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Helping computer users rapidly locate files in their folder hierarchies is a practical research problem
involving both intelligent systems and user interface design. This paper reports on FolderPredictor,
a software system that can reduce the cost of locating files in hierarchical folders. FolderPredictor
applies a cost-sensitive prediction algorithm to the user’s previous file access information to predict
the next folder that will be accessed. Experimental results show that, on average, FolderPredictor
reduces the number of clicks spent on locating a file by 50%. Several variations of the cost-sensitive
prediction algorithm are discussed. An experimental study shows that the best algorithm among
them is a mixture of the most recently used (MRU) folder and the cost-sensitive predictions.
Furthermore, FolderPredictor does not require users to adapt to a new interface, but rather
meshes with the existing interface for opening files on the Windows platform.
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1. INTRODUCTION

Computer users organize their electronic files into folder hierarchies in their file
systems. But unfortunately, with the ever-increasing numbers of files, folder hier-
archies on today’s computers have become large and complex [Boardman and Sasse
2004]. With large numbers of files and potentially complex folder hierarchies, lo-
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cating the desired file is becoming an increasingly time-consuming operation. Some
previous investigations have shown that computer users spend substantial time and
effort in just finding files [Barreau and Nardi 1995; Jul and Furnas 1995; Ko et al.
2005]. Thus, designing intelligent user interfaces that can help users quickly locate
desired files has emerged as an important research topic.

Previous research on helping users find files has focused on building Personal
Information Management (PIM) systems in which documents are organized by their
properties [Dourish et al. 2000; Dumais et al. 2003]. These properties include both
system properties, such as name, path and content of the document, and user-
defined properties that reflect the user’s view of the document. In these systems,
users can search for files by their properties using search engines. Although these
search engines can be effective in helping the user locate files, previous user studies
have indicated that instead of using keyword search, most users still like to navigate
in the folder hierarchy with small, local steps using their contextual knowledge as a
guide, even when they know exactly what they were looking for in advance [Barreau
and Nardi 1995; Jones et al. 2005; Jul and Furnas 1995; Teevan et al. 2004].

In this paper, we try to address the file-locating problem from another perspec-
tive, using a system that we call the FolderPredictor. The main idea of Folder-
Predictor is that if we have observations of a user’s previous file access behavior,
we can recommend one or more folders directly to the user at the moment he/she
needs to locate a file. These recommended folders are predictions — the result of
running simple statistical prediction algorithms on the user’s previously observed
interactions with files.

Ideally we want to identify when the user has just started to look for a file and
provide a shortcut to likely choices for the folder containing that file. In today’s
graphical user interfaces, there are several user actions that strongly indicate the
user is or will be initiating a search for a file. These include the display of a file
open/save dialog box or the opening of a file/folder browsing application such as
Windows Explorer. Our approach intervenes both cases.

First, FolderPredictor presents predicted folders by changing the default folder
of the open/save file dialog that is displayed to computer users from within an ap-
plication. It also provides shortcuts to secondary recommendations, in case the top
recommendation is not correct. Second, FolderPredictor presents predicted fold-
ers as buttons inside a Windows Explorer toolbar. Users can easily jump to the
predicted folders by clicking these buttons. An important advantage of FolderPre-
dictor is that it is easier for users to adapt to since it fits into existing UIs and does
not require users to adapt to new interfaces/interactions.

The paper is organized as follows. In the next section, we introduce the Task-
Tracer system that FolderPredictor is built upon. Section 3 presents the user in-
terfaces of FolderPredictor and the instrumentation for presenting predictions in
the open/save file dialog box and the Windows Explorer. Section 4 describes how
folder predictions are made, together with the cost-sensitive prediction algorithm
and several variations of it. Section 5 reports the experimental results from two
user studies: the first one establishes that FolderPredictor reduces the user’s cost
for locating files; the second one compares the performance of different variations
of the basic prediction algorithm. Section 6 discusses some related work in email
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classification. Finally, we conclude the paper in section 7.

2. THE TASKTRACER SYSTEM

FolderPredictor is built upon our TaskTracer system [Dragunov et al. 2005; Stumpf
et al. 2005] — a software system designed to help multi-tasking computer users with
interruption recovery and knowledge reuse. In this section, we briefly introduce the
multi-tasking hypothesis and the data collection architecture of the TaskTracer
system.

2.1 Multi-tasking Hypothesis

FolderPredictor monitors user activity to make predictions to optimize the user
experience. Previous research in intelligent “agents” has explored this kind of
approach [Horvitz et al. 1998; Maes 1994; Rhodes 2003]. However, one of the
challenges faced by these intelligent agents is that users are highly multi-tasking,
and they are likely to need access to different files depending on the exact task they
are performing. For example, a professor may have a meeting with a student for
one hour and then switch to writing a grant proposal. The notes file for the student
meeting and the files for the grant proposal are normally stored in different folders.
After the professor switches to working on the grant proposal, a naive agent might
assume that the student notes are still the most likely choice for prediction, because
they were the most recently accessed. This prediction would fail, because the agent
is not taking into consideration the context of the user’s current task.
Previous work on intelligent agents or assistants has attempted to produce more

context-aware predictions by analyzing the content of the documents that the user
is currently accessing to generate an estimated keyword profile of the user’s “task”
[Budzik and Hammond 2000]. This profile is then employed as a query to locate
web pages with similar keyword profiles. This approach is limited because a) it
cannot recommend resources that do not have text associated with them, b) there
are substantial ambiguities in text, resulting in significant uncertainty in mapping
from text profiles to user tasks, and c) the active window may not contain sufficient
text. In the last case, the agent would be forced to scan recently-accessed documents
to generate text profiles — documents that may have been accessed as part of a
previous task.
In our TaskTracer system, three core hypotheses are made in order to characterize

and utilize the user’s multi-tasking behavior:

(1) All information workers break their work into discrete units to which they can
give names — we call these tasks.

