method. Thus, we use a single 

set of parameter values for all experiments. 

Experiment settings are the same as in previous papers for fair comparison. 

The results are reported as the ROC-equal-error rates (i.e. P(True positive) = 1 − 

P(False positive)), where the ROC curves are obtained by varying the number of 

votes required by the 200 decision lists to classify an example as positive. All the 

experiments are repeated with five random splits, and the average results are 

reported. The results are summarized in Table 8 – Table 10. We can see that our 

method, IDC-BDL (Iterative Discriminative Clustering + Bagged Decision Lists), 

gives superior performance on most of the problems. On all problems where we 

obtain improvements, the differences are statistically significant at a 95% level 

using an unpaired test for the difference between two proportions (Dietterich 1998). 

Even on object classes where our method is not the best, its performance is 

comparable to other methods. In summary, the overall recognition performance of 

our approach matches or exceeds the state of the art.  

In order to analyze the contribution of the two major parts of our system, we 

also compare the whole system IDC-BDL to ablated versions on the Caltech 

problems. The two ablated configurations are (i) KM-BDL (the initial codebook 

obtained from unsupervised k-means clustering + Bagged Decision Lists classifier) 

and (ii) IDC-DL (IDC codebook learning + a single decision list classifier). The 

KM-BDL version is compared to test the value of discriminative learning of visual 

codebook. The IDC-DL version is compared to test the value of bagging 

ensembles for the learning of the image classifier based on the image attribute 

vectors. The results are summarized in Table 11. 
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Table 8. EERs of IDC-BDL approach and other approaches on Caltech dataset 

 

Dataset IDC- BDL Fergus Opelt Chen 

 
Airplanes 

 
Faces 

 
Motorbikes 

 
Leopards 

 
Cars (Rear) 

 

99.2 
 

98.4 
 

98.3 
 

98.0 
 

95.5 

93.7 
 

91.7 
 

96.7 
 

89.0 
 

91.2 

88.9 
 

93.5 
 

92.2 
 
/ 
 

91.1 

98.0 
 

99.5 
 

96.7 
 
/ 
 

94.5 

 
 

Table 9. EERs of IDC-BDL approach and other approaches on UIUC cars side 
dataset 

 
 

Dataset 
Average 
length 

[confidence 
interval] 

 
IDC-BDL 

 
Fergus 

 
Opelt 

 
Cars 
(side) 

 

 
27.3 

[23.8, 31.5] 

 
92.7 

 
88.5 

 

 
83.0 

 
 

Table 10. EERs of IDC-BDL approach and other approach on GRAZ dataset 
 

 
Dataset 

 

Average length 
[confidence interval] 

 
IDC-BDL 

 
Opelt 

 
Bikes 

 
Persons 

 

 
14.1 [12.3, 16.2] 

 
16.2 [14.1, 18.7] 

 
76.5 

 
71.7 

 
73.5 

 
63.0 
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Table 11. Ablation experiment for IDC-BDL approach on Caltech dataset 
 

 
Dataset 

Average length 
[confidence  

interval] 

 
IDC-BDL 

 
KM-BDL 

 
IDC-DL 

 
Airp. 

 
Face 

 
Motor. 

 
Leopard 

 
Cars (R) 

 

 
14.4 [12.4, 16.7] 

 
8.3 [7.1, 9.7] 

 
14.8 [12.8, 17.3] 

 
3.8 [3.3, 4.4] 

 
20.4 [17.7, 23.7] 

 
99.2 

 
98.4 

 
98.3 

 
98.0 

 
95.5 

 
97.5 

 
99.3 

 
95.8 

 
96.2 

 
93.0 

 
92.4 

 
87.9 

 
89.2 

 
94.4 

 
91.0 

 

IDC-BDL outperforms KM-BDL and IDC-DL on most of the object classes; 

and on all these object classes, the improvements are statistically significant at the 

95% level. This shows that supervised codebook learning is valuable for the 

construction of high-performance problem-specific visual codebooks and that 

bagging helps a lot when the individual classifier cannot generalize well to new 

testing images (especially on Faces and Motorbikes problems). In addition, we 

also report statistics (the mean and a 95% confidence interval) on the length of the 

decision lists learned by IDC-BDL. The decision lists are usually fairly short. This 

shows that only a small number of most discriminative codewords are sufficient 

for accurate classification. 

4.5 Learning Non-Redundant Visual Codebooks 

4.5.1 Motivation 

All the codebook learning methods introduced in previous sections build one 

codebook by performing a single clustering on the low-level features. But in real-

world applications, data can be represented in many different ways; and oftentimes 

a single codebook is not enough to fully describe the different structures of the 
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data. In this dissertation, we introduce a simple framework for learning multiple 

codebooks that are non-redundant in discriminative power (Zhang et al. 2009). 

This framework is introduced in Section 4.5.2. This framework seeks to advance 

the state-of-the-art of codebook learning in an orthogonal direction in the sense 

that any new advanced codebook learning algorithm can be employed in this 

framework to further improve its performance. The basic idea is to wrap the 

codebook construction process inside a boosting procedure. Each iteration of 

boosting begins by learning a codebook according to the weights assigned by the 

previous boosting iteration.  The resulting codebook is then applied to encode the 

training examples; a new classifier is learned; and new weights are computed.  

We apply the new non-redundant codebook learning framework on both 

visual object recognition and document classification tasks. This dissertation will 

only describe the application on object recognition (see Section 4.5.3). The 

resulting methods give very substantial performance gains over the baseline of 

learning a single codebook of equivalent size. For the difficult stonefly recognition 

problem (see Chapter 3), we obtain a 77% reduction in error on the challenging 

STONEFLY9 task.  

This non-redundant codebook learning framework is inspired by the 

successful application of multi-view clustering algorithms (Cui et al. 2007; Jain et 

al. 2008) for exploratory data analysis. Non-redundant clustering is motivated by 

the fact that real-world data are complex and may contain more than one 

interesting form of structure. The goal of non-redundant clustering is to extract 

multiple structures from data that are different from one another; each is then 

presented to the user as a possible view of the underlying structure of the data. In 

principle, the non-redundant clustering techniques developed by Cui et al. (2007) 

and Jain et al. (2008) can be directly applied to learn multiple clusterings of the 

low-level features and create codebooks that are non-redundant with each other. 

However, such an approach is fundamentally unsupervised and will not necessarily 

lead to more accurate classifiers. In contrast, our framework learns codebooks that 
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are non-redundant in the sense that they complement each other in their 

discriminative power.  

