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� OVERVIEW

The study of machine learning methods has progressed greatly in the past few years� This progress
has taken many directions� First
 in the area of inductive learning
 a new formal de�nition of
learning introduced by Leslie Valiant has provided the foundation for several important theoretical
results� Second
 a number of new learning algorithms have been developed
 and existing algorithms
have been improved� Third
 the collection of methods that perform so	called explanation	based
learning have addressed the problem of speeding up the performance of problem	solving programs�
Finally
 the philosophical foundations of machine learning have been clari�ed�

The goal of this article is to present the major results in each of these four directions� We
begin with a discussion of the philosophical foundations
 since these will provide a framework for
the remainder of the article� This is followed by sections that describe �a� theoretical results
 �b�
practical inductive learning algorithms
 and �c� explanation	based learning�

� PHILOSOPHICAL FOUNDATIONS

How can �learning� be de�ned� This question has troubled researchers in the �eld for many years�
While it is not necessary to have a clean de�nition in order to conduct research
 the lack of a
workable de�nition makes it hard to evaluate learning methods to determine whether they succeed�

Recently
 two new approaches have been taken to de�ning �learning�
 one introduced by Diet	
terich ������ and one by Valiant �������

Dietterich ������ reduces the problem of de�ning �learning� to the problem of de�ning �knowl	
edge�� Given a satisfactory de�nition of �knowledge�
 �learning� can be de�ned as an increase in
�knowledge�� Depending on which de�nition of �knowledge� one chooses
 one obtains di�erent re	
sults�

The de�nition preferred by Dietterich is the following� An agent �i�e�
 a person or a program�
knows a fact F if the agent has been told F or if the agent can logically infer F from its other
knowledge� No limit is placed on the computational resources �e�g�
 CPU time and memory space�
consumed in performing these inferences� This form of knowledge can be called �knowledge in prin	
ciple� or �deductive closure knowledge�� The logical inferences are assumed to preserve correctness
�i�e�
 they are monotonic
 deductive inferences��

Given this de�nition of knowledge
 learning �i�e�
 increases in knowledge� can occur under two
circumstances� First
 learning occurs when the agent is told a new fact F that it did not know�
Second
 learning occurs when the agent makes an �inductive leap� and chooses to believe some fact
F that is not entailed by its existing knowledge�

For example
 suppose an agent knows that a poker hand containing three Jacks is superior to
a hand containing only two Queens� Suppose the agent also knows that a poker hand containing
three Tens is superior to a hand containing two Eights� Learning occurs when the agent jumps to
the conclusion that any hand containing three cards of rank R� is superior to any hand containing
at most two cards of rank R�� In short
 a system that formulates general rules by analyzing speci�c
examples is one kind of learning system�

Notice that according to this de�nition
 learning does not take place if a system discovers a
more e�cient way to infer a fact that it already knows in principle� Consequently
 simple speed
ups �e�g�
 such as those obtained by caching inferences� do not count as learning� However
 it also
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Figure �� The error between the correct fact F and �F �

has the unfortunate consequence that a program that knows the rules of chess would also know the
optimal strategy�

Another de�nition of knowledge is the notion of �explicit belief� de�ned by Fagin and Halpern
����
�� According to this de�nition
 an agent has a combination of implicit beliefs �these correspond
to the deductive closure de�nition of �knowledge� discussed above� and explicit beliefs �i�e�
 beliefs
the system is �aware� of�� Logical �monotonic� inference can make implicit beliefs explicit� In a
particular program
 one might de�ne a belief to be explicit if it is stored in a database or if it can be
computed within a �xed time limit� In any case
 learning takes place
 according to this de�nition

whenever new explicit beliefs are found� Hence
 this de�nition does include simple speed	ups �e�g�

those produced by traditional programming language compilers� as forms of learning� It also does
not draw a distinction between learning as e�ciency improvement and learning as the acquisition
of a new rule from examples�

By considering these various de�nitions of �knowledge� and �learning
� we can develop a three	
part taxonomy of learning systems� �a� systems that receive no inputs and simply become more
e�cient over time �speed�up learning�
 �b� systems that receive new knowledge via inputs but
otherwise perform no inductive leaps �learning by being told�
 and �c� systems that perform inductive
leaps to acquire knowledge that was not previously known either explicitly or implicitly �inductive
learning��

These de�nitions provide a basis for evaluating learning systems� Speed	up learning systems
should be evaluated by measuring the e�ciency improvement that they produce� Systems that
learn by being told can be evaluated according to their ability to exploit the information they
receive� Finally
 inductive learning systems must be evaluated according to the correctness of the
knowledge that they produce� This is di�cult
 however
 because inductive learning systems can
provide no guarantee of correctness unless they cease to make inductive leaps�

Leslie Valiant�s probabilistic framework �Valiant ����� provides a solution to this last di�culty�
Valiant says that a system has learned a fact F if it can guarantee with high probability that F
is approximately correct� This de�nition relaxes the goal of guaranteed correctness in two ways�
First
 the fact F is permitted to be only approximately correct� Second
 with low probability

the learning system may produce an hypothesis F that is totally incorrect� It turns out that this
de�nition provides us with a rigorous criterion for evaluating learning programs�

To understand what it means to be �approximately correct�
 let us view a fact F as a relation
over some universe U of objects� In other words
 F is the subset of objects �or tuples� in U that
make F true� Intuitively
 a second fact �F is approximately correct if the symmetric di�erence F� �F
is small �this corresponds to the shaded region in Figure ��� In other words
 F and �F agree over
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most of the universe U �
Valiant elaborates this de�nition by taking into consideration the possibility that some elements

of U are more important than others� He considers �F to be approximately correct to the degree
that it matches F on the more important elements of U � Speci�cally
 Valiant assumes that the
learning system is going to be confronted with a series of �performance trials�� In each trial
 it
will be presented an element u � U and asked whether u � F is true� Let P be an unchanging
probability distribution over U such that P �u� is the probability that u will be selected in any
given trial� Then error�F� �F � is de�ned to be the probability that the learning system will make a
mistake in any given performance trial� Formally


error�F� �F � �
X

u�F� �F

P �u��

The fact �F is approximately correct if error�F� �F � is less than �
 where � is a small constant called
the accuracy parameter�

Now that we understand what it means to be �approximately correct
� we must consider the
second part of Valiant�s de�nition� The learning system that produces �F may itself make mistakes
from time to time and produce hypotheses that are not approximately correct� In particular
 the
learning system is usually constructing �F by analyzing a collection of training examples� A training
example is a pair of the form hu� ci
 where u � U and c � � if u � F and c � � otherwise� If those
examples do not provide a representative sample of F 
 then the learning program may come up
with a bad guess
 �F �

By making some assumptions about the training sample
 we can bound the probability that
the learning system will produce an �F with error greater than �� Speci�cally
 let us assume that
the training sample is constructed by independently drawing m examples from U according to the
same probability distribution P �u� that will be used during the performance trials� We say that
the learning system is probably approximately correct �PAC� if

Pr
h
error�F� �F � � �

i
� ��

where � is called the con�dence parameter and where the probability is taken over all training
samples of size m�

What Valiant has done is to incorporate a notion of evidential support into the de�nition of
�learning�� According to Valiant
 a program is not considered a learning program if it makes a lucky
leap and comes up with a correct fact� Instead
 Valiant requires that the learning program consider
a large enough set of training examples so that its hypothesis �F is statistically justi�ed�

This is a major breakthrough because it provides a standard against which to compare induc	
tive learning programs� It also provides a basis for proving results concerning the computational
tractability of various learning problems� These results are the topic of the next section�
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� THEORETICAL RESULTS ON LEARNING FROM EXAM�

PLES

As we have seen above
 the goal of learning from examples is to infer
 from a set S of training
examples
 a probably approximately correct fact �F �� In principle
 this is impossible
 because the
knowledge of whether F �u� is true for one point in U tells us nothing about the values of F at any
other points in U�it merely tells us the value of F at u� When people are confronted with such
problems
 they circumvent them by imposing some assumptions concerning F � They may assume

for example
 that F can be represented as a Boolean conjunction over the features describing U �
Or they may prefer the simplest hypothesis �F consistent with the training examples� This amounts
to assuming that F can be represented simply in some given language�

