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ABSTRACT 
Helping computer users rapidly locate files in their folder 
hierarchies has become an important research topic in today’s 
intelligent user interface design. This paper reports on 
FolderPredictor, a software system that can reduce the cost of 
locating files in hierarchical folders. FolderPredictor applies a 
cost-sensitive prediction algorithm to the user’s previous file 
access information to predict the next folder that will be accessed. 
Experimental results show that, on average, FolderPredictor 
reduces the cost of locating a file by 50%. Another advantage of 
FolderPredictor is that it does not require users to adapt to a new 
interface, but rather meshes with the existing interface for 
opening files on the Windows platform. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Knowledge acquisition; 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; H.5.2 [Information Interfaces and Presentation]: 
User Interfaces – User-centered design. 

General Terms 
Design, Human Factors. 

Keywords 
Tasks, activities, prediction, recommendation, user interface, 
folders, directories, shortcuts, machine learning, intelligent user 
interfaces. 

1. INTRODUCTION 
Computer users organize their electronic files into folder 
hierarchies in their file systems. But unfortunately, with the ever-
increasing numbers of files, folder hierarchies on today’s 
computers have become large and complex [2]. With large 

numbers of files and potentially complex folder hierarchies, 
locating the desired file is becoming an increasingly time-
consuming operation. Some previous investigations have shown 
that computer users spend substantial time and effort in just 
finding files [1, 10, 11]. Thus, designing intelligent user interfaces 
that can help users quickly locate the desired files has emerged as 
an important research topic. 

Previous research on helping users find files has focused on 
building Personal Information Management (PIM) systems in 
which documents are organized by their properties [5, 7]. These 
properties include both system properties, like name, path and 
content of the document, and user-defined properties that reflect 
the user’s view of the document. In these systems, users can 
search for files by their properties using search engines. Although 
these search engines can be effective in helping the user locate 
files, previous user studies have indicated that instead of using 
keyword search, most users still like to navigate in the folder 
hierarchy with small, local steps using their contextual knowledge 
as a guide, even when they know exactly what they were looking 
for in advance [1, 9, 10, 20]. 

In this paper, we try to address the file-locating problem from 
another perspective, using a system that we call the 
FolderPredictor. The main idea of FolderPredictor is that if we 
have observations of a user’s previous file access behavior, we 
can recommend one or more folders directly to the user at the 
moment he/she needs to locate a file. These recommended folders 
are predictions – the result of running simple machine learning 
algorithms on the user’s previously observed interactions with 
files. 

Ideally we want to identify when the user has just started to look 
for a file and provide a shortcut to likely choices for files. In 
today’s graphical user interfaces, there are several user actions 
that strongly indicate the user is or will be initiating a search for a 
file. These include the display of a file open/save dialog box or 
the opening of a file/folder browsing application such as 
Windows Explorer. Our approach intervenes in the first case – the 
file open/save dialog box. 

FolderPredictor presents predicted folders by changing the default 
folder of the open/save file dialog that is displayed to computer 
users from within an application. It also provides shortcuts to 
secondary recommendations, in case the top recommendation is 
not correct. An important advantage of FolderPredictor is that it 

 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

IUI'06, January 29–February 1, 2006, Sydney, Australia.  

Copyright 2006 ACM 1-59593-287-9/06/0001...$5.00. 



reduces user cost without requiring users to adapt to a new 
interface. Users have nothing new to learn. 

The paper is organized as follows. In the next section, we 
introduce the TaskTracer hypothesis. Section 3 describes the 
bases of our folder predictions. Section 4 briefly introduces how 
FolderPredictor acquires data from TaskTracer. Section 5 presents 
the cost-sensitive prediction algorithm used by FolderPredictor to 
make predictions. Section 6 introduces the user interface of 
FolderPredictor and the instrumentation for presenting predictions 
in the open/save dialog box. Section 7 reports the experimental 
results, which establish that FolderPredictor reduces the user’s 
cost for locating files. Section 8 discusses some related work in 
email classification. Finally, we conclude the paper with some 
discussion in section 9. 