(2) At any moment in time, the user is working on only one task.

(3) Knowledge of the user’s current task will substantially reduce the uncertainty
in predicting what a user is trying to do.

Users define new tasks in the TaskTracer system via an application called the
TaskExplorer. Users can then indicate their current task through three mecha-
nisms, which are shown in Figure 1. Users can switch to the TaskExplorer (Fig-
ure 1(a)) and select the task from their defined hierarchy of tasks, or they can set
the task by clicking on a taskbar widget that appears as a drop-down box at the
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(a) TaskExplorer

(b) TaskSelector

(c) HotTask

Fig. 1. User interfaces for defining tasks and declaring current task in the TaskTracer system.

bottom-right corner of the screen. This taskbar widget is called the TaskSelector
(Figure 1(b)), where the user can switch tasks by manually selecting another task
from the drop-down menu or by typing in the textbox (with auto-completion). The
third mechanism is through a tool called HotTask (Figure 1(c)). It shows a pop-up
menu of tasks that are most-recently worked on, to provide quick access to them.
The user can switch tasks by pressing Ctrl + ∼ and stop at the desired task, just
like switching windows by pressing Alt + Tab in Windows OS.
We also have a system called TaskPredictor, which can automatically detect task

switches by observing the activity of the user [Shen et al. 2009]. If a probable task
switch is detected, the user can be notified, actively or peripherally. Alternatively
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Fig. 2. Publisher-Subscriber architecture in the TaskTracer system.

the task can be automatically changed if task prediction confidence is high enough.

2.2 Data Collection Architecture

The TaskTracer system employs an extensive data-collection framework to obtain
detailed observations of user activities. It instruments a wide range of applica-
tions under the Windows XP operating system, including Microsoft Office (Word,
Excel, PowerPoint and Outlook), Internet Explorer, Adobe Acrobat, GSView and
Notepad. It also instruments some operating system components including the
system clipboard and window focus switches.
Listener components are plug-ins into applications. They capture user interac-

tion events and send them to the Publisher as Events, which are XML strings with
pre-defined syntax and semantics. One event of interest is the TaskBegin event,
which is sent to the Publisher when the user switches tasks. The Publisher stores
these events in its database and also distributes them to Subscriber applications
that need to react to events online. FolderPredictor is one of the subscriber appli-
cations of TaskTracer. This Publisher-Subscriber Architecture is shown in Figure 2.

3. FOLDERPREDICTOR USER INTERFACES

A basic design principle of FolderPredictor is simplicity. This basic principle greatly
influences the UI design — FolderPredictor actually has no independent UI.

3.1 Display Predicted Folders in Existing User Interfaces

FolderPredictor provides three shortcuts to the likely choices for folders when the
user has just started to look for a file (in particular, the display of a file open/save
dialog box or the opening of a Windows Explorer window). FolderPredictor achieves
this by modifying the existing user interfaces.
First, FolderPredictor enhances the well-known Windows Open/Save File Dialog

boxes by adding its predicted folders. Figure 3(a) shows an example Open File
Dialog box enhanced by FolderPredictor. Three predicted folders are shown as the
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(a) Folder predictions in the Open/Save File Dialog box.

(b) Folder predictions in the Windows Explorer window.

Fig. 3. FolderPredictor user interfaces.

top three icons in the “places bar” on the left. The user can jump to any of them
by clicking on the corresponding icon. The top predicted folder is also shown as
the default folder of the dialog box so that the display will show this folder initially.
Mousing over a folder icon will display the full path of that folder.
There are five slots in the places bar. By default, Microsoft Windows places

five system folders (including “My Computer” and “Desktop”) there. Informal
questioning of Windows users revealed that several of these shortcuts were not
commonly used. Thus, we felt it was safe to replace some of them by predicted
folders. By default, FolderPredictor uses three slots for predicted folders and leaves
two system folders. This behavior can be configured by the users if they want to
see more system folders in the places bar.
Second, FolderPredictor adds an explorer toolbar to the Window Explorer win-

dow as shown in Figure 3(b). Three predicted folders are accessible to the user
while browsing inside the Windows Explorer. Clicking on a folder icon will navi-
gate the current Windows Explorer window directly to that folder. Mousing over
a folder icon will display the full path of that folder.
These two interfaces hook into the native Windows environment and carry no
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overhead for the user to learn additional interactions. An important advantage of
FolderPredictor is that it reduces user cost while introducing only minor changes
to the existing user interfaces.