There are a few recent developments in the vision community that are 

related to this framework, as presented in Section 2.3.3. Moosmann et al. (2007) 

learn multiple, independent randomized decision trees to partition the low-level 

feature space. However, they do not produce codebooks of complementary 

discriminative power. Yang et al. (2008) proposed a codebook learning framework 

that is integrated with classifier learning. Our framework shares the same basic 

boosting principle of sequential learning of codebooks and classifiers; yet our 

framework is much more general and can be applied with any form of visual 

codebook and classifier. 

4.5.2 General Framework of Non-redundant Codebook 

Learning 

The overall framework of our non-redundant codebook learning method is 

illustrated in Figure 31. Given a base codebook learner and a classifier, we 

iteratively learn one codebook at a time and stop when reaching the pre-defined T 

iterations. Each iteration consists of following steps:  

1. Codebook learning: The inputs to the base codebook learner at iteration t 

are the training examples m
iiB 1}{ =  (where },,   is the bag of 

image features for training example i) and a set of weights m
i

t
i  

specifying the importance of each example. The output is a codebook 

),..., t
K

t d  where t
kd  is the k-th code word (cluster). In the first 

iteration, the weights are initialized to be uniform over the training 

examples. 

{ 1
i
N

i
i i

B xx K=

t wW 1}{ ==

( 1t dD =
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Figure 31. Illustration of non-redundant visual codebooks and classifiers learning 
framework.     

 

2. Classifier learning: the training examples are mapped to fixed-length 

attribute vectors m
i

t
i  based on the codebook tD such that the j-th 

attribute, ),( ja t
i  is related to the number of features in Bi mapped to code 

word t
jd : |}t

jn da . A classifier Ct is then learned from the 

attribute vectors At. The output of Ct are the class label predictions Lt.  

t aA 1}{ ==

:i xB{| nx ∈

3. Weight updating: the predictions Lt are used to update the training example 

weights as in AdaBoost (Freund and Schapire 1996) − the weights of the 

incorrectly-classified examples are increased and the weights of the 

correctly-classified examples are decreased. The updated weights, Wt+1, are 

provided to the base codebook learner for the next iteration.  
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To classify a new example B, it is mapped into T fixed-length attribute 

vectors  and each is then classified by Ct. The outputs of the T 

classifiers are combined to give the final class label prediction L via the weighted 

voting scheme of AdaBoost.   

,}{ 1
T
t

ta =
ta

The above framework can be applied with any base codebook learner and 

any classifier. Some codebook learners can be easily modified to take the weights 

of the examples into consideration. Incorporating the weights into others may not 

be straightforward. For the latter case, as we show in Section 4.5.3, sampling can 

be employed to learn codebooks from weighted examples effectively. In the 

following sections, we will present the instantiation of our framework for the 

stonefly recognition application to demonstrate the high performance of our 

framework.  

4.5.3 Boost-Resampling Algorithm and Experimental Results 

We apply this non-redundant codebook learning framework to the difficult 

stonefly recognition problem described in Chapter 3. For this large scale data set, a 

practical challenge is computational efficiency. In particular, we often need to 

learn from thousands of images, and each image often contains hundreds or even 

thousands of low-level interest region descriptors in order to capture sufficient 

visual information for classification.  The huge number of low-level features 

requires our non-redundant codebook learning algorithm to be highly efficient. 

Below we present the Boost-Resampling algorithm that applies the general 

framework described in Section 4.5.2 to learn a set of non-redundant visual 

codebooks efficiently.  

Base Codebook learner  

There are many options for base codebook learners for visual object 

categorization, including both unsupervised and supervised clustering methods, as 

introduced in Section 2.3. In order to reduce the risk of overfitting the training data, 

we choose to employ unsupervised k-means clustering as our base codebook 
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learner which is also employed in Csurka et al. (2004), Sivic and Zisserman (2004) 

and Zhang et al. (2007). k-means clustering is also preferable because it is very 

efficient. The more complex GMM modeling algorithm (Duda et al. 2001) was 

also tested on the stonefly recognition task and failed to outperform the simpler k-

means algorithm in our framework. The size of each codebook, K, is set to 100 

empirically. According to our experiments, different values of K had little effect 

on the performance of the algorithm.   

Feature mapping based on codebook 

As presented in Section 2.3.4, a lot of previous work employs the histogram 

of occurrences method to map the low-level image features to fixed-length image 

attribute vectors. But this mapping method treats the codewords as equally 

important without considering their distribution over different examples. In this 

dissertation, we employ the tf–idf weight (term frequency–inverse document 

frequency) (Salton and Buckley 1988) developed for information retrieval and text 

mining. This mapping method was also employed in Sivic & Zisserman (2004). 

For image Bi, the jth dimension of the tf–idf attribute vector ai is given by: 
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As in the document domain, the first term (tf) measures the number of 

occurrences of the jth codeword in the example divided by the total number of low-

level features in the example. This term is exactly the histogram of occurrences 

measurement. The second term, idf, measures the (lack of) distinctiveness of the jth 

codeword over different examples. A codeword that appears in more examples has 

a lower idf value; while a codeword that is only found in one example has the 

highest idf value. The tf–idf mapping method improves the robustness of learning 

algorithms, especially when the distribution of codewords is significantly 

unbalanced over different examples, which is the case in many object 

categorization problems. In our initial experiments, the tf–idf mapping 
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Figure. 32 Illustration of Quasi-Random Weighted Sampling (QWS) technique.    

systematically outperforms the histogram of occurrences mapping.  Hence, we 

adopt tf–idf as the feature mapping method.  

Classifier learning 

We employ an ensemble of 50 un-pruned C4.5 decision trees (Quinlan 1993) 

in each boosting iteration.  The trees are generated via bagging (Breiman 1996).  

Learning more than 50 trees did not provide superior performance in our 

experiments.  

Weighted Sampling  

Note that instead of directly using the weights with k-means clustering, we 

adopt the Quasi-Random Weighted Sampling (QWS) (Kalal et al. 2008) approach 

to achieve improved efficiency. QWS creates a smaller “active set” of the training 

images based on the weights assigned to the examples such that the examples with 

larger weights have higher probability of being selected. As a result, the algorithm 

is more likely to select the training examples that have not been well-represented 

and classified by previous codebooks. Thus, the codebook learned on this pool is 

encouraged to be different to the previous codebooks.  

The principle of QWS is illustrated in Figure 32. The weights are 

represented as intervals and arranged on the unit line segment. The line segment is 

split into m equal intervals, where m is the total number of training images. Within 

each interval, one random number (shown as a dot in the figure) is generated 
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uniformly at random, whose position determines the index of the selected sample.  

Si represents the number of occurrences of the ith example in the sampled active 

set. As can be seen from the figure, an example with larger weight (e.g., w3) is 

more likely to be sampled; and an example may be selected multiple times (e.g., 

S3=2). More details of QWS method are described in Kalal et al. (2008). QWS 

reduces the variance of weighted random sampling and has worked well in 

previous work (Moosmann et al. 2007; Kalal et al. 2008).  