2. THE TASKTRACER HYPOTHESIS 
FolderPredictor monitors user activity to make predictions to 
optimize the user experience. Previous research in intelligent 
“agents” has explored this kind of approach [8, 12, 15]. However, 
one of the challenges faced by these intelligent agents is that users 
are highly multitasking, and they are likely to need access to 
different files depending on the exact task they are performing. 
For example, a professor may have a meeting with a student for 
one hour and then switch to writing a grant proposal. The notes 
file for the student meeting and the files for the grant proposal are 
normally stored in different folders. After the professor switches 
to working on the grant proposal, a naïve agent might assume that 
the student notes are still the most likely recommendation, 
because they were the most recently accessed. This 
recommendation would fail, because the agent is not taking into 
consideration the context of the user’s current task. 

Previous work on intelligent agents or assistants has attempted to 
produce more context-aware predictions by analyzing the content 
of the documents that the user is currently accessing to generate 
an estimated keyword profile of the user’s “task” [3]. This profile 
is then employed as a query to locate files with similar keyword 
profiles. This approach is limited because a) it cannot recommend 
resources that do not have text associated with them, b) there are 
substantial ambiguities in text, resulting in significant uncertainty 
in mapping from text profiles to user tasks, and c) the active 
window may not contain sufficient text. In the last case, the agent 
would be forced to scan recently accessed documents to generate 
text profiles – documents that may have been accessed as part of a 
previous task.   

FolderPredictor is built upon our TaskTracer system [6, 19] – a 
research software system designed to help multi-tasking computer 
users with interruption recovery and knowledge reuse. There are 
three core hypotheses behind TaskTracer:  

1) All information workers break their work into discrete units 
to which they can give names – we call these tasks.  

2) At any moment in time, the user is working on only one 
task.  

3) Knowledge of the user’s current task will substantially 
reduce the uncertainty in predicting what a user is trying to 
do. 

Users define new tasks in the TaskTracer system via an 
application called the TaskExplorer.  Users can then indicate their 
current task through two mechanisms, which are shown in Figure 
1. Users can switch to the TaskExplorer and select the task from 
their defined hierarchy of tasks, or they can set the task without 
leaving the current window by clicking on a UI component that 
appears in the title bar of every window. The component in the 
title bar is called the TaskTitleBar, and it displays the task most-
recently specified by the user. The user can switch tasks by 
manually selecting another task from the drop-down menu of 
TaskTitleBar or by typing in TaskTitleBar box (with auto-
completion). 

We also have a system called TaskPredictor, which can 
automatically detect task switches by observing the activity of the 
user [19]. If a probable task switch is detected, the user can be 
notified, actively or peripherally. Alternatively the task can be 
automatically changed if task prediction confidence is high 
enough.  

TaskTracer collects detailed records of users’ activities and 
resources accessed, and associates each activity event with the 
current declared task. Thus, by receiving user activities tagged 
with task information from TaskTracer, FolderPredictor can make 
task-aware predictions of what folder a user is likely to want to 
access based on the user’s previous accesses for this task. 

3. APPROACH 
Our approach assumes that computer users, for the most part, 
separate files for different tasks into different folders. We further 
assume that, for the most part, the working set of folders for a task 
is relatively small. Given such assumptions, the paths of the files 
that the user has accessed when they were working on a task are 
useful resources for making folder predictions for future accesses 
for that task. For example, imagine that, during one day, a student 
opens and saves files under the folders 
“C:\Classes\CS534\Homework” and 
“C:\Classes\CS534\Presentation” when he is working on a task 
named “CS534”. The next day, when he returns to working on the 
CS534 task, it should be useful to recommend these two folders or 
even the parent folder “C:\Classes\CS534”. 

FolderPredictor generates its predictions by applying a simple 
machine learning method to a stream of observed file open/save 
events. Each of these events includes the name of the folder 

Figure 1. TaskExplorer and TaskTitleBar. 



containing the file that was opened or saved. For each task, 
FolderPredictor maintains statistics for each folder – how many 
times the user opened files from it or saved files to it. 

A statistical approach to making folder predictions is important 
for two reasons: 1) more frequently accessed folders should be 
more probable predictions and 2) users sometimes access the 
wrong files, or forget to specify that they have changed task. In 
the second case, the misleading events will add to the statistics. If 
observed accesses to a particular folder are really just noise, then 
we are unlikely to observe repeated future accesses to that folder 
over time. Thus these folders should have relatively low access 
frequencies. We can use this information to filter out these folders 
from recommendations.  

