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Abstract 
Knowledge workers spend the majority of their working 
hours processing and manipulating information. These users 
face continual costs as they switch between tasks to retrieve 
and create information. The TaskTracer project at Oregon 
State University is investigating the possibilities of a 
desktop software system that will record in detail how 
knowledge workers complete tasks, and intelligently 
leverage that information to increase efficiency and 
productivity. Our approach combines human-computer 
interaction and machine learning to assign each observed 
action (opening a file, saving a file, sending an email, 
cutting and pasting information, etc.) to a task for which it is 
likely being performed. In this paper we report on ways we 
have applied machine learning in this environment and 
lessons learned so far. 

Introduction 
Knowledge workers spend the majority of their working 
hours processing and manipulating information. These 
users face continual costs as they switch between tasks to 
retrieve and create information. The information may be 
encoded in many different formats: documents, software 
code, web pages, email messages, phone conversations. 
The cost to the user of finding information may be 
cognitive: workers may have to remember exactly where 
they were in a chain of logic, or why they decided to take 
their most recent action on a task. The cost may also lie in 
the manual interaction needed to access the necessary 
resources (e.g., documents and/or software tools).  
 Knowledge workers organize their work into discrete 
and describable units, such as projects, tasks or to-do 
items. The TaskTracer project at Oregon State University 
is investigating the possibilities of a desktop software 
system that will record in detail how knowledge workers 
complete tasks, and intelligently leverage that information 
to increase efficiency and productivity. Our goal is to 
develop five capabilities: more task-aware user interfaces 
in the applications we use daily, more efficient task-
interruption recovery, better personal information 
management, workgroup information management and 
within-workgroup workflow detection and analysis. Our 
system operates in the Microsoft Windows environment, 
tracking most interactions with desktop applications as 
well as tracking phone calls. Our approach combines 

human-computer interaction and machine learning to 
assign each observed action (opening a file, saving a file, 
sending an email, cutting and pasting information, etc.) to a 
task for which it is likely being performed. Once we have 
the past actions structured by task, we can provide 
substantial value to the knowledge worker in assisting in 
their daily task routines. 
 There is a substantial set of research challenges that 
must be faced in order to successfully develop the 
TaskTracer system with these capabilities. These 
challenges include user interface design, machine learning, 
privacy and workplace culture, data collection, systems 
architecture, and data modeling. In this paper we report on 
ways we have applied machine learning in this 
environment and lessons learned so far. 

Task-tracking and task-related systems  
There have been previous efforts to build environments 
that enable knowledge workers to manage multiple 
concurrent activities, which we call tasks, and use 
knowledge of those activities to improve productivity. 
Workspaces (Bannon et al. 1983) can define tasks that 
comprise information resources (usually documents and 
tools for their processing) that are necessary to accomplish 
the goal associated with the task. Some systems work on 
the idea of physically separating tasks by requiring users to 
create project-specific folders, or set up a virtual desktop 
for each particular task (Card and Henderson 1987, 
Robertson et al. 2000). Other systems work at a more 
abstract level by organizing task-specific workspaces using 
“filters” applied to communication threads (Bellotti et al. 
2003), streams or networks of documents (Freeman and 
Gelernter 1996, Dourish et al. 1999). 
    To be of assistance to a user, an agent (whether it is a 
computer system or a human associate) must “know” what 
the user is currently doing. In addition to the resources 
used in a task, it also seems reasonable to record users’ 
actions performed on those resources. The rationale behind 
this is that to have the correct comprehension of the task 
context for some resources we must consider in which way 
and for what reason they were accessed. For instance, the 
same document (say, a text file) may be opened for two 
completely different purposes: 1) for reading and 2) for 
authoring. Various systems (Fenstermacher and Ginsburg 



2002, Kaptelinin 2003, Canny 2004) address this issue by 
aiming at recording as much information as possible about 
users’ activities when they interact with computers. These 
activity records are obtained via monitoring the computer 
file system, input devices, and applications.  
     Our software, TaskTracer, employs an extensive data-
collection framework to obtain detailed observations of 
user interactions in the common productivity applications 
used in knowledge work (Dragunov et al. 2004). Currently, 
events are collected from Microsoft Office 2003, Microsoft 
Visual Studio .NET, Windows XP operating system and 
phone calls. In this framework, TaskTracer collects file 
pathnames for file create, change, open, print and save, text 
selection, copy-paste, windows focus, web navigation, 
phone call, clipboard and email events. Phone call data 
collection uses Caller Id to collect names and phone 
numbers of callers. In addition, speech-to-text software 
collects the user’s — but not the caller’s — phone speech. 
All events are captured as individual EventMessages which 
contain: 
• Type: Event type. For example, TaskTracer captures 

window focus, file open, file save, web page navigation, 
text selection, and many other events on both the 
applications and the operating system levels.  