The total number of codewords learned is T × K (the number of boosting 

iterations × the size of each codebook). This number grows to several thousands in 

our experiments. But at each iteration, we only sample 20% of the training data to 

form the active set. Therefore the learning of the codebooks is memory and time 

efficient because each clustering operation is performed on a small subset of the 

data. The Boost-Resampling algorithm can be directly applied to problems with 

continuous high-dimensional low-level features. Below we empirically evaluate it 

using the stonefly recognition dataset. 

Experiment on the stonefly recognition dataset 

In order to test the performance of our Boost-Resampling algorithm on 

complex object categorization problem, we evaluate it on the STONEFLY2, 

STONEFLY4 and STONEFLY9 stonefly recognition problems described in 

Chapter 3. The results have been presented in Section 3.5.2.  

In order to test the value of building non-redundant codebooks and the value 

of weighted sampling, we compare our Boost-Resampling algorithm with two 

baseline algorithms. The first algorithm (referred as Single) learns only a single 

codebook for each detector/descriptor combination to represent the data. This 

codebook is built by k-means clustering on the pool of training image features. The 

size of the codebook is set to T × K (the number of boosting iterations × the size of 

each codebook) for fair comparison with non-redundant codebooks. The second 

baseline (called Random), replaces QWS sampling with uniform random sampling  
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Table 12. Classification accuracies (%) of Boost-Resampling algorithm and two 
baselines on STONEFLY2, STONEFLY4 and STONEFLY9 datasets. 

Dataset Boost Single Random 

STONEFLY2 97.85 85.84 89.16 

STONEFLY4 98.21 67.20 90.42 

STONEFLY9 95.09 78.33 89.07 
 

 

that neglects the boosting weights. This comparison experiment is performed on 

STONEFLY2, STONEFLY4 datasets and the complete STONEFLY9 dataset. The 

comparison results are summarized in Table 12. Boost-Resampling outperforms 

the two baselines on all the datasets, and the differences are statistically significant 

at a 95% level (Dietterich 1998).  Comparing to a single codebook of equivalent 

size, the new method was able to achieve error reductions of 94.5%, 84.8% and 

77.3% respectively. 

In summary, this dissertation studied various unsupervised and supervised 

visual codebook learning approaches and their application to biological and 

generic object recognition tasks. The proposed approaches can be easily adapted to 

other similar recognition problems. The non-redundant codebook learning 

framework is the most promising and most general method that we have developed 

so far. It achieved high performance on the stonefly recognition and document 

classification problems. We will continue our research in this direction and 

extensively test this framework on more datasets. 
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5 Socially-Driven Clothes Recognition  

5.1 Overview 

This section presents my study on a socially-driven clothes recognition problem 

that arose as part of the Palo Alto Research Center (PARC) “Responsive Mirror” 

project. The “Responsive Mirror (RM)” (Zhang et al. 2008b; Begole et al. 2008) is 

a novel system for retail fitting rooms that enables online social fashion 

comparisons in physical stores based on multi-camera perception. It is an 

implicitly controlled interface that allows a shopper to directly compare a currently 

worn garment with images from previously worn garments.  The orientation of 

images from past trials is matched to the shopper’s pose as he moves. The system 

also allows comparison to clothes that other people in the shoppers’ social network 

are wearing. Illustration of the RM system is shown in Figure 33 and Figure 34. 

The architecture and the major components of the RM system are presented in 

Section 5.2.  

A key component in the RM system is the clothes recognition and matching 

engine (Zhang et al. 2008a; 2008b; 2008c) for automated social fashion 

information retrieval. Clothes recognition is termed as a “social” vision problem 

(see Section 5.3.1) that requires us to appreciate and understand how humans 

perceive objects that have social meaning. We solve this difficult problem by 

identifying the most important factors for clothes recognition from a user study 

and then employing various low-level features and learning algorithms to 

recognize these factors. These approaches are introduced in Sections 5.3.2 – 5.3.9. 

Conclusions are given in the end along with a discussion of the results.   
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Figure 33. The concept of Responsive Mirror system.     
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Figure 34. The Responsive Mirror prototype.     

5.2 Responsive Mirror System 

5.2.1 Concept and Architecture of Responsive Mirror System 

Clothing shopping is an information seeking activity. Shoppers want 

information about availability, cost, size, colors, texture, feel, fit, style trends, and 

so on. Online shopping provides a great deal of this information and allows 

shoppers to search and compare alternative choices side by side. However, online 

shopping cannot provide tactile information, and shoppers still need to visit a 

physical store to examine certain classes of products, such as clothing and 

furniture. Yet, the experience of shopping in a physical retail store offers little 
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more supplemental information than it did a decade ago. A shopper must 

physically seek out alternatives, and the comparisons must often be conducted 

sequentially, either because products are located across merchants, or because the 

shopper can evaluate only one item at a time, such as when trying on clothes.   

To enable online shopping capability in physical stores, a system called the 

Responsive Mirror (Zhang et al. 2008b; Begole et al. 2008) was developed at the 

Palo Alto Research Center (PARC), illustrated in Figure 33 and Figure 34. As a 

customer interacts with a conventional mirror, frontal-view and ceiling-view 

cameras detect his pose as well as the style of the garment being worn. A display 

on the left of the mirror shows the shopper in a previously-worn garment, 

matching the pose of the image to the pose of the shopper as she moves. This 

allows the shopper to compare his current garment directly to another item he is 

considering. The display on the right of the mirror shows images of people 

wearing similar styles and different styles. These images are gathered from an 

online social fashion network, and they provide the shopper with information 

about the type of people wearing similar and different styles to the one she is 

considering. Users of this system do not need to be taught how to use the system – 

they simply behave naturally. This style of interaction is an example of “invisible 

computing” from the early visions of ubiquitous computing.   

5.2.2 Computer Vision Components of the Responsive Mirror 

System 

Various image features and learning algorithms are employed to provide 

interactive fitting display and intelligent clothes retrieval. The structure of the 

whole vision engine (Zhang et al. 2008b) is illustrated in Figure 35. This engine 

detects a person’s presence in front of the mirror, detects and recognizes the 

clothes, and tracks the motion of the body. The following list describes the major 

components of the computer vision system, implemented in Visual C++ using 

Intel’s Open Computer Vision library (OpenCV):  
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Figure 35. The computer vision components of the Responsive Mirror system.    
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1. Background modeling: When there is no shopper in the camera’s views, 

the system stays in “background modeling” state. The background models of both 

cameras are updated to adapt to shifting lighting.  

2. Raw foreground map detection using background subtraction: After a 

predefined period of time, the system automatically re-detects the raw foreground 

map from the cameras. A pixel is identified as foreground if it is distinctive 

enough from the background model.  