Another factor that should be considered is recency. Our 
hypothesis is that a user is more likely to need to access recently-
accessed folders. For example, a programmer working on a big 
project may need to access many different folders of source code, 
working on them one by one, but accessing each folder multiple 
times before moving on to the next folder. Thus, the folders with 
older access times should be quickly excluded from the 
predictions when the programmer begins to work on source code 
under new folders. To achieve this, we have incorporated a 
recency weighting mechanism into FolderPredictor. Instead of 
keeping a simple count of how many times a folder is accessed, 
we assign a recency weight wi to each folder fi. All weights are 
initially zero. When a file in folder fi is opened or saved while 
working on a task, the weights of all the folders that have been 
accessed on that task are multiplied by a real number α between 0 
and 1, and wi is then increased by 1. α is called the discount 
factor. Multiplying by the discount factor exponentially decays 
the weights of folders that have not been accessed recently. When 
α = 0, only the most recently-accessed folder will have a nonzero 
weight, and it will always be predicted. When α = 1, no recency 
information is considered, and weights are not decayed. 
Experiments show that a discount factor in the range [0.7, 0.9] 
performs the best. Another benefit of recency weighting is that 
folders erroneously identified as relevant due to noisy data are 
excluded from consideration quickly, because their weights 
decrease exponentially. 

In the implementation of FolderPredictor, we apply an 
incremental update method to maintain the folder weights. The 
first time FolderPredictor is run on a computer, historical 
TaskTracer data are used to build the initial list of folders and 
associated weights for each task. This information is stored in 
FolderPredictor’s private database. Then FolderPredictor 
incrementally updates this database as new open or save events 
arrive, until the FolderPredictor is shut down. The next time 
FolderPredictor is started, it updates its database using only the 
events that have been added since the last time FolderPredictor 
was shut down. This incremental update method helps 
FolderPredictor keep its data up-to-date without any perceivable 
delay in prediction time or startup (except the first time it is run). 

4. DATA COLLECTION 
The TaskTracer system employs an extensive data-collection 
framework to obtain detailed observations of user activities. It 
instruments a wide range of applications under the Windows XP 
operating system, including Microsoft Office, Internet Explorer, 
and Adobe Acrobat. Listener components are plug-ins into the 

applications that capture user interaction events and send them to 
the Publisher as Events, which are XML strings.  One event of 
interest is the TaskBegin event, which is sent to the Publisher 
when the user switches tasks. The Publisher stores these events in 
its database as history data and also distributes them to Subscriber 
applications that need to react to events online. FolderPredictor is 
one of the subscriber applications of TaskTracer. This Publisher-
Subscriber Architecture is shown in Figure 2. 

TaskTracer provides a variety of events to its subscriber 
applications, some of which are useful for making folder 
predictions. 

5. COST-SENSITIVE PREDICTION 
ALGORITHM 
The main goal of FolderPredictor is to reduce the cost of locating 
files. To achieve this, FolderPredictor applies a cost-sensitive 
algorithm to make predictions.  

In this paper, we assume that the user navigates in the open/save 
file dialog using a mouse. The number of “clicks” necessary to 
reach the destination folder is used as our measure of cost to the 
user. One “click” can lead the user from the currently selected 
folder to its parent folder or to one of its sub-folders. 

We could just recommend the folder having the highest weight. 
However, while that might maximize the chance that we pick the 
best possible folder, it may not minimize the average cost in 
clicks. To do this, we may want to sometimes select an ancestor 
folder. We will motivate the need for this decision by an example. 
Suppose a student has a folder hierarchy as shown in the tree 
structure in Figure 3. His files are stored in the bottom level 
folders, such as “Part3” and “Hw2”. When he worked on the 
“CS534” task, he accessed almost all of the bottom level folders 
with approximately similar counts. In this circumstance, 
predicting a bottom level folder will have a high probability of 
being wrong because all the bottom level folders are equally 
probable.  This will cost the student several more “clicks” to 
reach his destination folder – first to go up to an ancestor folder 
and then go back down to the correct child.  On the other hand, 

Figure 2.  Publisher-Subscriber Architecture. 
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predicting a higher level folder, such as “Presentations” or 
“Homeworks” or even “CS534”, may not be a perfect hit, but it 
may reduce the cost in half – the student only needs to go 
downward to reach his destination folder. Furthermore, we 
believe that incorrectly predicting a leaf node will be on average 
more frustrating for users than picking an ancestor node that is an 
incomplete path to the desired folder. 

Based on this idea, we developed the following cost-sensitive 
prediction algorithm. 

