
Fewer Clicks and Less Frustration:
Reducing the Cost of Reaching the Right Folder
Xinlong Bao

School of EECS
Oregon State University

Corvallis, OR 97331
+1 541 737-1646

bao@eecs.oregonstate.edu

Jonathan Herlocker
School of EECS

Oregon State University
Corvallis, OR 97331

+1 541 737-8894

herlock@eecs.oregonstate.edu

Thomas G. Dietterich
School of EECS

Oregon State University
Corvallis, OR 97331

+1 541 737-5559

tgd@eecs.oregonstate.edu

ABSTRACT
Helping computer users rapidly locate files in their folder
hierarchies has become an important research topic in today’s
intelligent user interface design. This paper reports on
FolderPredictor, a software system that can reduce the cost of
locating files in hierarchical folders. FolderPredictor applies a
cost-sensitive prediction algorithm to the user’s previous file
access information to predict the next folder that will be accessed.
Experimental results show that, on average, FolderPredictor
reduces the cost of locating a file by 50%. Another advantage of
FolderPredictor is that it does not require users to adapt to a new
interface, but rather meshes with the existing interface for
opening files on the Windows platform.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – Knowledge acquisition;
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.5.2 [Information Interfaces and Presentation]:
User Interfaces – User-centered design.

General Terms
Design, Human Factors.

Keywords
Tasks, activities, prediction, recommendation, user interface,
folders, directories, shortcuts, machine learning, intelligent user
interfaces.

1. INTRODUCTION
Computer users organize their electronic files into folder
hierarchies in their file systems. But unfortunately, with the ever-
increasing numbers of files, folder hierarchies on today’s
computers have become large and complex [2]. With large

numbers of files and potentially complex folder hierarchies,
locating the desired file is becoming an increasingly time-
consuming operation. Some previous investigations have shown
that computer users spend substantial time and effort in just
finding files [1, 10, 11]. Thus, designing intelligent user interfaces
that can help users quickly locate the desired files has emerged as
an important research topic.

Previous research on helping users find files has focused on
building Personal Information Management (PIM) systems in
which documents are organized by their properties [5, 7]. These
properties include both system properties, like name, path and
content of the document, and user-defined properties that reflect
the user’s view of the document. In these systems, users can
search for files by their properties using search engines. Although
these search engines can be effective in helping the user locate
files, previous user studies have indicated that instead of using
keyword search, most users still like to navigate in the folder
hierarchy with small, local steps using their contextual knowledge
as a guide, even when they know exactly what they were looking
for in advance [1, 9, 10, 20].

In this paper, we try to address the file-locating problem from
another perspective, using a system that we call the
FolderPredictor. The main idea of FolderPredictor is that if we
have observations of a user’s previous file access behavior, we
can recommend one or more folders directly to the user at the
moment he/she needs to locate a file. These recommended folders
are predictions – the result of running simple machine learning
algorithms on the user’s previously observed interactions with
files.

Ideally we want to identify when the user has just started to look
for a file and provide a shortcut to likely choices for files. In
today’s graphical user interfaces, there are several user actions
that strongly indicate the user is or will be initiating a search for a
file. These include the display of a file open/save dialog box or
the opening of a file/folder browsing application such as
Windows Explorer. Our approach intervenes in the first case – the
file open/save dialog box.

FolderPredictor presents predicted folders by changing the default
folder of the open/save file dialog that is displayed to computer
users from within an application. It also provides shortcuts to
secondary recommendations, in case the top recommendation is
not correct. An important advantage of FolderPredictor is that it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IUI'06, January 29–February 1, 2006, Sydney, Australia.

Copyright 2006 ACM 1-59593-287-9/06/0001...$5.00.

reduces user cost without requiring users to adapt to a new
interface. Users have nothing new to learn.

The paper is organized as follows. In the next section, we
introduce the TaskTracer hypothesis. Section 3 describes the
bases of our folder predictions. Section 4 briefly introduces how
FolderPredictor acquires data from TaskTracer. Section 5 presents
the cost-sensitive prediction algorithm used by FolderPredictor to
make predictions. Section 6 introduces the user interface of
FolderPredictor and the instrumentation for presenting predictions
in the open/save dialog box. Section 7 reports the experimental
results, which establish that FolderPredictor reduces the user’s
cost for locating files. Section 8 discusses some related work in
email classification. Finally, we conclude the paper with some
discussion in section 9.