3. Morphological image processing: Opening, closing and connected 

component analysis are then performed on the raw foreground map to remove 

false detections and fill holes.  

4. Shopper detection: The shopper is “in view” if she can be detected by 

both cameras. Then the system goes into clothes recognition and orientation 

detection. Otherwise, the system stays in “background modeling”.  

5. Clothes detection and recognition (Zhang et al. 2008a; 2008b; 2008c): 

The clothes worn by the shopper are located using the bounding box of the 

shopper. Then clothes are classified into different categories based on different 

features (e.g., collar, sleeve, etc.). This component will be described in detail in 

Section 5.3.  

6. Body orientation detection: When the system detects that a user has 

changed orientation to the mirror, the front camera records the image of the person 

in that orientation and notifies the display to show the correspondingly oriented 

images. The body orientation is detected by tracking the motion of the user from 

the ceiling camera using a particle filter.  

7. Pose matching: The shoppers tend to look at themselves in different poses, 

so it is important to estimate not only the orientation, but also the pose of a person. 

Two poses are matched based on the measurement of the difference in the 

processed grayscale images. 
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Figure 36. The concept of social fashion comparison module in the Responsive Mirror 
system.     
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5.2.3 Clothes Recognition and Retrieval   

As introduced in Section 5.2, the Responsive Mirror has a “social” 

comparison module that displays images of others wearing outfits of both similar 

and different styles.  The shopper is meant to use the display to help determine 

whether the style she is trying is close to a presentation of self that she would want 

to project. The concept of this idea is illustrated in Figure 36.  

The key vision component in this module is the automated clothes detection, 

recognition and matching engine. This is defined as a “social” vision problem to 

address the social and semantic aspects of this challenging problem. We explore 

the use of various image features and learning algorithms to recognize the classes 

and attributes of clothing, specifically shirts, from the frontal-view camera. These 

approaches will be presented in Section 5.3. 

5.3 Socially-Driven Clothes Recognition 

Clothes choice is an important way in which people communicate their 

individuality, identity, tastes, status, age, wealth, and so on. Computer vision 

techniques have been used to automatically recognize and match the clothes in 

personal photos. In previous work, clothing is mainly used as contextual 

information for human identity recognition. Song and Leung (2006) use the 

clothes as additional contextual information to provide rich cues for recognizing 

people in pictures. The clothes location is first estimated by running face detection 

and taking some parts below the head; then refined by segmentation and skin-area 

removal. The detected clothes regions are represented by the clusters (codewords) 

(see Section 2.3) of “eigen-patches”, which are obtained by applying principle 

component analysis (PCA) (Duda et al. 2001) on the densely sampled image 

patches. The similarity between two pieces of clothing is measured by the 

normalized scalar product of their weighted histogram of occurrence vectors.  

Song and Leung (2006)  also proposed a skin detection algorithm by matching the 

color tone of the face skin to the query region. The eigen-patches representations 
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and the skin detection algorithm are employed in our clothes recognition system 

presented in this section. 

Anguelov et al. (2007) also employs clothing appearance as one of the 

additional contextual cues to improve the performance of identity recognition in 

personal photo albums. The clothes are detected and segmented using the same 

method as in Song and Leung (2006). Then the similarity between two pieces of 

clothing is measured by the Earth Mover’s Distance (EMD) between their 

signatures. This is very similar to the visual codebook approach in Zhang et al. 

(2007), described in Section 2.3.   

The clothes recognition system presented in this dissertation also analyzes the 

color and texture information in clothes. But instead of using clothes as contextual 

information for human identification, the purpose of the system is to recognize the 

clothes themselves and match them to images of other clothes. As described in 

Chapter 1, clothes recognition is difficult in a number of ways: (1) the social 

nature of the problem definition. We approach this as an instance of “social vision 

problems”. (2) The real-time requirement of the algorithm. (3) The complexity of 

the vision problems involved in clothes recognition, for example, the high intra-

class variation and deformable configurations of the clothes. To tackle these 

challenges, we conducted a user study to discover the most salient clothes factors 

which people use to determine similarity between clothes, more specifically, shirts 

(see Section 5.3.1). Then we pursue a divide-and-conquer approach to shirt 

recognition. A factor classifier is developed to recognize each salient factor in the 

shirt images using image features (see Sections 5.3.2 – 5.3.8). Then the factor 

features are fit into regression models to measure the pair-wise shirt similarities 

(see Section 5.3.9). The evaluation of the algorithms is given along with the 

findings which are valuable for future research. 
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5.3.1 Social Vision Problem 

The clothes recognition problem described in previous section appears at 

first glance to resemble a typical computer vision problem. Several interesting 

problems arise, however, in the course of implementing such a system, an example 

of a class of problems which we term social vision problems (Zhang et al. 2008c). 

As opposed to traditional problems in computer vision, social vision problems 

require us to appreciate and understand how humans perceive objects that have 

social meaning.  

The following discussion highlights the underlying problems in the proposed 

application. First, given an image of a shirt, what features need to be recognized? 

A computer vision algorithm may be able to accurately detect the distance between 

a shirt’s buttons, but do people care about this feature when looking at shirts? 

Thus, we must ensure that our system recognize the features that people care 

about. We refer to this as the socially-driven feature selection problem.  

Secondly, once the relevant features are known, how well can the vision 

system detect those features in a piece of clothing? This falls in the traditional 

computer vision space, but clothing provides some unique challenges due to its 

large intra-class diversity. This is in addition to the fact that both human bodies 

and clothes are deformable and the algorithm must be invariant to these 

deformations.  

Finally, once we have examined the relevant features of a piece of clothing, 

how do we determine which of our stored images are similar? Is a blue dress-shirt 

more similar to a green dress-shirt or to a blue t-shirt? We refer to this as the 

socially-driven feature comparison problem.  

Social vision problems, like the one described, are computer vision problems 

that are inherently social and which cannot be solved by computer algorithms 

alone. Creating an application that recommends similar clothing requires us to also 
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understand how people determine whether two pieces of clothing are similar or 

not.  

In this dissertation, we describe a process for solving social vision problems 

as well as the specific instantiation of the process for the clothes recognition and 

retrieval system we described. First we needed to address the social aspects of the 

problem − identifying factors of shirts that people use to determine similarity 

between shirts. As mentioned before, features that may be easy for a computer 

vision algorithm to detect may not be relevant to people at all. Therefore, it is 

important to identify the relevant clothes factors instead of haphazardly selecting 

features to detect using vision algorithms.  