• Window ID: Window handle for windows, zero 
otherwise.  

• Listener Version: Changes every time we change or add 
to the EventMessages the Listener can send and process. 
This allows backward compatibility as we change our 
data capture.  

• Listener ID, the source of the EventMessage: MS Office 
pro-grams, file system hooks, user, clipboard, phone, 
etc.  

• Body Type, Body: Event or document data in XML 
format.  

• Time: Time the event fired.  
 
 Instead of using unsupervised clustering to discover 
tasks (Canny 2004), users of TaskTracer manually specify 
what tasks they are doing in the initial stage of data 
collection, so that each action of the user (a User Interface 
event) will be tagged with a particular task identifier to 
train predictors. We believe that we can learn to reliably 
predict the users’ current task and task switches, and thus 
we can create complete and detailed records of what has 
been done on every task (past and present). All 
EventMessages are stored in a database in raw form so that 
researchers can analyze the history of user events. A 
variety of learning models can be tested on identical data 
sets. We are currently researching learning models based 
on the event data for predicting the current task of the user, 
for detecting when the user has changed tasks and for 
reducing the cost of accessing resources whilst carrying out 
a task.  
 

Plan Recognition and Task Prediction 
There is a range of plan recognition tasks that people have 
addressed (Ourston and Mooney 1990, Davison and Hirsh 
1998, Bauer 1999). For example, some work has been 
carried out to recognize that someone is executing an 
instance of a particular plan and suggest the next action. A 
plan often has flexibility but the user is executing a specific 
structured activity (e.g., taking money out of an ATM, 
calibrating a glucose meter).  
 What we are addressing is supporting an unstructured 
activity (e.g. writing the AAAI submission, putting 
together a research study).  These activities typically have 
no or only a loosely fixed structure and are highly 
distinctive to the individual knowledge worker. Hence, the 
way that we use the term “task” is a user-defined concept 
name, instead of a sequence of user actions (as an aside, 
we would call this sequence an “event stream”).  
 These two approaches vary mostly in their degree of 
sequential/hierarchical structure in the activity.  We are not 
suggesting that these two approaches are mutually 
exclusive, indeed, much can be learned from plan 
recognition.  
 It could be argued that no effective user support is 
possible without a deep structure that can be used to 
explain the observed user behavior. However, we are not 
trying to explain the user behavior itself since the user is 
very competent already in deciding what to do (and what to 
do next). What we are trying to achieve instead is the 
reduction of the costs that knowledge workers face when 
they carry out their tasks by keeping task-related 
information organized. Costs may be physical/mechanical 
such as the number of user interface interactions (mouse, 
keyboard, etc) needed to achieve a goal. Costs may 
sometimes be in time. There are also cognitive costs, such 
as the remembering where a piece of information was filed 
or learning any new features. In addition to the “actual” 
costs that workers encounter while pursuing their tasks, we 
must also be particularly aware of the perceived costs of 
using any features.  

TaskPredictor and FolderPredictor 
Automatic translation of interaction histories into project 
contexts is very challenging to implement (Kaptelinin 
2003). If users must indicate task switching manually (as 
currently implemented in TaskTracer), this will create 
additional cognitive and physical costs for users, since they 
will have to 1) mentally structure their activities and 2) 
perform additional actions not directly related to the 
current goals — select tasks from lists, type in task titles 
and descriptions, etc. We believe that we can reduce these 
costs by combining probabilistic machine learning 
approaches with appropriate user interfaces that maximize 
online learning whilst reducing the cost on the user.  
 There are three main challenges to the machine learning 
approach. Firstly, accuracy must be exceptionally high to 
be acceptable to the user. Secondly, manual task switches 



have fuzzy boundaries. For example, if a user has finished 
editing a document on a task and wants to edit another 
resource on a different task, making a manual task switch 
may introduce noise: should it be changed while they are 
still viewing the current document but before launching the 
new one or after closing the old one and opening the new 
one? Secondly, users may achieve the same task in 
different ways, hence doing something on the same task 
can generate different event streams. Conversely, different 
tasks may utilize the same objects, i.e. events and 
resources. 
 TaskPredictor is a component in TaskTracer that 
predicts the currently active task and sets the current task 
to the predicted task on the user’s behalf, thereby reducing 
the cost to the user to switch tasks explicitly (see Figure 1, 
a & b). Online learning is utilized to update the model if 
the user corrects the predicted task. 