2. THE TASKTRACER HYPOTHESIS
FolderPredictor monitors user activity to make predictions to
optimize the user experience. Previous research in intelligent
“agents” has explored this kind of approach [8, 12, 15]. However,
one of the challenges faced by these intelligent agents is that users
are highly multitasking, and they are likely to need access to
different files depending on the exact task they are performing.
For example, a professor may have a meeting with a student for
one hour and then switch to writing a grant proposal. The notes
file for the student meeting and the files for the grant proposal are
normally stored in different folders. After the professor switches
to working on the grant proposal, a naïve agent might assume that
the student notes are still the most likely recommendation,
because they were the most recently accessed. This
recommendation would fail, because the agent is not taking into
consideration the context of the user’s current task.

Previous work on intelligent agents or assistants has attempted to
produce more context-aware predictions by analyzing the content
of the documents that the user is currently accessing to generate
an estimated keyword profile of the user’s “task” [3]. This profile
is then employed as a query to locate files with similar keyword
profiles. This approach is limited because a) it cannot recommend
resources that do not have text associated with them, b) there are
substantial ambiguities in text, resulting in significant uncertainty
in mapping from text profiles to user tasks, and c) the active
window may not contain sufficient text. In the last case, the agent
would be forced to scan recently accessed documents to generate
text profiles – documents that may have been accessed as part of a
previous task.

FolderPredictor is built upon our TaskTracer system [6, 19] – a
research software system designed to help multi-tasking computer
users with interruption recovery and knowledge reuse. There are
three core hypotheses behind TaskTracer:

1) All information workers break their work into discrete units
to which they can give names – we call these tasks.

2) At any moment in time, the user is working on only one
task.

3) Knowledge of the user’s current task will substantially
reduce the uncertainty in predicting what a user is trying to
do.

Users define new tasks in the TaskTracer system via an
application called the TaskExplorer. Users can then indicate their
current task through two mechanisms, which are shown in Figure
1. Users can switch to the TaskExplorer and select the task from
their defined hierarchy of tasks, or they can set the task without
leaving the current window by clicking on a UI component that
appears in the title bar of every window. The component in the
title bar is called the TaskTitleBar, and it displays the task most-
recently specified by the user. The user can switch tasks by
manually selecting another task from the drop-down menu of
TaskTitleBar or by typing in TaskTitleBar box (with auto-
completion).

We also have a system called TaskPredictor, which can
automatically detect task switches by observing the activity of the
user [19]. If a probable task switch is detected, the user can be
notified, actively or peripherally. Alternatively the task can be
automatically changed if task prediction confidence is high
enough.

TaskTracer collects detailed records of users’ activities and
resources accessed, and associates each activity event with the
current declared task. Thus, by receiving user activities tagged
with task information from TaskTracer, FolderPredictor can make
task-aware predictions of what folder a user is likely to want to
access based on the user’s previous accesses for this task.

3. APPROACH
Our approach assumes that computer users, for the most part,
separate files for different tasks into different folders. We further
assume that, for the most part, the working set of folders for a task
is relatively small. Given such assumptions, the paths of the files
that the user has accessed when they were working on a task are
useful resources for making folder predictions for future accesses
for that task. For example, imagine that, during one day, a student
opens and saves files under the folders
“C:\Classes\CS534\Homework” and
“C:\Classes\CS534\Presentation” when he is working on a task
named “CS534”. The next day, when he returns to working on the
CS534 task, it should be useful to recommend these two folders or
even the parent folder “C:\Classes\CS534”.

FolderPredictor generates its predictions by applying a simple
machine learning method to a stream of observed file open/save
events. Each of these events includes the name of the folder

Figure 1. TaskExplorer and TaskTitleBar.

containing the file that was opened or saved. For each task,
FolderPredictor maintains statistics for each folder – how many
times the user opened files from it or saved files to it.

A statistical approach to making folder predictions is important
for two reasons: 1) more frequently accessed folders should be
more probable predictions and 2) users sometimes access the
wrong files, or forget to specify that they have changed task. In
the second case, the misleading events will add to the statistics. If
observed accesses to a particular folder are really just noise, then
we are unlikely to observe repeated future accesses to that folder
over time. Thus these folders should have relatively low access
frequencies. We can use this information to filter out these folders
from recommendations.