To solve the socially-driven feature selection and feature comparison 

problems, a user study was conducted using a web-based survey. 65 users were 

invited to participate in the user study. The experimental dataset was created by 

photographing 12 people (male and female) wearing shirts from their personal 

wardrobe, for a total of 165 articles of clothing. There is significant variation in 

types, styles, colors, and patterns among these shirts. Each image is a single frontal 

view in full color with a resolution of 320×240. Higher resolution is likely to 

improve clothes recognition, but will result in higher computation cost.  

From our dataset, we selected 25 men’s shirts and 15 women’s shirts that 

covered much of the variation in the two samples. In the survey, respondents were 

shown 40 randomly chosen pairs of men’s shirts and 20 randomly chosen pairs of 

women’s shirts. Respondents were then asked to rate the similarity of each pair of 

shirts on a 5-point scale, labeled from 1 (Not Similar At All) to 5 (Extremely 

Similar). At the end of the survey, respondents were asked in an open-ended 

question to list the most salient factors they used to determine similarity between 

pairs of shirts.  

To analyze the open-ended responses, each unique factor listed in a 

participant’s response was coded. The coded factors listed in order of decreasing 
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frequency were: sleeve length, color, collar presence, shirt type, pattern, button 

presence, neckline, emblem/logo placement, and material/texture. Thus, we 

focused on 1) sleeve length, 2) shirt color, 3) collar presence, 4) pattern, 5) placket, 

and 6) emblem placement. Since we believed that shirt type could be deduced 

from the six listed clothes factors, we did not list shirt type as a separate factor. It 

is interesting to notice that color is not identified as the most salient clothes factor 

as we have expected. There is no significant difference between male and female 

ratings. Having addressed social aspects of the clothes recognition problem, we 

then integrated the findings from the user experiences into the computer vision 

algorithm.  

A clothes recognition system is usually composed of the following stages 

(Song and Leung 2006; Anguelov et al. 2007): detection and segmentation of 

clothes, extraction of image features, and recognition of clothes based on the 

features. These stages will be described in the following sections.  

5.3.2 Clothes Parts Segmentation 

In order to recognize the clothes (shirts), we needed to detect the location of 

the different parts of the shirts first. For outfit images, the detection of shirts is 

equivalent to the detection of the body parts of the human. Manual labeling of each 

clothes part is most accurate but tedious. In Song and Leung (2006) and Anguelov 

et al. (2007), the torso is detected by first detecting the human face and then 

examining a very narrow part below the head. Although this approach is invariant 

to different human poses, a great deal of clothes information is discarded, and it is 

potentially sensitive to the way the person is wearing the clothes (e.g., zipped 

versus unzipped) and possible accessories (e.g., necklace, scarf).  

Due to the real-time requirement of the algorithm, we prefer a detection 

method with light computational cost. For outfit images, usually the bounding box 

(the black boxes in Figure 37) of the human body is easy to obtain. For user-

uploaded images, a simple two-click operation can give the bounding box. For an 
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Figure 37. Examples of clothes parts detection.     

outfit video, the object tracking algorithm can automatically detect the bounding 

box of the person. Since in the outfit images, the person is typically standing 

upright in front of the camera, our system detects the clothes parts by simply 

segmenting the bounding box with heuristic ratios, as illustrated in Figure 37. 

In order to explore the salient shirt factors identified in the user study, we 

adopted various image features and learning algorithms (Zhang et al. 2008a; 

Zhang et al. 2008b; Zhang et al. 2008c) to detect and recognize these factors from 

a camera sensor. Considering the potential real-time requirement of the application 

of the algorithm, we extracted low-level features which can be computed 
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Figure 38. Examples of face detection and arm skin detection.     

efficiently in the images. The factor features are then generated by simple analysis 

of the low-level features. After being formulated as classification problems, linear 

Support Vector Machines (SVMs) (Duda et al. 2001; Christopher 1998) or 

Decision Stumps (just for sleeve recognition) classifiers are learned on these 

features to recognize the factors. We also discovered the significances of the 

features and the relations between the factors by analyzing the weights of the 

decision boundaries learned by linear SVMs. The image features we employed are 

described in the following sections. 

5.3.3 Sleeve Length Recognition 

Sleeve length is the most important factor suggested by participants from the 

user study. It is intuitively a significant cue to discriminate between polo-shirts, 

casual shirts and t-shirts (class 1: short-sleeve or no-sleeve) against business work 

shirts (class 2: long-sleeve). In order to recognize these categories, we assumed 
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that long-sleeve shirts have less arm skin area than short-sleeve or no-sleeve shirts. 

So sleeve recognition is reduced to two problems: skin detection and sleeve 

classification.  

Generic skin detection is a difficult problem due to the difference in skin 

types and lighting conditions. But motivated by previous work (Song and Leung 

2006), we observed that the skin tone from a person’s face is usually similar to the 

skin tone of his/her arms. Therefore we first ran an efficient face detector (Kienzle 

et al. 2005) to detect the location of the person’s face (the green boxes in Figure 38) 

from his frontal view image. Then we clustered the RGB values of the extracted 

facial pixels using a Gaussian Mixture Model (Duda et al. 2001). The number of 

clusters was set to 2 empirically, and we expected one of the clusters to represent 

the person’s skin tone.  

Then for every pixel x in the rough arm area (the white boxes in Figure 37), 

a small patch p(x) of size 5×5 is extracted centered at x. x is identified as a skin 

pixel only if the following two conditions hold:  

1. Patch p(x) is coherent in color: the variance of RGB values in p(x) is 

smaller than a threshold. This is to prevent false detections from skin-like colors in 

sleeves. 

2. The minimum Mahalanobis distance from the mean of the RGB values 

within p(x) to the two face pixel clusters is smaller than threshold tS. The skin 

detection results using tS = 3 are shown in Figure 38 with light blue areas. 

After skin detection, the sleeve length is described by the inverse of the 

number of skin pixels detected in the arms (A1). A decision stump (see Section 2.4 

and Section 3.3.2) is learned on these features to recognize the sleeve length. 5-

fold cross-validation experiments were conducted on our dataset to test the 

performance of this sleeve recognition algorithm. For each round, the classifier is 

trained on 4/5 of the examples from each class, and tested on the other 1/5; the 

experiment is repeated 5 times. The result is summarized in Table 13 and Figure  
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Figure 39 Sleeve length recognition accuracies (standard deviations) using sleeve 
feature (A1) against different values of skin detection threshold ts.     

 

Table 13. Sleeve length recognition accuracy [95% confidence interval]. 

Factor # of short-sleeve/ 

no-sleeve shirts 

# of long-sleeve 

shirts 

Recognition 

accuracy (%) 

Sleeve 117 48 89.2 [86.9  91.5] 

 

 

39. The 10% failures were mainly due to the incorrect skin detections on the 

clothes when the cloth texture is coincidentally close to the skin tone. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 40. Illustration of image features for collar recognition  
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5.3.4 Collar Recognition 

Participants in the study identified the presence of a collar on a shirt to be an 

important cue to discriminate between t-shirts and other types of shirts (e.g., 

business shirts and polo shirts). We explored a number of image features for collar 

recognition from observations of images and suggestions from users.  