 

Algorithm 1 (Cost-sensitive Prediction Algorithm) 
Input: A finite set F = {f1, f2, …, fm}, where fi is a folder with a 
positive weight wi, 1≤i≤m. 

Output: Three recommended folders (descending in predicted 
preference). 

Step 1. Compute a probability pi for each fi by normalizing the 

weights: ∑
=

=
m
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Step 2. Build the hypothesis set: U
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i

=

= HH , where Hi is the set 

of all ancestors of fi, including fi itself. 

Step 3. Compute a distance L(h, f) for each Hh∈ and Ff ∈ : 
L(h, f) = the length of the path from h to f in the tree-structured 
folder hierarchy. 

Step 4. Return the three different folders a1, a2, a3 from H that 
minimize the expected cost:  
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In Step 4 of the above algorithm, the cost of getting to a folder fi 
from a prediction (a1, a2, a3) is computed as 

1 2 3i i i{ ( , ),  ( , ) 1.0,  ( , ) 1.0}L a f L a f L a f+ +min , because of 
the following facts: 

1) a1 will be set as the default folder of the open/save file 
dialog. This means that the user will be in folder a1 with no 
extra “click” required. Therefore, ) ,( i1 faL  is the cost if the 
user navigates to fi from a1. 

2) a2 and a3 will be shown as shortcuts to the corresponding 
folders in the “places bar” on the left side of the open/save 
file dialog box. The user must execute one “click” on the 
places bar if he wants to navigate to fi from a2 or a3. 
Therefore, an extra cost 1.0 is added.  

3) We assume the user knows which folder to go to and how to 
get there by the smallest number of clicks. Therefore, the 
cost of a prediction (a1, a2, a3) is the minimum of 1 i( , )L a f , 

2 i( , ) 1.0L a f + , and 3 i( , ) 1.0L a f + . 

FolderPredictor runs this algorithm whenever the user switches 
task and whenever the folder weights are updated. The returned 
three predicted folders are stored for recall by the FolderPredictor 
UI when needed. 

6. FOLDERPREDICTOR UI 
A basic design principle of FolderPredictor is simplicity. This 
basic principle greatly influences the UI design – FolderPredictor 
actually has no independent UI. 

FolderPredictor shows its predictions directly in the open/save file 
dialog provided by the Windows operating system. It hooks into 
the native Windows environment and is transparent to the user. 
Therefore, FolderPredictor carries no overhead for the user to 
learn additional interactions. 

Figure 4 shows an example open file dialog box with 
FolderPredictor running. The three predicted folders are shown as 
the top three icons in the “places bar” on the left. The user can 
jump to any of them by clicking on the corresponding icon. The 
most probable folder is also shown as the default folder of the 
dialog box so that the display will show this folder initially.  

There are five slots in the places bar. By default, Microsoft 
Windows places five system folders (including “My Computer” 
and “Desktop”) there. Informal questioning of Windows users 
revealed that several of these shortcuts were not commonly used. 

Figure 4. FolderPredictor is integrated into the open file 
dialog box. 

Figure 3. An example folder hierarchy. Each node of this tree 
denotes a folder. Child nodes are sub-folders of their parent 
node.  
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Thus, we felt it was safe to replace some of them by predicted 
folders. By default, FolderPredictor uses three slots for predicted 
folders and leaves two system folders. This behavior can be 
configured by the users if they want to see more system folders in 
the places bar. 

Microsoft Office uses a file dialog from a custom library, while 
most other Windows applications use the file dialog from the 
common Win32 dialog library provided by the operating system. 
Thus, FolderPredictor needs two separate sets of instrumentation 
for the two types of file dialog. 

6.1 Instrumentation for the common Win32 
file dialog 
In order to modify the places bar in the common Win32 dialog, 
FolderPredictor creates five entries named “Place0” to “Place4” 
under the registry key 
“HKEY_CURRENT_USER\Software\Microsoft\Windows\Curre
ntVersion\Policies\ComDlg32\Placesbar\”. These five entries 
correspond to the five slots, and their values can be set to the 
paths of the predicted folders or to the system-independent 
numeric IDs (CSIDL) of the system folders. 