3.2 Implementing the Instrumentation

Microsoft Office applications employ a file dialog from a custom library, while most
other Windows applications use the file dialog from the common Win32 dialog
library provided by the operating system. Thus, FolderPredictor needs three sep-
arate sets of instrumentation: the common Win32 file dialog, the Microsoft Office
file dialog and the Windows Explorer toolbar.

3.2.1 Instrumentation for the common Win32 file dialog. In order to modify the
places bar in the common Win32 dialog, FolderPredictor creates five entries named
“Place0” to “Place4” under the registry key “HKCU\Software\Microsoft\Windows
\CurrentVersion\Policies\ComDlg32\Placesbar\”. These five entries correspond to
the five slots, and their values can be set to the paths of the predicted folders or to
the system-independent numeric IDs (CSIDL) of the system folders.
Modifying the default folder is much more difficult. There is no documented

support for this feature from Microsoft. FolderPredictor modifies the default folder
by injecting an add-in (a .DLL file written in C with embedded assembly lan-
guage) to all applications when they are started. This add-in intercepts Win32 API
calls invoked by the injected application. Common Win32 applications show the
Open/Save file dialog by invoking API calls named “GetOpenFileName” or “Get-
SaveFileName” with the default folder passed as a parameter. Thus, the add-in
can modify the default folder by intercepting the API call, changing the parameter,
and then passing it on. A detailed introduction of API interception technology can
be found in Pietrek [1995].
By intercepting the above two API calls, we can also get the original default

folder of the file dialog and the folder returned by the file dialog. This information
was used in the evaluation of FolderPredictor, which is presented in Section 5.

3.2.2 Instrumentation for the Microsoft Office file dialog. As with the common
Win32 file dialog, the places bar in the Microsoft Office file dialog can be modified by
manipulating registry keys. The pertinent registry key is “HKCU\Software\Micro-
soft\Office\VersionNumber\Common\Open Find\Places\”, inside which Version-

Number should be replaced by the version number of Microsoft Office software
installed on the computer — for example, “11.0” for Office 2003 and “12.0” for
Office 2007.
Microsoft Office uses a file dialog from a custom library, and the API calls in this

library are not exposed. Therefore, API interception technology cannot be used
to modify the default folder of Microsoft Office file dialog. FolderPredictor hooks
into the Microsoft Office file dialog by loading add-ins created by Visual Studio
Tools for Office (VSTO) into Microsoft Office applications. Code in these add-ins,
written in C#.NET, is invoked when the file dialog is called. When invoked, the
code changes the default folder of the file dialog to the predicted folder and then
shows the dialog box.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, May 2010.



8 · Xinlong Bao et al.

3.2.3 Instrumentation for the Windows Explorer toolbar. FolderPredictor’s tool-
bar in the Windows Explorer is a customized COM add-in registered as an ex-
plorer toolbar by adding its GUID under the registry key “HKLM\Software\Micro-
soft\Internet Explorer\Toolbar\”. This add-in implements the IObjectWithSite
interface to initialize and dispose itself. It subscribes to the TaskTracer events that
contain FolderPredictor’s predictions and updates the three folder buttons accord-
ingly.

4. FOLDER PREDICTION ALGORITHMS

The main goal of FolderPredictor is to reduce the cost of locating files. In this
paper, we assume that the user navigates in the folder hierarchy using a mouse, and
the number of “clicks” necessary to reach the destination folder is an appropriate
measure of the cost to the user. One “click” can lead the user from the currently
selected folder to its parent folder or to one of its sub-folders. Our folder prediction
algorithms seek to reduce the number of clicks needed to reach the user’s destination
folder from the predicted folders. We further assume that the system knows about
the current user task (from the user interfaces shown in Figure 1), and predict three
folders to put into the file dialog boxes and Window Explorer toolbar as in Figure 3.
In this section, we first introduce our approach for collecting possible target

folders and assigning weights to them. Then we discuss the idea of including an-
cestor folders as candidate folders for predictions. After that, we introduce our
cost-sensitive prediction algorithm, followed by several variations of it.

4.1 Collecting Possible Target Folders with Weights

Our approach assumes that computer users, for the most part, separate files for
different tasks into different folders. We further assume that, for the most part, the
working set of folders for a task is relatively small. Given such assumptions, the
paths of the files that the user has accessed when working on a task provide useful
information for making folder predictions for future accesses for that task. And
the prediction algorithms that will be introduced later in this section tend to make
task-specific folder predictions — different predictions will be made when the user
is working on different tasks. For example, imagine that, during one day, a stu-
dent opens and saves files under the folders “C:\Classes\CS534\Homeworks\” and
“C:\Classes\CS534\Presentations\” when he is working on a task named CS534.
The next day, when he returns to working on the CS534 task, it should be useful
to recommend these two folders or even the parent folder “C:\Classes\CS534\”.
FolderPredictor generates its predictions by applying a simple statistical predic-

tion method to a stream of observed file open/save events. Each of these events
includes the path of the folder containing the file that was opened or saved. For
each task, FolderPredictor maintains statistics for each folder — how many times
the user opened files from it or saved files to it.
A statistical approach to making folder predictions is important for two reasons:

1) more-frequently-accessed folders should be more probable predictions and 2)
users sometimes access the wrong files, or forget to specify that they have changed
task. In the second case, the misleading events will add to the statistics. If observed
accesses to a particular folder are really just noise, then we are unlikely to observe
repeated future accesses to that folder over time. Thus these folders should have
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relatively low access frequencies. We can use this information to filter out these
folders from recommendations.
Another factor that should be considered is recency. Our hypothesis is that

a user is more likely to need to access recently-accessed folders. For example, a
programmer working on a big project may need to access many different folders of
source code, working on them one by one, but accessing each folder multiple times
before moving on to the next folder. Thus, the folders with older access times
should be quickly excluded from the predictions when the programmer begins to
work on source code under new folders. To achieve this, we have incorporated a
recency weighting mechanism into FolderPredictor. Instead of keeping a simple
count of how many times a folder is accessed, we assign a recency weight wi to
each folder fi. All weights are initially zero. When a file in folder fi is opened or
saved while working on a task, the weights of all the folders that have been accessed
on that task are multiplied by a real number α between 0 and 1, and wi is then
increased by 1. α is called the discount factor. Multiplying by the discount factor
exponentially decays the weights of folders that have not been accessed recently.
When α = 0, only the most recently-accessed folder will have a nonzero weight,
and it will always be predicted. When α = 1, no recency information is considered,
and weights are not decayed. Experiments show that a discount factor in the range
[0.7, 0.9] performs the best. Another benefit of recency weighting is that folders
erroneously identified as relevant due to noisy data are excluded from consideration
quickly, because their weights decrease exponentially.
In the implementation of FolderPredictor, we apply an incremental update method

to maintain the folder weights. The first time FolderPredictor is run on a computer,
historical TaskTracer data, if available, are used to build the initial list of folders
and associated weights for each task. This information is stored in FolderPredic-
tor’s private database. Then FolderPredictor incrementally updates this database
as new open or save events arrive, until the FolderPredictor is shut down. The next
time FolderPredictor is started, it updates its database using only the events that
have been added since the last time FolderPredictor was shut down. This incre-
mental update method helps FolderPredictor keep its data up-to-date without any
perceivable delay in prediction time or startup.

4.2 Predicting Ancestor Folders Is Better Sometimes

After we have collected a list of folders with weights assigned to them, the folder
prediction problem seems trivial: we could just recommend the folder having the
highest weight. However, while that might maximize the chance that we pick the
best possible folder, it may not minimize the average cost in clicks. Recall that
our goal here is to minimize the number of clicks to reach the target folder. To do
this, we may want to sometimes recommend an ancestor folder. We will motivate
the need for this decision by an example. Suppose a student has a folder hierarchy
as shown in the tree structure in Figure 4. His files are stored in the bottom level
folders, such as “Part3” and “Hw2”. When he worked on the CS534 task, he
accessed almost all of the bottom level folders with approximately similar counts.
In this circumstance, predicting a bottom level folder will have a high probability
of being wrong, because all the bottom level folders are equally probable. This will
cost the student several more “clicks” to reach his destination folder — first to go
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CS534

Presentations Homeworks…

Part1 …Part2 Part9 Hw1 …Hw2 Hw7

Fig. 4. An example folder hierarchy. Each node of this tree denotes a folder. Child nodes are
sub-folders of their parent node.
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Fig. 5. Folder tree from a real user. Each node of this tree denotes a folder. Darker nodes denote
the folders that have been accessed more often. The number on each node is the identification
number of the folder. The root node marked with “0” denotes “My Computer”.

up to an ancestor folder and then go back down to the correct child. On the other
hand, predicting a higher level folder, such as “Presentations” or “Homeworks” or
even “CS534”, may not be a perfect hit, but it may reduce the cost in half — the
student only needs to go downward to reach his destination folder.
Figure 5 shows the folder tree of a real user who has been using FolderPredictor

for approximately a month. The folders shown here are only the ones that were
accessed by this user during this period and their ancestors. The darkness of a
node in this tree is proportional to how frequently the corresponding folder was
accessed. There are quite a few cases where predicting the parent folder is better
than predicting a child folder. One example is folder #5. It has 13 child folders,
most of which were accessed. Another example is folder #40. It wasn’t directly
accessed by the user, but it has 6 child folders that were accessed by the user with
approximately equal frequency.
Furthermore, we believe that incorrectly predicting a leaf node will be on average

more frustrating for users than picking an ancestor node that is an incomplete path
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to the desired folder. For example, in Figure 4, if the user is going to access the
leaf folder “Part1” and FolderPredictor predicts the parent folder “Presentations”
and initializes the file open dialog box with it, the user will be able to see the folder
“Part1” when the dialog box is displayed and thus easily jump to it. On the other
hand, if the dialog box is initialized with a leaf node such as “Part2”, it will be
cognitively harder for the user to recognize that “Part2” is a sibling of the target
folder “Part1”, because there is no visual cue of this.

4.3 Cost-Sensitive Prediction Algorithm

Based on the ideas presented above, we developed the following Cost-Sensitive
Prediction (CSP) algorithm shown in Figure 6.