B1: The number of Harris corner points (Mikolajczyk and Schmid 2004; 

Harris and Stephens 1988) detected in the collar part (the white points within the 

red box in Figure 40 (a)). This is assuming that a collar shirt has more spikes and 

corners, which can be detected by the Harris corner detector. 

B2: The variance of the y-coordinates of the Harris corner points detected in 

collar part. This assumes that a collar shirt usually has a corner point detected in 

the lower neck part, while a non-collar shirt does not.  

B3: The sum of the Harris measure within the central collar region (shown in 

Figure 40 (b)). We observed that a collar shirt usually has stronger corners in the 

central neck area, but a non-collar shirt does not.  

B4: The distance (shown in Figure 40 (a)) from the upper left/right corner 

points detected in the neck part to the shoulder points. This is assuming that a 

collar shirt has larger neck-to-shoulder distance than a non-collar shirt. 

B5: The skin area in the central collar part (the green area within the red box 

in Figure 40 (c)). This assumes that a collar shirt has less skin area than a non-

collar shirt. The skin area is detected using the same method as for arm skin 

detection. 

A linear SVM with soft decision boundary (Duda et al. 2001; Christopher 

1998) is learned on B1 – B5 to recognize the presence of collars. The 5-fold cross-

validation performance of the collar recognition algorithm is summarized in Table 

14 and Figure 41. 
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Figure 41. Collar recognition performance using collar features (B1– B5) against 
different Harris corner detection thresholds.   

Table 14. Collar recognition accuracy [95% confidence interval]. 

Factor # of non-collar 

shirts 

# of collar shirts Recognition 

accuracy (%) 

Collar 65 100 78.7 [74.9  82.5] 

 

 

From the weights of the learned linear SVM, we found that B1 is the most 

discriminative feature for collar recognition; while B5 is the least informative. 

Missed detections by the Harris corner detector are the major cause of the mis-

classifications.  
 



117 
 

 

 

                 
 

              
 

(a)                                                 (b) 
  

Figure 42. Illustration of image features for placket recognition on (a) a full-placket 
business work shirt and (b) a no-placket t-shirt.   

 

5.3.5 Placket Recognition 

The presence and amount of buttons (or zippers) in shirts was indicated to be 

an important cue to discriminate between t-shirts, polo shirts, and other types of 

shirts (e.g., business shirts). But due to the low-resolution of the clothes images 

and the possible high color similarity between the button and the clothing, 

detecting buttons is very difficult. Fortunately, the presence and length of the 

placket line is usually equivalent to the distribution of buttons. Thus, we employed 
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Figure 43. Placket recognition performance using placket features (C1– C5) against 
different Canny edge detection thresholds.  

the Canny edge detector (Canny 1986) to detect the vertical placket points and 

measure their distribution to generate the features for placket recognition. They are 

described as follows:  

1. The number of vertical (placket) Canny edge points (the red points in 

Figure 42) detected in the whole placket torso part (C1), and the numbers in the 

upper (C2) and lower (C3) placket torso areas (the purple boxes in Figure 37). 

2. The vertical variance (distribution) of the vertical edge points in upper (C4) 

and lower (C5) placket torso areas. 

The selection of the features is based on the following observation: the 

presence of large number of placket points that are sparsely distributed along 

vertical direction usually gives strong indication of the existence of placket line, 
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Table 15. Placket recognition accuracy [95% confidence interval]. 

Factor # of no/half 

placket shirts 

# of full-placket 

shirts 

Recognition 

accuracy (%) 

Placket 97 68 83.8 [77.1  90.5] 

 

 

and in turn, the presence of buttons. The performance of the placket recognition 

algorithm is summarized in Figure 43 and Table 15. C2 is identified as the most 

discriminative feature for placket recognition. The incorrect predictions mainly 

result from the failure of the Canny edge detector to detect the vertical placket 

lines. 

5.3.6 Pattern Complexity and Emblem Placement Recognition 

The complexity of the pattern of the shirt is also indicated as valuable for 

clothes recognition. Intuitively, pattern complexity is related to the social 

semantics of the clothes. For example, a very colorful shirt is usually considered 

less suitable for a formal occasion than a solid shirt. Thus, we extracted the 

following features to recognize the pattern complexities of the shirts:  

1. The number (D1) and spatial variance (D2) of the Harris corner points 

(Mikolajczyk and Schmid 2004; Harris and Stephens 1988) detected in the torso 

area (yellow box in Figure 37).  

2. The number (D3) and spatial variance (D4) of the Canny edge points 

(Canny, 1986) detected in the torso area.  

D1 – D4 were selected based on the observation that a patterned shirt usually 

has many edges or corners distributed sparsely in the torso area.  

3. The complexity (D5) (measured by entropy) of the color histogram (Song 

and Leung 2006) extracted from the torso part. A colorful shirt will usually be 

considered to be a patterned shirt.  
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We are trying to recognize two pattern classes: (1) solid: the shirts which are 

plain in color and texture, no large-area patterns; (2) patterned: the shirts that are 

either colorful or patterned, for example, the block-patterned shirts. The 

performance of the pattern complexity recognition algorithm is summarized in 

Table 16. D3 is identified as the most discriminative feature by the SVM. 

Although indicated as a less important factor for clothes recognition, 

detecting the emblem placement is needed for the recognition of a logo or 

character on the clothes. These are very valuable for clothes brand recognition and 

contextual information extraction. We focused on the centered vs. non-centered 

emblem recognition problem, because we noticed a lot of centered patterns or 

logos on the shirts in our dataset. The algorithm can be easily adapted to recognize 

other placements, for example, the pocket logo or shoulder patterns. The following 

features are extracted for this problem:  

1. The average distance from the Harris corners (E1) and Canny edge points 

(E2) detected within the torso part (yellow boxes in Figure 37) to the center of the 

torso. If the patterns are all clustered in the center, then the emblem is usually in 

the center. 

2. The difference in the number of the Harris corner points (E3) and Canny 

edge points (E4) detected within the central torso part (blue boxes in Figure 37) 

and the surround non-central torso parts. 

3. The difference in the color complexities (E5) of the clothing patches 

within the central torso part and the surrounding non-central torso parts. 

4. The normalized distance between the color histograms (E6) of the clothing 

patches within the central torso part and the surrounding non-central torso parts. 

E3 – E6 are measuring the difference (in color and pattern complexity) 

between the central part and the surrounding clothes parts. The more distinct they 
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Table 16. Pattern complexity recognition accuracy [95% confidence interval]. 