Modifying the default folder is much more difficult. There is no 
documented support for this feature from Microsoft. 
FolderPredictor modifies the default folder by injecting an add-in 
(a .DLL file written in C with embedded assembly language) to 
all applications when they are started. This add-in intercepts 
Win32 API calls invoked by the injected application. Common 
Win32 applications show the Open/Save file dialog by invoking 
API calls named “GetOpenFileName” or “GetSaveFileName” 
with the default folder passed as a parameter. Thus, the add-in can 
modify the default folder by intercepting the API call, changing 
the parameter, and then passing it on. A detailed introduction of 
API interception technology can be found in [13]. 

By intercepting the above two API calls, we can also get the 
original default folder of the file dialog and the folder returned by 
the file dialog. These folders were used in the evaluation of 
FolderPredictor, which is presented in the next section. 

6.2 Instrumentation for the Microsoft Office 
file dialog 
As with the common Win32 file dialog, the places bar in the 
Microsoft Office file dialog can be modified by manipulating 
registry keys. The pertinent registry key is 
“HKEY_CURRENT_USER\Software\Microsoft\Office\VersionN
umber\Common\Open Find\Places\”, inside which 
VersionNumber should be replaced by the version number of 
Microsoft Office software installed on the computer.  

Microsoft Office uses a file dialog from a custom library, and the 
API calls in this library are not exposed. Therefore, API 
interception technology can not be used to modify the default 
folder of Microsoft Office file dialog. FolderPredictor hooks into 
the Microsoft Office file dialog by loading macro files into 
Microsoft Office applications, e.g. .DOT file for WORD and 
.XLA file for EXCEL. Code in these macro files, written in 
Visual Basic for Applications (VBA), is invoked when the file 
dialog is called. When invoked, the VBA code changes the 
default folder of the file dialog to the predicted folder and then 
shows the dialog box. 

The original default folder and the folder returned by the file 
dialog are also recorded for evaluation. 

7. EXPERIMENTS 
In this section, we evaluate the performance of FolderPredictor. 

7.1 Setup 
The data sets for the evaluation came from four different users of 
FolderPredictor. Each data set is a list of predictions that 
FolderPredictor has made for a user, ordered by time. Each 
prediction is marked with the name of the task that was active at 
the moment this prediction was made. The information about 
these data sets is shown in Table 1.  The size of a data set is the 
number of predictions it contains. 

 

 

# User Type Data Collection Time Set Size 

1 Professor 12 months 1748 

2 Professor  4 months 506 

3 Graduate Student  7 months 577 

4 Graduate Student  6 months 397 

 

The discount factor α is set to 0.85 for all users. 

7.2 Average cost 
Figure 5 compares the average cost of FolderPredictor and 
Windows Default on all four data sets. The cost of Windows 
Default is the distance between the original default folder of the 
file dialog and the destination folder. In other words, the cost of 
Windows Default is the user cost when FolderPredictor is not 
running. The figure also shows 95% confidence intervals for the 
costs.  

Statistical significance testing shows that FolderPredictor surely 
reduces the user cost of locating files (P-value = 1.51E-29 in 

Table 1. Information about the data sets on which 
experiments were conducted 

Figure 5. Average cost of FolderPredictor and Windows 
Default. 



ANOVA). On average, the cost is reduced by 49.9% when using 
FolderPredictor. 

7.3 Distribution of costs 
Figure 6 shows the distribution of different costs on all four data 
sets, for both FolderPredictor and Windows Default. We can see 
from the figure that 

1) About 90% of the FolderPredictor’s costs are less than 
three. Only a small fraction of the FolderPredictor’s 
costs are very high. 

2) Although about half of the Windows Default’s costs are 
zero, about 40% of the Windows Default’s costs are 
above three. 

This means that FolderPredictor not only reduces the overall 
average cost of locating files, but also decreases the probability of 
encountering very high costs in locating files. 

It is interesting to see that Windows Default actually gets the 
default folder perfectly correct more than FolderPredictor. This 
most likely happens because Windows typically picks a leaf 
folder (i.e., the most recently-used folder) as the default folder. 
FolderPredictor sometimes plays it safe and picks an ancestor 
folder that is more likely to be close to multiple possible folders, 
and less likely to be perfect. Thus we see a large number of cases 
relative to the windows default where FolderPredictor is one, two, 
or three clicks away. 

7.4 Learning curve 
Machine learning systems usually perform better as more training 
data is acquired. In FolderPredictor’s case, the training data are 
the user’s opens and saves per task. For each open/save, 
FolderPredictor makes a prediction and uses the feedback from 
the user to update itself. Therefore, the cost of the folders 
recommended by FolderPredictor should decrease as more 
predictions are made for a task. To demonstrate this, we present 
the learning curve for FolderPredictor in Figure 7.  