Another factor that should be considered is recency. Our
hypothesis is that a user is more likely to need to access recently-
accessed folders. For example, a programmer working on a big
project may need to access many different folders of source code,
working on them one by one, but accessing each folder multiple
times before moving on to the next folder. Thus, the folders with
older access times should be quickly excluded from the
predictions when the programmer begins to work on source code
under new folders. To achieve this, we have incorporated a
recency weighting mechanism into FolderPredictor. Instead of
keeping a simple count of how many times a folder is accessed,
we assign a recency weight wi to each folder fi. All weights are
initially zero. When a file in folder fi is opened or saved while
working on a task, the weights of all the folders that have been
accessed on that task are multiplied by a real number α between 0
and 1, and wi is then increased by 1. α is called the discount
factor. Multiplying by the discount factor exponentially decays
the weights of folders that have not been accessed recently. When
α = 0, only the most recently-accessed folder will have a nonzero
weight, and it will always be predicted. When α = 1, no recency
information is considered, and weights are not decayed.
Experiments show that a discount factor in the range [0.7, 0.9]
performs the best. Another benefit of recency weighting is that
folders erroneously identified as relevant due to noisy data are
excluded from consideration quickly, because their weights
decrease exponentially.

In the implementation of FolderPredictor, we apply an
incremental update method to maintain the folder weights. The
first time FolderPredictor is run on a computer, historical
TaskTracer data are used to build the initial list of folders and
associated weights for each task. This information is stored in
FolderPredictor’s private database. Then FolderPredictor
incrementally updates this database as new open or save events
arrive, until the FolderPredictor is shut down. The next time
FolderPredictor is started, it updates its database using only the
events that have been added since the last time FolderPredictor
was shut down. This incremental update method helps
FolderPredictor keep its data up-to-date without any perceivable
delay in prediction time or startup (except the first time it is run).

4. DATA COLLECTION
The TaskTracer system employs an extensive data-collection
framework to obtain detailed observations of user activities. It
instruments a wide range of applications under the Windows XP
operating system, including Microsoft Office, Internet Explorer,
and Adobe Acrobat. Listener components are plug-ins into the

applications that capture user interaction events and send them to
the Publisher as Events, which are XML strings. One event of
interest is the TaskBegin event, which is sent to the Publisher
when the user switches tasks. The Publisher stores these events in
its database as history data and also distributes them to Subscriber
applications that need to react to events online. FolderPredictor is
one of the subscriber applications of TaskTracer. This Publisher-
Subscriber Architecture is shown in Figure 2.

TaskTracer provides a variety of events to its subscriber
applications, some of which are useful for making folder
predictions.

5. COST-SENSITIVE PREDICTION
ALGORITHM
The main goal of FolderPredictor is to reduce the cost of locating
files. To achieve this, FolderPredictor applies a cost-sensitive
algorithm to make predictions.

In this paper, we assume that the user navigates in the open/save
file dialog using a mouse. The number of “clicks” necessary to
reach the destination folder is used as our measure of cost to the
user. One “click” can lead the user from the currently selected
folder to its parent folder or to one of its sub-folders.

We could just recommend the folder having the highest weight.
However, while that might maximize the chance that we pick the
best possible folder, it may not minimize the average cost in
clicks. To do this, we may want to sometimes select an ancestor
folder. We will motivate the need for this decision by an example.
Suppose a student has a folder hierarchy as shown in the tree
structure in Figure 3. His files are stored in the bottom level
folders, such as “Part3” and “Hw2”. When he worked on the
“CS534” task, he accessed almost all of the bottom level folders
with approximately similar counts. In this circumstance,
predicting a bottom level folder will have a high probability of
being wrong because all the bottom level folders are equally
probable. This will cost the student several more “clicks” to
reach his destination folder – first to go up to an ancestor folder
and then go back down to the correct child. On the other hand,

Figure 2. Publisher-Subscriber Architecture.

Publisher

Applications Listener

...

OS

Event
Database

Listener

Listener

FolderPredictor Subscriber

Listener
Port

Subscriber
Port

... Subscriber

predicting a higher level folder, such as “Presentations” or
“Homeworks” or even “CS534”, may not be a perfect hit, but it
may reduce the cost in half – the student only needs to go
downward to reach his destination folder. Furthermore, we
believe that incorrectly predicting a leaf node will be on average
more frustrating for users than picking an ancestor node that is an
incomplete path to the desired folder.

Based on this idea, we developed the following cost-sensitive
prediction algorithm.