Factor # of solid shirts # of patterned 

shirts 

Recognition 

accuracy (%) 

Pattern 107 58 87.9 [83.3  92.5] 

 

Table 17. Emblem placement recognition accuracy [95% confidence interval]. 

Factor # of non-centered 

shirts 

# of centered 

shirts 

Recognition 

accuracy (%) 

Emblem 107 58 99.0 [98.0  100.0] 

 

are, the more likely the emblem is located in the center. The linear SVM is 

employed as the classifier. The emblem recognition algorithm performed very well 

according to 5-fold cross-validation experiments, as summarized in Table 17. E3 is 

the most discriminative feature identified by the SVM. 

5.3.7 Color Analysis 

In our user study, participants identified color as one of the significant 

factors to measure the clothes similarity. Therefore, we employ color information 

as one of the factors for clothes matching. A color histogram (H1) is computed in 

Hue and Saturate channels from the segmented torso part (the yellow boxes in 

Figure 37). Then the histogram is compared with the histograms of other clothes 

images. The similarity between two clothes is measured in a way similar to Song 

and Leung (2006). Each histogram element is weighted by the total number of 

pixels quantized into the histogram bin. The similarity is then computed by the 

scalar product of the weighted histograms. Figure 44 shows an example of color-

based clothes retrieval, where the clothes that are most similar and most dissimilar 

to the query clothes are retrieved. 
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Figure 44. Example of color-based clothes image retrieval.  

5.3.8 Shirt Style Recognition 

We combine all the factor features described above (A − E) into a single 

feature vector V, and apply a linear SVM to classify the shirts into different style 

categories. Note that the definition of shirt styles involves a lot social issues, and 

there is no existing clear categorization. We manually labeled the clothes images 

according to human experience. We defined the following shirt styles (along with 

the numbers of examples in the dataset):  

1: T-shirt (65): no collar, no/short sleeve, no button. 
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2. Polo-shirt (32): has collar, short-sleeve, half-button. 

3. Casual shirt (20): has collar, short-sleeve, full-button. 

4. Business shirt (48): has collar, long-sleeve, full-button. 

Since we have the most numbers of t-shirts and business shirts in our dataset, 

we first examined this binary classification problem. The result is summarized in 

Table 18. The confusion matrix is given along with the overall classification 

accuracy, which is the overall count of hits against the total number of test 

examples. We can see our algorithm performs very well on classifying the t-shirts 

against the business shirts. 

We then focused on the more difficult four-class problem. The result is 

summarized in Table 19. Notice that the vision algorithm has significant confusion 

between polo and casual shirts versus business shirts. Providing more polo and 

casual shirts may marginally improve the performance, but we believe that the 

confusion mainly comes from the common features they are sharing. 

The different clothes factors (sleeve length, collar, etc.) are not necessarily 

independent. In order to identify the true relevant image features for the clothes 

factors, we retrain a linear SVM on the combined feature vectors V for each of the 

factor classification problems, and then select the top 5 image feature dimensions 

that have largest weights in the construction of the learned decision boundary. 

These are the most relevant image features for the recognition of the 

corresponding factor. We then learn a separate SVM on the identified relevant 

features to recognize the factor. The results show that collar is the most correlated 

factor. Integrating the image features for pattern complexity and emblem 

placement recognition improves the collar recognition accuracy by 7.2%, from 

78.7% to 85.9%. This is consistent with the intuition that collar shirts tend to be 

more formal, solid, and have fewer emblems. But for the other factors, employing 

the relevant subsets of image features does not help. This may because the relevant 

feature subsets are partially redundant or the factors are independent. 
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Table 18. Shirt style (t-shirt vs. business shirt) recognition accuracy. 

Classified As −> T-shirt Business shirt 

T-shirt 96.2% 3.8% 

Business-shirt 5% 95% 

Overall accuracy: 95.7% 

 

Table 19. Shirt style (four classes) recognition accuracy. 

Classified As −> T-shirt Polo-shirt Casual shirt Business 

shirt 

T-shirt 80.8% 3.9% 15.4% 0% 

Polo-shirt 16.7% 41.7% 8.3% 33.3% 

Casual shirt 0% 12.5% 50% 37.5% 

Business shirt 0% 5% 5% 90% 

Overall accuracy: 72.7% 

 

5.3.9 Clothes Matching 

After we have the low-level image features and the learning algorithms to 

recognize the clothes factors, we turn to the problem of determining similarity 

between objects.  We need to weigh the degree to which each factor is salient in 

human perception — do people favor certain factors when determining similarity? 

For example, is color similarity more important than collar presence similarity?  

To address this problem, we turned to the data from the user study. Each 

respondent rated the similarity on 40 pairs of men’s shirts and 20 pairs of women’s 

shirts. We first coded each of the shirts along each of the six factors. For each pair 
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of shirts, we then calculated a difference score for each factor. A 0 was given for 

each factor that matched and a 1 for a mismatch. For the color, we generated a 

score between 0 to 1 that depends on the normalized distance between the two 

color histograms. Thus, for each respondent’s similarity rating, we also had six 

factor similarity scores.  

We conducted a linear regression using the ground-truth factor similarity 

scores to predict the similarity rating scores in order to determine the relative 

importance of each factor. We conducted separate analyses for men’s shirts and 

women’s shirts. For men’s shirts, the resulting model was significant. All six 

factors except emblem were significant. The factors in order of decreasing 

importance were 1) Collar, 2) Placket, 3) Sleeve, 4) Color, 5) Pattern, and 6) 

Emblem. For women’s shirts, the resulting model was also significant. Due to the 

limited variation of women’s shirts in our dataset, collar, placket, and emblem 

placement did not vary and thus could not be included as predictor variables. The 

remaining factors in order of decreasing importance were 1) sleeve length, 2) 

pattern, and 3) color. The regression model allowed us to generate the weights for 

each factor that would approximate human perception of shirt similarity. The 

unstandardized coefficients provide the weights for each factor that we can use to 

generate similarity scores. For example, the regression equation for similarity 

ratings of men’s shirts is the following:  

Similarity Rating = 3.247 + (− 0.63 × Sleeve) + (− 0.19 × Pattern) + (2.40 × 

Color) + (− 0.88 × Collar) + (− 0.80 × Placket) + (− 0.06 × Emblem).  

To understand how well the image features generated from our vision 

algorithms captured the variance in human ratings of shirt similarity, we conducted 

a linear regression using the 23 underlying features (A – E, H) to predict the 

similarity rating. We conducted separate analyses for men’s shirts and women’s 

shirts. For men’s shirts, the resulting model was significant. For women’s shirts, 

the resulting model was also significant. The regression results show that in the 

case of men’s shirts, the predicted similarity score (using the features detected 



126 
 

 

from the vision algorithms) correlates with the actual ratings at 0.52. Examples of 

clothes retrieval results using ground-truth factor similarities and image feature 

similarities are shown in Figure 45.  