In the figure, the X-axis is the number of predictions within one 
task aggregated into ranges of width 10, and the Y-axis is the 
average cost of one prediction within this range. For example, the 

first point of the curve shows the average cost of all predictions 
between (and including) the 1st and 10th predictions of all tasks. 
The figure also shows 95% confidence intervals for the average 
costs. 

The curve clearly shows that the cost decreases as more 
predictions made. The average cost decreases from 1.6 (first 10 
predictions) to 0.7 (71st to 80th predictions).  

8. RELATED WORK 
On the surface, the FolderPredictor approach is similar to some 
email classification systems, which predict possible email folders 
for each incoming email message based on the text in the 
messages [14, 16, 17]. In particular, both MailCat and 
FolderPredictor present their top three predicted folders to the 
user [17]. However our approach is different in the following 
aspects: 

1) Our predictions are made for file folders, not email 
folders. Predicting file folders should be much more 
difficult than predicting email folders. One reason is 
that in most situations, there are many more file folders 
than email folders. Furthermore, there are many 
different types of files under file folders, not only 
email messages. 

2) Our predictions are based on user activities, not text in 
files. Text-based approaches may be applicable for 
email foldering, but they are more challenging to apply 
to folder prediction. Challenges include (a) tasks with 
similar keyword profiles but different folders (e.g., the 
class I taught last year versus the class I am teaching 
this year), (b) files from which it is hard to extract text, 
(c) ambiguity in language, and (d) computation time to 
extract and analyze text. 

There are also some software tools that help users to quickly 
locate their files in the open/save file dialog, e.g. Default Folder X 
[18] for Mac and Direct Folders [4] for Windows. These tools 
make the open/save file dialog more configurable and 
comprehensive to the user. The user can put more shortcuts in the 
dialog, as well as define a default folder for each application. 
However, these tools cannot adjust the shortcuts and default 

Figure 6. Distribution of costs. 

Figure 7. Learning curve of FolderPredictor. 



folders automatically based on the context of the user’s activities. 
On the other hand, our approach makes folder predictions based 
on the user activities within each task. Therefore, FolderPredictor 
can be a good complement to these tools. 

9. DISCUSSION AND CONCLUSION 
To reduce user cost, we are applying machine learning to records 
of user activity to make useful recommendations. In this paper, 
we report on the FolderPredictor, which can reduce the user’s cost 
for locating files in folder hierarchies. FolderPredictor applies a 
cost-sensitive online prediction algorithm to the user’s activities. 
Experimental results show that, on average, FolderPredictor 
reduces the cost of locating a file by 50%. Perhaps even more 
importantly, FolderPredictor practically eliminates cases in which 
a large number of clicks are required to reach the right folder.  
Another advantage of FolderPredictor is that it does not require 
users to adapt to a new interface. Its predictions are presented 
directly in the open/save file dialogs. Users have nothing new to 
learn.  

The results reported in this paper are likely a substantial 
underestimate of the value of the FolderPredictor. One of the key 
assumptions of this paper is that the user always knows which 
folder they want to get to and where it is located – in such a case, 
we have demonstrated that FolderPredictor will get them there 
faster. The reality is that people have limited memory and highly 
multitasking people often cannot maintain in their memory the 
locations of files on all their tasks, particularly tasks that they 
have not worked on recently. Thus users may need many more 
clicks to “search” for the right folder. By default, Windows only 
remembers what was worked on most recently, regardless of task. 
FolderPredictor on the other hand remembers multiple folders 
used on a task, regardless of how long ago that task was last 
active. Thus FolderPredictor’s recommendations can serve as a 
reminder of where files related to a task have been stored.  

There are other psychological benefits of FolderPredictor that are 
harder to evaluate. For example, being placed consistently in the 
wrong folder can generate frustration, even if the click distance is 
not far. At this stage, all that we have is qualitative evidence of 
this. During the deployments of FolderPredictor, multiple subjects 
reported becoming “addicted” to FolderPredictor – they were 
distressed when they had to use computers that did not have 
TaskTracer installed. They also reported that they did a better job 
of notifying TaskTracer of task switches in order to ensure that 
the FolderPredictor recommendations were appropriate for the 
current task. 
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