Algorithm 1 (Cost-sensitive Prediction Algorithm)
Input: A finite set F = {f1, f2, …, fm}, where fi is a folder with a
positive weight wi, 1≤i≤m.

Output: Three recommended folders (descending in predicted
preference).

Step 1. Compute a probability pi for each fi by normalizing the

weights: ∑
=

=
m

1i
iii wwp .

Step 2. Build the hypothesis set: U
m

1i

i

=

= HH , where Hi is the set

of all ancestors of fi, including fi itself.

Step 3. Compute a distance L(h, f) for each Hh∈ and Ff ∈ :
L(h, f) = the length of the path from h to f in the tree-structured
folder hierarchy.

Step 4. Return the three different folders a1, a2, a3 from H that
minimize the expected cost:

1 2 3

m

i i i i
i 1

 (,), (,) 1.0, (,) 1.0}p L a f L a f L a f
=

• + +∑ min{

In Step 4 of the above algorithm, the cost of getting to a folder fi
from a prediction (a1, a2, a3) is computed as

1 2 3i i i{ (,), (,) 1.0, (,) 1.0}L a f L a f L a f+ +min , because of
the following facts:

1) a1 will be set as the default folder of the open/save file
dialog. This means that the user will be in folder a1 with no
extra “click” required. Therefore,) ,(i1 faL is the cost if the
user navigates to fi from a1.

2) a2 and a3 will be shown as shortcuts to the corresponding
folders in the “places bar” on the left side of the open/save
file dialog box. The user must execute one “click” on the
places bar if he wants to navigate to fi from a2 or a3.
Therefore, an extra cost 1.0 is added.

3) We assume the user knows which folder to go to and how to
get there by the smallest number of clicks. Therefore, the
cost of a prediction (a1, a2, a3) is the minimum of 1 i(,)L a f ,

2 i(,) 1.0L a f + , and 3 i(,) 1.0L a f + .

FolderPredictor runs this algorithm whenever the user switches
task and whenever the folder weights are updated. The returned
three predicted folders are stored for recall by the FolderPredictor
UI when needed.

6. FOLDERPREDICTOR UI
A basic design principle of FolderPredictor is simplicity. This
basic principle greatly influences the UI design – FolderPredictor
actually has no independent UI.

FolderPredictor shows its predictions directly in the open/save file
dialog provided by the Windows operating system. It hooks into
the native Windows environment and is transparent to the user.
Therefore, FolderPredictor carries no overhead for the user to
learn additional interactions.

Figure 4 shows an example open file dialog box with
FolderPredictor running. The three predicted folders are shown as
the top three icons in the “places bar” on the left. The user can
jump to any of them by clicking on the corresponding icon. The
most probable folder is also shown as the default folder of the
dialog box so that the display will show this folder initially.

There are five slots in the places bar. By default, Microsoft
Windows places five system folders (including “My Computer”
and “Desktop”) there. Informal questioning of Windows users
revealed that several of these shortcuts were not commonly used.

Figure 4. FolderPredictor is integrated into the open file
dialog box.

Figure 3. An example folder hierarchy. Each node of this tree
denotes a folder. Child nodes are sub-folders of their parent
node.

CS 534

HomeworksPresentations

Part 1 ... Part 2 Part 9 Hw 1 ...Hw 2 Hw7

...

Thus, we felt it was safe to replace some of them by predicted
folders. By default, FolderPredictor uses three slots for predicted
folders and leaves two system folders. This behavior can be
configured by the users if they want to see more system folders in
the places bar.

Microsoft Office uses a file dialog from a custom library, while
most other Windows applications use the file dialog from the
common Win32 dialog library provided by the operating system.
Thus, FolderPredictor needs two separate sets of instrumentation
for the two types of file dialog.

6.1 Instrumentation for the common Win32
file dialog
In order to modify the places bar in the common Win32 dialog,
FolderPredictor creates five entries named “Place0” to “Place4”
under the registry key
“HKEY_CURRENT_USER\Software\Microsoft\Windows\Curre
ntVersion\Policies\ComDlg32\Placesbar\”. These five entries
correspond to the five slots, and their values can be set to the
paths of the predicted folders or to the system-independent
numeric IDs (CSIDL) of the system folders.