Input: A finite set F = {f1, f2, . . . , fm}, where fi is a folder with a positive weight wi,
1 ≤ i ≤ m.

Output: Three recommended folders a1, a2 and a3(descending in predicted preference).

for i← 1 to m do /* normalize weights to get probability distribution */1

pi = wi/
∑m

j=1 wj ;2

end3

H = ∅;4

for i← 1 to m do /* construct the candidate set by adding ancestor folders */5

Hi ⇐ all ancestors of fi, including fi itself;6

H = Union (H, Hi);7

end8

forall folder h in H do9

forall folder f in F do10

dis[h, f ] = TreeDistance (h, f);11

/* tree distance from h to f, in clicks */

end12

end13

{a1, a2, a3} =14

argmin{a1,a2,a3}

∑m
i=1 pi ×min{dis[a1, fi], dis[a2, fi] + 1.0, dis[a3, fi] + 1.0};

Fig. 6. Cost-Sensitive Prediction (CSP) Algorithm.

The goal of the CSP algorithm is to find three folders from the candidate set that
jointly minimize the expected number of clicks required to reach the user’s target
folder. The candidate set H here consists of the folders that the user has accessed
before (set F) and their ancestor folders. The probability distribution of the user’s
target folder is estimated by normalizing the weights of the folders in F, which are
collected as described in Section 4.1.
In line #14 of the CSP algorithm, the expected cost (in the number of clicks) of

reaching a folder fi from a prediction {a1, a2, a3} is computed as

min{dis[a1, fi], dis[a2, fi] + 1.0, dis[a3, fi] + 1.0},

because of the following facts:

(1) a1 will be set as the default folder of the open/save file dialog. This means
that the user will be in folder a1 with no extra “click” required. Therefore,
dis[a1, fi] is the cost if the user navigates to fi from a1.
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(2) a2 and a3 will be shown as shortcuts to the corresponding folders in the “places
bar” on the left side of the open/save file dialog box (see Figure 3). The user
must execute one “click” on the places bar if he wants to navigate to fi from
a2 or a3. Therefore, an extra cost 1.0 is added. (In fact, this doesn’t affect
which three folders are chosen, but it will order them to make sure a1 is the
best folder to predict.)

(3) We assume the user knows which folder to go to and how to get there by the
smallest number of clicks. Therefore, the cost of a prediction {a1, a2, a3} is the
minimum of dis[a1, fi], dis[a2, fi] + 1.0, and dis[a3, fi] + 1.0.

FolderPredictor runs this algorithm whenever the user switches task and when-
ever the folder weights are updated. The three predicted folders are then displayed
in the file dialog boxes and the Windows Explorer.

4.4 Variations of the CSP Algorithm

During our initial deployment of FolderPredictor, we observed that, although Fold-
erPredictor largely reduces the cost of reaching the right folder, the approach of
predicting ancestor folders that lead to multiple possible folders tends to make the
prediction less “perfect”: the top predicted folder sometimes is close to but not ex-
actly the same as the user’s target folder. This observation inspired us to consider
several variations of the CSP algorithm that may increase the chance of making a
perfect prediction.
The first variation is to make FolderPredictor more “aggressive”: choosing the

most probable folder (the folder with the highest weight among the folders that
the user has accessed before) as the top prediction (a1). The other two predicted
folders are choosen by running the CSP algorithm with the top prediction fixed.
That is, line #14 of the CSP algorithm in Figure 6 is changed to be

{a2, a3} = arg min
{a2,a3}

m∑

i=1

pi ×min{dis[a1, fi], dis[a2, fi] + 1.0, dis[a3, fi] + 1.0}.

By doing this, the top predicted folder will tend to be a “leaf” folder that contains
the files that the user is most-likely to access. Therefore, it may increase the chance
that FolderPredictor makes a perfect prediction, but once the top predicted folder is
wrong, it may cost more clicks for the user to reach the target folder. For example,
in the scenario shown in Figure 4, the first prediction of this “aggressive” CSP
algorithm will be the leaf folder with the highest weight, while the first prediction
of the original CSP algorithm is probably one of the parent folders.
The second variation is to make use of the most recently-used (MRU) folder.

Microsoft Windows usually initialize the file open/save dialog boxes with the MRU
folder. This approach works fairly well and in our experiments presented in the next
section, it perfectly hits the target folder about 53% of the time. Therefore, it’s
worth combining it into our predictions — let the MRU folder be the top prediction
(a1) and choose the other two predicted folders by running the CSP algorithm with
the top prediction fixed.
There are two different types of MRU folder: the system-wide MRU folder and

the application-specific MRU folder. The application-specific MRU folder is the
last folder accessed by the user using the same application. For example, the
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application-specific MRU folder for Microsoft Word is the folder containing the
file that was most recently opened or saved by Microsoft Word. We store one
application-specific MRU folder for each application. On the other hand, the
system-wide MRU folder is the last folder accessed by the user, no matter which
application was used. It is hard to say which type of MRU folder is better, so we
implemented both and compared them in our experiments.
The third variation is slightly different from the second one. A potential problem

with always predicting the MRU folder as the top prediction is that when there is
a task switch, the MRU folder may be a bad choice. Therefore, we want to apply
the original CSP algorithm to predict for the first file access within a task episode
(period between two task switches), and apply the second variation described above
to predict for the remainder of the task episode. A “task episode” for task T is the
segment of time in which the user is working on task T. It starts with a “TaskBegin”
message, when the user indicates he/she is starting to work on task T, and it ends
with another “TaskBegin” message when the user switches to a different task.
Table I summarizes the folder prediction algorithms we have described above.