(a) 

(b) 
Fig. 1 – TaskPredictor predicts tasks on windows focus 
switches 
 
 

he probabilistic framework we are employing in 

Window 

e have evaluated this approach by testing on a dataset 

T
TaskPredictor can be outlined as follows. Let observation 
O = (ot-k ,…, ot-1 , ot ) be an ordered set of observations 
from time t – k to t, where k is 0 if we ignore the temporal 
relationship and only consider the current observation. Our 
goal is to get a probabilistic distribution about the current 
task given O: P(Taskt = taski | ot-k ,…, ot-1 , ot).  
 Feature construction occurs as follows. A 
Document Segment (WDS) consists of the time period in 
which a window has the focus and this window is looking 
at a single document. It is assumed that the user is on a 
single task in the same WDS and a prediction is only 
necessary when the WDS changes. We make a prediction 
when navigation events occur in Internet Explorer, window 
focus switches, when a new application is started, or a 
resource is opened or saved. The source for the features 
comes from window titles, file pathnames, website URLs, 
and document content. Each source is segmented into a set 
of “words”, where each word corresponds to a binary 
variable wi in the feature vector. We utilize a stopword list 
to eliminate irrelevant features. We then use a Naïve 
Bayesian classifier to learn P(w|taski) and P(taski) and 
make predictions by using Bayes rules to calculate P(taski| 
w).  
    W
from a team member. This data set, collected over a period 
of three months, contained 81 different tasks, 11455 WDS 
and 1239 features. If we predict on every WDS (θ = 0, 
where θ is the normalized probability of a task that is 
computed from the Naive Bayes model), using 
unprocessed data, we achieve an accuracy of 25%. Once 
“meaningless” events – events that happen in all tasks (e.g. 
open/save dialogs, blank web pages) or events not related 
to any tasks (e.g. a file used by an application all the time) 
– are removed, the accuracy is further increased to 60% 
(see Fig. 2).  
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Fig. 2 – TaskPredictor precision results after removing

 we abstain from making a prediction when we are not 

 
“meaningless” data 
 
If
confident (when we are below a threshold θ of the 
normalized probability of a task) we further increase the 
level of correct predictions to 85% (θ = 0.9) (see Fig. 3). 



However, whether or not 50% coverage is good enough to 
the user needs to be investigated, but not every WDS is a 
task switch so an abstention might be the right answer. 
 We have compared Logistic Regression and Dynamic 

by applying feature selection by using 

Bayesian Networks (DBNs) to the Naïve Bayes (NB) 
approach. If we always make a prediction (that is, the 
threshold is 0), then Logistic Regression significantly 
outperforms its generative analog the Naïve Bayes 
classifier. However, with other thresholds their 
performance is on a par and, since the training of Logistic 
Regression is more expensive, the Naïve Bayes approach is 
preferable. DBNs can capture the temporal relationship, 
since DBNs use all available observations. Common sense 
tells us that it therefore should be more suitable for 
TaskTracer. However, in our situation, it does not result in 
increased accuracy over Naïve Bayes. One possible reason 
for this is that in most sequential problems, people make 
predictions based on the whole information (past, current 
and future observations), but in TaskTracer we can only 
use the information up to a certain point (past and current 
observations). Again, according to Occam's Razor, since 
DBNs and NB have similar accuracy, and the learning and 
inference of DBN are much more expensive than NB, we 
prefer NB. 
 Finally, 
information gain, we appear to have pushed the accuracy to 
95%.   
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Fig. 3 – TaskPredictor precision results using threshold