In summary, this chapter has described the application of image features and 

learning algorithms on a difficult “social vision problem”: clothes recognition and 

similarity measurement. A variety of image features are extracted from clothes 

fitting images to identify the clothing factors that are indicated as salient to 

humans. The approach and results presented here will benefit designers of similar 

applications in the future.  

Currently, the clothes recognition engine is only designed for recognizing 

shirts. It needs to be generalized to other object classes, such as trousers, handbags, 

and so on, for real-world applications. The other challenge is integrating the 

clothes recognition engine with various end-user applications, for example, the 

RM system (Zhang et al. 2008b; Begole et al. 2008) or hand-held devices (e.g., 

cell-phone, PDA, etc.).  Finally, potentially the clothes recognition engine can be 

updated according to user feedback to customize the engine to the flavor of each 

individual user. 
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(a) 

 

 
(b) 

 

Figure 45. Examples of clothes retrievals using (a) ground-truth factor similarities 
and (b) image feature similarities. 
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6 Conclusions and Future Work  

6.1 Conclusions 

Recent years have seen significant progress in object recognition with the 

development of new image feature extractors and classification algorithms.  Image 

features generated by interest region detectors and descriptors are advantageous in 

their robustness to image transformations, occlusion and background noise. The 

learning algorithms are designed to be able to fuse the information from disparate 

types of image features for improved discrimination. This dissertation advanced 

the research on image features and learning algorithms for the recognition of 

biological, generic and social objects in the following aspects: 

A novel structure-based interest region detector – the PCBR detector – was 

introduced that complements previous intensity-based detectors. The PCBR 

detector showed high performance on the identification of consistent regions 

across different views of complex scenes. The PCBR detector was able to reliably 

detect the regions corresponding to the salient and characteristic patterns on 

biological and generic objects. PCBR regions were combined with other types of 

image features for the recognition of complex objects. The resulting classifiers 

achieved high accuracies on various challenging recognition tasks.  

The second contribution is the novel object recognition architectures that fuse 

various types of image features to recognize the categories of complex objects. 

Hierarchical recognition systems based on multi-scale PCBR regions and stacked 

decision tree ensembles have been successfully applied to the stonefly recognition 

task.  

This dissertation extensively studied a particular class of mid-level approaches 

– visual codebooks. Visual codebooks allow us to transform bags of low-level 

image features into fixed-length attribute vectors for image classification. This 

dissertation first studied the construction, evaluation and application of generative 



129 
 

 

visual codebooks for stonefly recognition and generic object recognition. Then it 

presented two discriminative visual codebook learning algorithms. The first was 

the generative/discriminative visual codebook learning approach using the IDC 

algorithm. The second was the non-redundant codebook learning framework that 

builds multiple visual codebooks that are complementary to each other for 

improved discrimination. Both of the new visual codebook learning approaches 

achieved high performance on the challenging stonefly recognition and generic 

object recognition datasets.   

Finally this dissertation described the application of image features and learning 

algorithms to the challenging socially-driven clothes recognition and matching 

problem. This dissertation presented methods to efficiently extract low-level image 

features and learn image classifiers for the recognition of the key factors in shirts. 

This socially-driven clothes recognition engine has been successfully employed in 

a novel intelligent fitting room system – the Responsive Mirror − for the 

interactive social comparison display.  

All of the new approaches presented in this dissertation have been implemented 

and extensively tested on benchmark object recognition datasets. They are 

expected to be beneficial for the future research on related topics.  

6.2 Future Work 

The new image features and learning algorithms presented in this dissertation 

provide many advantages over previous methods for the recognition of biological, 

generic and social objects. However, there is still plenty of room for additional 

improvements. Some of the future directions to explore are listed here. 

Learning interest region detectors 

Although learning has been successively applied to object recognition, in most 

of the cases, learning is only limited to the top-level image classifier. On the other 

hand, learning low-level operations (region detection and description) has received 
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much less attention. The interest region detectors are usually hand-crafted.  For 

some applications, learning at the high level is sufficient given the simplicity of 

the problem. But for more complex real-world applications, such as the object 

recognition tasks described in this dissertation, learning in the final step is not 

sufficient to achieve high accuracy.  

To overcome the weakness of the existing handcrafted detectors, researchers 

have paid more and more attention recently to introducing learning into low-level 

image operations to develop problem-specific interest region detectors for object 

recognition. Further research on this topic is expected to be valuable for the 

development of new high-performance object recognition system that integrates 

learning in all its components. 

Sensitivity analysis of region descriptors 

It is commonly accepted that current detectors are not perfect in the localization 

and shape estimation of interest regions (Haja et al. 2008). The region descriptors 

affiliate to the interest regions are desired to be robust enough to the 

transformation of the regions (see Section 2.2.2). This is one of the reasons that the 

SIFT descriptor (Lowe 2004) achieves such high performance on image matching 

and object recognition applications: it is robust to planar and affine 

transformations of images to some degree. This has been demonstrated in the work 

of Mikolajczyk and Schmid (2005) using recall-precision criteria. But this 

evaluation is qualitative comparison instead of using quantitative metrics; and 

different transformations were assumed to be non-correlated, which is not 

necessarily true for real-world images. Up to now, the systematic quantitative 

evaluation of the robustness of region descriptors to various image transformations 

is still unexplored in the community.  
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Sensitivity analysis (Saltelli et al. 2008) can not only help us to understand the 

robustness of descriptors to non-perfect detections, but also guide the design or 

learning of new descriptor.    

Learning spatially-constrained visual codebook 

All the visual codebook approaches introduced in this dissertation built 

codebooks in the region descriptor space. They did not explore the spatial 

distribution of the codewords in image space. The result is that a codeword may 

not correspond to a consistent part of objects; but instead may correspond to 

regions spread in different parts of objects but coincidentally having similar 

appearance. Consequently, these approaches are not robust to the false detections.  

Image coordinates of the features have been explored in previous work 

(Lazebnik et al. 2006) to help the recognition of generic objects in complex scenes. 

But the absolute image coordinates are not invariant to the transformation of 

objects across different images. Fortunately, for a lot of object recognition 

applications, the bounding boxes of the objects are available either by manual 

labeling (e.g., PASCAL06, see Figure 4) or by automated object detection (e.g., the 

stonefly dataset in Chapter 3 and clothes recognition dataset in Chapter 5). The 

position and scale of the bounding box can be used to impose transformation-

invariant spatial constraints to the learning of codebook. These spatial constraints 

are able to reject the false detections and improve the performance of the object 

recognition system.   
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