Table I. Summary of the folder prediction algorithms.

Name Description

CSP Cost-Sensitive Prediction algorithm described in Section 4.3.

ACSP Use the most-probable folder as top prediction and run CSP to

get the other two folders.

SMCSP Use the system-wide MRU folder as top prediction and run CSP
to get the other two folders.

SMCSP2 Use CSP for the first file access within a task episode, and use
SMCSP for the remainder of the task episode.

AMCSP Use the application-specific MRU folder as top prediction and
run CSP to get the other two folders.

AMCSP2 Use CSP for the first file access of each application within a task
episode, and use AMCSP for the remainder of the task episode.

5. EXPERIMENTAL EVALUATIONS

To measure the effectiveness of FolderPredictor and compare the performance of
different folder prediction algorithms, we have conducted two user studies. The goal
of the first user study was to measure how many clicks FolderPredictor with the CSP
algorithm saves, by comparing FolderPredictor’s predictions with Windows Default

(without folder predictions). The goal of the second user study was to compare
the performance of the various folder prediction algorithms listed in Table I. One
thing worth mentioning is that, although FolderPredictor needs to know the user’s
current task, the task switches specified by the users are noisy by nature. We do
not ask the study participants to clean them up, and simply make folder predictions
using the noisy current task labels.

5.1 Comparing the CSP Algorithm with Windows Default

The first user study was conducted at Oregon State University. The participants
were two professors and two graduate students. The TaskTracer system (with
FolderPredictor) was deployed on the computers that the participants performed
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Fig. 7. Average cost of FolderPredictor and Windows Default, in number of clicks required to
reach the target folder for each file open/save.

their daily tasks on. Every participant ran the TaskTracer system for a fairly
long time (from 4 months to 1 year). The algorithm employed in this version of
FolderPredictor was the CSP algorithm. The discount factor α was set to 0.85.
At the end of this user study, we collected four data sets as shown in Table II.

Each data set is a list of predictions that FolderPredictor made for a user, ordered
by time. Each prediction is marked with the name of the task that was active at
the moment this prediction was made. The Set Size is the number of predictions
contained in the data set.

Table II. Information about the data sets collected in the first user
study. Set size is the number of Open and SaveAs events where a
prediction is made and its effectiveness is measured.

# User Type Data Collection Time Set Size

1 Professor 12 months 1748

2 Professor 4 months 506

3 Graduate Student 7 months 577

4 Graduate Student 6 months 397

5.1.1 Average Cost. Figure 7 compares the average cost (in “clicks”) of the
FolderPredictor and the Windows Default on all four data sets. The cost of the
Windows Default is the distance between the original default folder of the file dialog
and the destination folder. In other words, the cost of Windows Default is the user
cost when FolderPredictor is not running. The figure also shows 95% confidence
intervals for the costs.
Statistical significance testing shows that FolderPredictor surely reduces the user

cost of locating files (P-value = 1.51×10−29 using an ANOVA F-test). On average,
the cost is reduced by 49.9% when using FolderPredictor with the CSP algorithm.

5.1.2 Distribution of Costs. Figure 8 shows a histogram of the number of clicks
required to reach the target folder under the Windows Default and the FolderPre-
dictor. We can see from the figure that:
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Fig. 8. Histogram of the number of clicks required to reach the target folder: Windows Default
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(1) About 90% of the FolderPredictor’s costs are less than or equal to three clicks.
Only a small fraction of the FolderPredictor’s costs are very high.

(2) Although about half of the Windows Default’s costs are zero (meaning that the
user is in the right folder at the moment the file dialog box is opened), about
40% of the Windows Default’s costs are above three.

This means that FolderPredictor not only reduces the overall average cost of
locating files, but also decreases the probability of encountering very high costs in
locating files.
It is interesting to see that Windows Default actually gets the default folder

perfectly correct more than FolderPredictor. This most likely happens because
Windows typically picks a leaf folder (i.e., the most recently-used folder) as the
default folder. FolderPredictor sometimes plays it safe and picks an ancestor folder
that is more likely to be close to multiple possible folders and less likely to be
perfect. Thus we see a large number of cases relative to the Windows Default
where FolderPredictor is one, two, or three clicks away. In fact, this discovery
inspired us to come up with algorithm variations described in Section 4.4.