Modifying the default folder is much more difficult. There is no
documented support for this feature from Microsoft.
FolderPredictor modifies the default folder by injecting an add-in
(a .DLL file written in C with embedded assembly language) to
all applications when they are started. This add-in intercepts
Win32 API calls invoked by the injected application. Common
Win32 applications show the Open/Save file dialog by invoking
API calls named “GetOpenFileName” or “GetSaveFileName”
with the default folder passed as a parameter. Thus, the add-in can
modify the default folder by intercepting the API call, changing
the parameter, and then passing it on. A detailed introduction of
API interception technology can be found in [13].

By intercepting the above two API calls, we can also get the
original default folder of the file dialog and the folder returned by
the file dialog. These folders were used in the evaluation of
FolderPredictor, which is presented in the next section.

6.2 Instrumentation for the Microsoft Office
file dialog
As with the common Win32 file dialog, the places bar in the
Microsoft Office file dialog can be modified by manipulating
registry keys. The pertinent registry key is
“HKEY_CURRENT_USER\Software\Microsoft\Office\VersionN
umber\Common\Open Find\Places\”, inside which
VersionNumber should be replaced by the version number of
Microsoft Office software installed on the computer.

Microsoft Office uses a file dialog from a custom library, and the
API calls in this library are not exposed. Therefore, API
interception technology can not be used to modify the default
folder of Microsoft Office file dialog. FolderPredictor hooks into
the Microsoft Office file dialog by loading macro files into
Microsoft Office applications, e.g. .DOT file for WORD and
.XLA file for EXCEL. Code in these macro files, written in
Visual Basic for Applications (VBA), is invoked when the file
dialog is called. When invoked, the VBA code changes the
default folder of the file dialog to the predicted folder and then
shows the dialog box.

The original default folder and the folder returned by the file
dialog are also recorded for evaluation.

7. EXPERIMENTS
In this section, we evaluate the performance of FolderPredictor.

7.1 Setup
The data sets for the evaluation came from four different users of
FolderPredictor. Each data set is a list of predictions that
FolderPredictor has made for a user, ordered by time. Each
prediction is marked with the name of the task that was active at
the moment this prediction was made. The information about
these data sets is shown in Table 1. The size of a data set is the
number of predictions it contains.

User Type Data Collection Time Set Size

1 Professor 12 months 1748

2 Professor 4 months 506

3 Graduate Student 7 months 577

4 Graduate Student 6 months 397

The discount factor α is set to 0.85 for all users.

7.2 Average cost
Figure 5 compares the average cost of FolderPredictor and
Windows Default on all four data sets. The cost of Windows
Default is the distance between the original default folder of the
file dialog and the destination folder. In other words, the cost of
Windows Default is the user cost when FolderPredictor is not
running. The figure also shows 95% confidence intervals for the
costs.

Statistical significance testing shows that FolderPredictor surely
reduces the user cost of locating files (P-value = 1.51E-29 in

Table 1. Information about the data sets on which
experiments were conducted

Figure 5. Average cost of FolderPredictor and Windows
Default.

ANOVA). On average, the cost is reduced by 49.9% when using
FolderPredictor.

7.3 Distribution of costs
Figure 6 shows the distribution of different costs on all four data
sets, for both FolderPredictor and Windows Default. We can see
from the figure that

1) About 90% of the FolderPredictor’s costs are less than
three. Only a small fraction of the FolderPredictor’s
costs are very high.

2) Although about half of the Windows Default’s costs are
zero, about 40% of the Windows Default’s costs are
above three.

This means that FolderPredictor not only reduces the overall
average cost of locating files, but also decreases the probability of
encountering very high costs in locating files.

It is interesting to see that Windows Default actually gets the
default folder perfectly correct more than FolderPredictor. This
most likely happens because Windows typically picks a leaf
folder (i.e., the most recently-used folder) as the default folder.
FolderPredictor sometimes plays it safe and picks an ancestor
folder that is more likely to be close to multiple possible folders,
and less likely to be perfect. Thus we see a large number of cases
relative to the windows default where FolderPredictor is one, two,
or three clicks away.

7.4 Learning curve
Machine learning systems usually perform better as more training
data is acquired. In FolderPredictor’s case, the training data are
the user’s opens and saves per task. For each open/save,
FolderPredictor makes a prediction and uses the feedback from
the user to update itself. Therefore, the cost of the folders
recommended by FolderPredictor should decrease as more
predictions are made for a task. To demonstrate this, we present
the learning curve for FolderPredictor in Figure 7.