Once we know the current task, we leverage that 
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information to support user activity. We have implemented 
a FolderPredictor to reduce the user cost of accessing 
resources given a certain task. Knowledge workers often 
have different folders for each task. In our approach we 
sort the folders based on the frequency in which user has 
opened/saved files before and use exponential decay to 
prioritize most recently accessed directories. For the 
recency weighting in FolderPredictor a parameter named 
DiscountFactor is used, which is a real number between 0 
and 1. Each time the predictions are updated, the old 
predictions are multiplied by this DiscountFactor. We 

tuned this parameter by experiment, and found that 0.7 
works best on the test data.  
 We employ these predic
initial folder and the places bar of the Windows Open and 
Save As dialog box, as shown in Fig. 4. At the moment the 
usefulness of the prediction is evaluated by the cost to the 
user in reaching the desired file i.e. the distance between 
predicted folders and the user's destination folder. We find 
that, on average, the desired folder is roughly one click 
away from the set of folders returned by FolderPredictor.  
 On the surface, the TaskTracer approach is similar to
MailCat or SwiftFile (Segal and Kephart 1999, 2000) 
which predicts folders in which to store emails. MailCat 
employs TF-IDF by training on emails filed previously 
under folders by the user. However, our approach is 
different in the following aspects: 
• A prediction is made for any M

not just emails.  
Appropriate fold
We train on resources being opened and saved under 
particular tasks (a resource can be associated with more 
than one task) instead of documents being explicitly 
filed under folders by the users. 
Our approach hooks directly in
environment; it is transparent to the user and therefore 
carries no overhead cost for the user to learn additional 
interactions.  

 
Fig. 4 – FolderPredictor integrated into the Open dialog 
box 



Discussion, Future Work and Conclusion 
TaskPredictor, FolderPredictor and the associated 
TaskTracer system have been used by our research team 
for more than six months. FolderPredictor in particular 
appears to be the most cost-saving component in this 
environment. We are in the process of conducting usability 
evaluations “in the wild” to gain feedback from real 
knowledge workers and hope to publish our findings in due 
course. 
 While we are addressing the machine learning 
component we realize that there are still some issues, 
particularly on making machine learning more 
comprehensible by humans. Firstly, we need to address the 
user’s perceived loss of control when predictions are made. 
This suggests that we need to investigate the 
appropriateness of different prediction strategies related to 
user cost. For example, one such strategy would be to only 
offer these predictions as suggestions to the user. However, 
additional cost is then placed on the user in choosing the 
appropriate prediction. Another approach that we 
considered is to make predictions only when the accuracy 
is high enough. The approach that we currently take makes 
predictions when the predictions are of high confidence 
and abstains from predictions when the confidence is low. 
It appears that good results can be achieved with this 
approach but further testing will confirm the acceptability 
by real users.  
 Secondly, we are considering how we can make the 
reasons for why a prediction was made more 
comprehensible. Currently, we are projecting a simple 
system model to the user that explains why a certain 
prediction is made. It is based on what resources were 
accessed in episodes and when manual task switches 
happened. The user can relate to the fact that they “forgot” 
to switch the task and therefore associated certain activities 
with the wrong task. We can exploit a mental model of 
how task switching occurs by providing a timeline or 
simple list of events associated with tasks to provide an 
explanation to the user of why predictions were made and 
what they are based on. Instead of using a rule-based 
explanation of predictions we present the grounds of a 
prediction informally. 
 Lastly, we are looking at how feedback from the user 
can be utilized by the learning components. We have to 
realize that users are “lazy” positive example givers; we 
have addressed this by making users give us implicit 
examples as they complete their tasks. We are already 
using online learning to enable corrections to affect the 
how predictions are made. More interestingly, users are 
often not 100% sure themselves or may provide different 
answers in different contexts. Users are often able to tell 
the system what it is not, but not what it is. For example, 
consider a suggested list of tasks where the user indicates 
that it is none of these but does not specify the correct one. 
How this should be used by learning components is still an 
unresolved problem. Furthermore, we are looking at 
getting the user to provide examples: it seems that the more 
useful things TaskTracer does, the more motivation the 

user will have for telling us their tasks. For example, if 
FolderPredictor is used all the time, it gives implicit 
feedback by displaying the wrong prediction if the user 
forgets to change the current task. So maybe the way to 
motivate the user is just to keep providing useful features 
and rewarding them for their costs. Of course, there is the 
danger that the user may have no idea at first that such 
rewards are in store.  It may look instead like a bunch of 
costs for no particular reason.  If that happens, the user 
could ignore the system's "faulty feedback" (or turn it off). 
 To reduce user costs we are looking at using machine 
learning approaches. In this paper we have discussed 
TaskPredictor and FolderPredictor, that can reduce user 
cost. What is important is that both components use user 
input to update their model. Users can easily correct the 
task or folder predictions and TaskPredictor and 
FolderPredictor use this information for on-line learning. 
We have achieved some initial encouraging results and are 
currently working on refining our approaches. This will 
include extensive user testing and development of our 
machine learning algorithms. 
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