5.1.3 Learning Curve. Intelligent systems usually perform better as more train-
ing data is acquired. In FolderPredictor’s case, the training data are the user’s
opens and saves per task. For each open/save, FolderPredictor makes a prediction
and uses the user’s actual destination folder to update itself. Therefore, the cost
of the folders recommended by FolderPredictor should decrease as more predic-
tions are made for a task. To evaluate this, we computed the learning curve for
FolderPredictor shown in Figure 9.
In the figure, the X-axis is the number of predictions within one task aggregated

into ranges of width 10, and the Y-axis is the average cost of one prediction within
this range. For example, the first point of the curve shows the average cost of all
predictions between (and including) the 1st and 10th predictions of all tasks. The
figure also shows 95% confidence intervals for the average costs.
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Fig. 9. Learning curve of FolderPredictor. The average number of clicks per file open/save
decreases as FolderPredictor sees more file accesses with a task.

We want to point out that FolderPredictor does not need a separate training
phrase, it benefits the user from the beginning. For a new task, the first predic-
tion is the same as the Windows Default, because FolderPredictor knows nothing
about this task yet. But as the user opens/saves files while working on this task,
FolderPredictor predicts and learns simultaneously. The curve shows that the cost
decreases as more predictions made. The average cost decreases from 1.6 (first 10
predictions) to 0.7 (71st to 80th predictions).

5.2 Comparing Different Folder Prediction Algorithms

The second user study was conducted at Intel Corporation. The participants were
knowledge workers (managers and administrative assistants) who perform their
daily work on the computers. During a 4-week period, a software system called
Smart Desktop (Beta 3), which is a commercialized version of TaskTracer, was
running on their computers. Smart Desktop incorporates a version of the Folder-
Predictor but, more importantly, it collects all of the information needed to evaluate
alternative folder prediction algorithms. At the end of the study, we ran an analy-
sis program on the data to evaluate the cost of each folder prediction algorithm by
simulating the algorithm at each File Open/SaveAs event in time order.
Seven participants completed the study. One of them is excluded from the anal-

ysis because the number of file opens/saves is too low (< 20) in his data. Table III
shows the information about the data sets collected from the remaining 6 partici-
pants. The set size is the number of File Open/SaveAs events (i.e., the number of
evaluation points) in the data set.

5.2.1 Average Cost of Different Algorithms. Figure 10 compares the average
cost (in “clicks”) of different folder prediction algorithms over all study participants.
The figure also shows 95% confidence intervals for the costs.
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Table III. Information about the data sets
collected in the second user study. Set size is
the number of Open and SaveAs events where
a prediction is made and its effectiveness is
measured.

# Data Collection Time Set Size

s1 4 weeks 138

s2 4 weeks 99

s3 4 weeks 395

s4 4 weeks 146

s5 4 weeks 102

s6 4 weeks 352
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Fig. 10. Average cost of different folder prediction algorithms over all Intel participants, in number
of clicks required to reach the target folder for each file open/save.

There are several interesting observations from this figure:

(1) The ACSP algorithm performs worse than the original CSP algorithm. This
means that predicting the most probable folder as top prediction actually in-
creases the overall cost of the prediction.

(2) Algorithms using an MRU folder as the top prediction (SMCSP, SMCSP2,
AMCSP, AMCSP2) have better performance than the original CSP algorithm.

(3) The SMCSP2/AMCSP2 algorithms are worse than the corresponding SM-
CSP/AMCSP algorithms. This is a little surprising, because we thought that
the MRU folder would not be good for the first file access after a task switch.
One possible explanation is that different tasks may share the same folders,
especially for two tasks that are worked on sequentially in time. Another fac-
tor is that the users may not declare task switches accurately. Anecdotally,
users report that they often don’t realize that they have forgotten to declare a
task switch until they perform an Open or SaveAs and notice that the folder
predictions are from the ”wrong” task.

(4) The AMCSP algorithm has the best performance among all the algorithms.
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Fig. 11. Average cost of different folder prediction algorithms for each participant, in number of
clicks required to reach the target folder for each file open/save.

The differences among the average costs of these algorithms are generally not
statistically significant. However, the difference between the average cost of the
AMCSP algorithm (the best one) and that of the original CSP algorithm is statis-
tically significant with p-value = 0.05 assessed with a paired t-test. On average, the
AMCSP algorithm further reduces the cost of FolderPredictor by 10%, compared
with the original CSP algorithm.

5.2.2 Comparison of Algorithms across Different Users. Different users behave
differently in folder organization and file access. We wanted to investigate how
the folder prediction algorithms compare with each other for different participants.
Figure 11 illustrates the average cost of the folder prediction algorithms across
different participants. In this figure, the cost of the CSP algorithm is used as
baseline, and the values shown are the change in the number of clicks compared to
the CSP algorithm. The horizontal axis lists the ID’s of our study participants.
The figure clearly shows that the AMCSP algorithm is consistently the best al-

gorithm across all participants. Note that all of the other observations we discussed
in Figure 10 are also valid for each study participant.

5.2.3 Distribution of Costs. To investigate why the AMCSP algorithm outper-
forms the CSP algorithm, we compared the distribution of costs of these two algo-
rithms, as shown in Figure 12.
As illustrated in the figure, both algorithms have the desired property of reducing

the probability of encountering very high costs in locating files. The main advantage
of the AMCSP algorithm is that it makes more perfect predictions (zero clicks) than
the CSP algorithm, which validates our hypothesis that using the MRU folder as the
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top prediction can increase the chance of making perfect predictions. If we sum up
the number of file accesses with cost of 0, 1 and 2 clicks, this value is approximately
equal for the two algorithms. Therefore, the reason why the AMCSP algorithm
outperforms the CSP algorithm is that the AMCSP algorithm replaces some of
CSP’s 1- and 2-click predictions with perfect predictions.