In the figure, the X-axis is the number of predictions within one
task aggregated into ranges of width 10, and the Y-axis is the
average cost of one prediction within this range. For example, the

first point of the curve shows the average cost of all predictions
between (and including) the 1st and 10th predictions of all tasks.
The figure also shows 95% confidence intervals for the average
costs.

The curve clearly shows that the cost decreases as more
predictions made. The average cost decreases from 1.6 (first 10
predictions) to 0.7 (71st to 80th predictions).

8. RELATED WORK
On the surface, the FolderPredictor approach is similar to some
email classification systems, which predict possible email folders
for each incoming email message based on the text in the
messages [14, 16, 17]. In particular, both MailCat and
FolderPredictor present their top three predicted folders to the
user [17]. However our approach is different in the following
aspects:

1) Our predictions are made for file folders, not email
folders. Predicting file folders should be much more
difficult than predicting email folders. One reason is
that in most situations, there are many more file folders
than email folders. Furthermore, there are many
different types of files under file folders, not only
email messages.

2) Our predictions are based on user activities, not text in
files. Text-based approaches may be applicable for
email foldering, but they are more challenging to apply
to folder prediction. Challenges include (a) tasks with
similar keyword profiles but different folders (e.g., the
class I taught last year versus the class I am teaching
this year), (b) files from which it is hard to extract text,
(c) ambiguity in language, and (d) computation time to
extract and analyze text.

There are also some software tools that help users to quickly
locate their files in the open/save file dialog, e.g. Default Folder X
[18] for Mac and Direct Folders [4] for Windows. These tools
make the open/save file dialog more configurable and
comprehensive to the user. The user can put more shortcuts in the
dialog, as well as define a default folder for each application.
However, these tools cannot adjust the shortcuts and default

Figure 6. Distribution of costs.

Figure 7. Learning curve of FolderPredictor.

folders automatically based on the context of the user’s activities.
On the other hand, our approach makes folder predictions based
on the user activities within each task. Therefore, FolderPredictor
can be a good complement to these tools.

9. DISCUSSION AND CONCLUSION
To reduce user cost, we are applying machine learning to records
of user activity to make useful recommendations. In this paper,
we report on the FolderPredictor, which can reduce the user’s cost
for locating files in folder hierarchies. FolderPredictor applies a
cost-sensitive online prediction algorithm to the user’s activities.
Experimental results show that, on average, FolderPredictor
reduces the cost of locating a file by 50%. Perhaps even more
importantly, FolderPredictor practically eliminates cases in which
a large number of clicks are required to reach the right folder.
Another advantage of FolderPredictor is that it does not require
users to adapt to a new interface. Its predictions are presented
directly in the open/save file dialogs. Users have nothing new to
learn.

The results reported in this paper are likely a substantial
underestimate of the value of the FolderPredictor. One of the key
assumptions of this paper is that the user always knows which
folder they want to get to and where it is located – in such a case,
we have demonstrated that FolderPredictor will get them there
faster. The reality is that people have limited memory and highly
multitasking people often cannot maintain in their memory the
locations of files on all their tasks, particularly tasks that they
have not worked on recently. Thus users may need many more
clicks to “search” for the right folder. By default, Windows only
remembers what was worked on most recently, regardless of task.
FolderPredictor on the other hand remembers multiple folders
used on a task, regardless of how long ago that task was last
active. Thus FolderPredictor’s recommendations can serve as a
reminder of where files related to a task have been stored.

There are other psychological benefits of FolderPredictor that are
harder to evaluate. For example, being placed consistently in the
wrong folder can generate frustration, even if the click distance is
not far. At this stage, all that we have is qualitative evidence of
this. During the deployments of FolderPredictor, multiple subjects
reported becoming “addicted” to FolderPredictor – they were
distressed when they had to use computers that did not have
TaskTracer installed. They also reported that they did a better job
of notifying TaskTracer of task switches in order to ensure that
the FolderPredictor recommendations were appropriate for the
current task.

10. ACKNOWLEDGMENTS
This project was supported in part by the National Science
Foundation under grant IIS-0133994 and by the Defense Advance
Research Projects Agency under grant no. HR0011-04-1-0005
and contract no. NBCHD030010. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation, the Defense Advanced Research
Projects Agency, or the Department of Interior-National Business
Center.