6. RELATED WORK

On the surface, the FolderPredictor approach is similar to some email classification
systems that predict possible email folders based on the text of incoming email mes-
sages [Rennie 2000; Segal and Kephart 1999; 2000]. In particular, both MailCat
and FolderPredictor present their top three predicted folders to the user [Segal and
Kephart 1999]. However our approach is different. There are many different sources
of information that one could use to predict the resource that the user wants to
access, e.g., content similarity, activity patterns, link structures, etc. Our approach
focuses on user activities (given task information), whereas many of the email clas-
sification systems focus on textual content. Building a text-based classification
system for file folder prediction might be more challenging because:

(1) for most users, there are many more file folders than email folders, with much
more complex hierarchy;

(2) there are many different types of files under file folders and it is hard to extract
text from some of them;

(3) latency introduced by extracting and analyzing texts from files are not desired
in a real time application like FolderPredictor;

(4) files with similar keywords are not necessarily in the same folder, or even close
to each other (e.g., the class I taught last year versus the class I am teaching
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this year).

There are also some software tools that help users to quickly locate their files in
the open/save file dialog boxes, e.g. Default Folder X [2009] for Mac and Direct
Folders [2009] for Windows. These tools make the open/save file dialog boxes more
configurable and comprehensive to the user. The user can put more shortcuts in the
dialog, as well as define a default folder for each application. However, these tools
cannot adjust the shortcuts and default folders automatically based on the context
of the user’s activities. On the other hand, our approach makes intelligent folder
predictions based on the user activities within each task. Therefore, FolderPredictor
can be a good complement to these tools.

7. DISCUSSION AND CONCLUSION

To reduce user cost for accessing files, we applied intelligent prediction methods to
records of user activity to recommend file system folders. We described the Fold-
erPredictor, which reduces the user’s cost for locating files in folder hierarchies.
FolderPredictor applies a cost-sensitive online prediction algorithm to the user’s
activities. Experimental results show that, on average, FolderPredictor reduces the
cost of locating a file by 50%. Perhaps even more importantly, FolderPredictor
practically eliminates cases in which a large number of clicks are required to reach
the right folder. We also investigated several variations of the cost-sensitive pre-
diction algorithm and presented experimental results showing that the best folder
prediction combines an application-specific MRU folder with two folders computed
by our cost-sensitive prediction algorithm. An advantage of FolderPredictor is that
it does not require users to adapt to a new interface. Its predictions are presented
directly in the open/save file dialogs. Users are able to easily adapt to exploit these
predictions.
The folder prediction algorithms presented in this paper (CSP and its variants)

are very simple yet effective. We have considered investigating more complex ma-
chine learning techniques, but there are two reasons that make us believe our current
approach is more appropriate. First, simple, fast and easy-to-understand algorithms
are critical to designing and deploying real-world applications, like FolderPredictor,
that require instantaneous predictions. Second, our simple algorithms learn quickly
and typically reduce the number of clicks to only 1 or even less than 1 (see the learn-
ing curve in Figure 9). This means there is not much room for improvement. Hence,
we don’t see any benefit to implementing more complex algorithms.
The results reported in this paper are likely an underestimate of the value of the

FolderPredictor. One of the key assumptions of this paper is that the user always
knows which folder they want to get to and where it is located — in such cases,
we have demonstrated that FolderPredictor will get them there faster. The reality
is that people have limited memory, and highly multitasking users often cannot
maintain in their memory the locations of files for all of their tasks, particularly
tasks that they have not worked on recently. Thus users may need many more
clicks to “search” for the right folder. By default, Windows only remembers what
was worked on most recently, regardless of task. FolderPredictor on the other hand
remembers multiple folders used on each task, regardless of how long ago the task
was last active. Thus FolderPredictor’s recommendations can help remind the user
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where files related to a task have been stored.
There are other psychological benefits of FolderPredictor that are harder to evalu-

ate. For example, being placed consistently in the wrong folder can generate frustra-
tion, even if the click distance is not far. At this stage, all that we have is qualitative
evidence of this. During the deployments of FolderPredictor, multiple participants
reported becoming “addicted” to FolderPredictor— they were distressed when they
had to use computers that did not have TaskTracer installed. They also reported
that they did a better job of notifying TaskTracer of task switches in order to ensure
that the FolderPredictor recommendations were appropriate for the current task.
One interesting future research direction is to create an “unsupervised” version

of FolderPredictor. The FolderPredictor discussed in this paper is “supervised” —
the user is asked to declare what task they are working on at each point in time.
However, we find from user feedback that declaring the current task is the biggest
overhead of the TaskTracer system. Therefore, we have started to investigate ways
on making folder predictions without knowing what task the user is working on.
Initial results look very promising — our “unsupervised” FolderPredictor shows
performance close to the “supervised” version. The ultimate goal is to create stan-
dalone FolderPredictor software that runs silently in the background and provides
folder predictions to the user without requiring any additional user interaction.
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