11. REFERENCES
[1] Barreau, D.K. and Nardi, B. Finding and reminding: File

organization from the desktop. ACM SIGCHI Bulletin, 27
(3), 39-43, 1995.

[2] Boardman, R and Sasse, M.A. “Stuff goes into the computer
and doesn't come out”: A Cross-tool Study of Personal
Information Management, In Proceedings of CHI 2004,
ACM Conference on Human Factors in Computing Systems,
CHI Letters 6(1), 2004.

[3] Budzik, J., and Hammond, K. J. User Interactions with
Everyday Applications as Context for Just-in-Time
Information Access. Proceedings of the 2000 International
Conference on Intelligent User Interfaces, ACM Press, 2000.

[4] Code Sector Inc. Direct Folders,
http://www.codesector.com/directfolders.asp

[5] Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J.,
Petersen, K., Salisbury, M., Terry, D. B., Thornton, J.
Extending document management systems with user-specific
active properties. ACM Transactions on Information Systems
18(2): 140-170, 2000.

[6] Dragunov, A., Dietterich, T. G., Johnsrude, K., McLaughin,
M., Li, L. and Herlocker, J. L. Tasktracer: A Desktop
Environment to Support Multi-Tasking Knowledge Workers.
In Proceedings of the 10th International Conference on
Intelligent User Interfaces, pp. 75-82, 2005.

[7] Dumais, S. et al. Stuff I've seen: a system for personal
information retrieval and re-use. In Proceedings of the 26th
Annual International ACM SIGIR conference on Research
and Development in Informaion Retrieval (SIGIR 2003), pp.
72-79, 2003.

[8] Horvitz, E., Breese, J., Heckerman, D., Hovel, D. and
Rommelse, K. The Lumiere Project: Bayesian User
Modeling for Inferring the Goals and Needs of Software
Users. Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, July 1998.

[9] Jones, W., Phuwanartnurak, A. J., Gill, R. and Bruce, H.
Don't Take My Folders Away! Organizing Personal
Information to Get Things Done. In CHI '05 extended
abstracts on Human factors in computing systems, ACM
Press (2005), 1505-1508.

[10] Jul, S. and Furnas, G. W. Navigation in electronic worlds:
Workshop report. ACM SIGCHI Bulletin, 29(2):44-49, 1997.

[11] Ko, A., Aung, H. H., and Myers, B. Eliciting design
requirements for maintenance-oriented IDEs: A detailed
study of corrective and perfective maintenance
tasks, International Conference on Software Engineering, St.
Louis, MO, pp. 126-135, May 15-21, 2005.

[12] Maes, P, Agents that reduce work and information overload.
Communications of the ACM, 37(7): 30 – 40, 1994.

[13] Pietrek, M. Windows 95 System Programming Secrets. IDG
Books Worldwide, Inc., Foster City, CA 94404, USA, ISBN
1-56884-318-6, 1995.

[14] Rennie, J. ifile: An application of machine learning to e-mail
filtering. In Proc. KDD 2000 Workshop on Text Mining,
Boston, MA, 2000.

[15] Rhodes, B. Using Physical Context for Just-in-Time
Information Retrieval. IEEE Transactions on Computers,
Vol 52, No. 8, pp. 1011-1014, 2003.

[16] Segal, R. B. and Kephart, J. O. Incremental learning in
SwiftFile. In Proceedings of the 2000 International
Conference on Machine Learning. Morgan Kaufmann, San
Francisco, 2000.

[17] Segal, R. B. and Kephart, J. O. Mailcat: An intelligent
assistant for organizing e-mail. In Proceedings of the Third
International Conference on Autonomous Agents, 1999.

[18] St. Clair Software. Default Folder X,
http://www.stclairsoft.com/DefaultFolderX/

[19] Stumpf, S., Bao, X., Dragunov, A., Dietterich, T. G.,
Herlocker, J., Johnsrude, K., Li, L., Shen, J. Predicting User
Tasks: I Know What You're Doing! 20th National
Conference on Artificial Intelligence (AAAI-05), Workshop
on Human Comprehensible Machine Learning, Pittsburgh,
PA, 2005.

[20] Teevan, J., Alvarado, C., Ackerman, M.S. and Karger, D.R.
The Perfect Search Engine Is Not Enough: A Study of
Orienteering Behavior in Directed Search. In the ACM
Conference on Human Factors in Computing Systems (CHI
'04), (Vienna, Austria, 2004).