These assumptions concerning F are called the �bias� of the learning system
 and they provide
it with some means for making a guess concerning the identity of F � There are two general forms
of bias� restricted hypothesis space bias and preference bias�

Under the restricted hypothesis space bias
 the learning system assumes that the correct concept
F is a member of some hypothesis set H 
 where H contains only some of the �jU j possible concepts
over U � This is usually implemented by assuming that F has some restricted syntactic form �e�g�

as a Boolean conjunction��

Under the preference bias
 the learner imposes a preference ordering over the set of hypotheses
and attempts to �nd the �best� hypothesis �F according to this ordering� In this article
 we will
assume that the preference ordering is a total ordering
 and we will let index I� �F � denote the
numerical position of �F in this ordering� The preference bias can be implemented by attempting
to �nd a consistent hypothesis �F of low index�

��� Restricted Hypothesis Space Bias

The �rst major result that we will discuss concerns concept learning with a restricted hypothesis
space bias� Suppose that we are given m training examples labeled according to the correct con	
cept F � The examples are drawn independently from U according to some unknown probability
distribution P �u�� We are also given a restricted hypothesis space H � Our algorithm will attempt
to �nd an hypothesis �F � H that is consistent with all m training examples� Assuming that such
an �F can be found
 what is the probability that it has error greater than ��

To answer this question
 let us de�ne the set Hbad � fh�� � � � � hlg to be the set of hypotheses in
H that have error greater than �� What we will compute is the probability that
 after m examples
have been processed
 there is some element of Hbad that is consistent with the training examples� If
this probability is small enough
 then �with high probability� the only hypotheses remaining in H
that are consistent with the training examples are hypotheses with error less than �� Hence
 if our
learning algorithm �nds a consistent hypothesis �F � H 
 that hypothesis is probably approximately
correct�

Let us begin by considering a particular element h� � Hbad� What is the probability that h� is
consistent with one randomly	drawn training example� It is just the probability that the training
example was drawn from the region of U outside the shaded area of Figure �� This probability
is greatest when error�F� h�� � �� That is
 h� is as good as possible without being approximately

�This terminology is informal� Technically� we should say that �F is produced by an algorithm that is probably
approximately correct�
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correct� So
 the probability that h� is consistent with a single training example is no more than
�� ��

It follows that the probability that h� is consistent with allm randomly	drawn training examples
is no more than ��� ��m� We will write this as Pm�consist�h��� � ��� ��m�

Now let us consider all of the hypotheses in Hbad� What is the probability that afterm examples
there is some element of Hbad that has not been eliminated from consideration� This is

Pm �consist�Hbad�� � Pm �consist�h�� � � � � � consist�hl�� �

Because the probability of a disjunction �union� of several events is no larger than the sum of
the probabilities of each individual event


Pm �consist�Hbad�� � jHbadj � ��� ��m�

In the worst case
 Hbad � H �i�e�
 there are no approximately correct hypotheses in H�� Hence


Pm �consist�Hbad�� � jH j��� ��m�

Now that we have an expression for the probability that �F is not approximately correct
 we
can set this equal to � and solve for m to obtain a bound on the number of training examples to
guarantee that �F is probably approximately correct�

jH j��� ��m � �

is true if and only if

m �
�

� ln��� ��

�
ln
�

�
� ln jH j

�
�

But since � � � ln��� �� over the interval ��
��
 it su�ces that

m �
�

�

�
ln
�

�
� ln jH j

�
�

This gives us Theorem ��

Theorem �� �Blumer et al ���
� Let H be a set of hypotheses over a universe U � S be a set of
m training examples drawn independently according to P �u�� �� � � �� then if �F � H is consistent
with all training examples in S and

m �
�

�

�
ln
�

�
� ln jH j

�

then the probability that �F has error greater than � is less than ��

Using this theorem
 we can obtain bounds on the number of examples required for learning in
various hypothesis spaces� Consider
 for example
 the set of hypotheses Hconj that can be expressed
as simple conjunctions of n Boolean variables� There are �n such hypotheses
 since in a conjunction

each variable may appear negated
 un	negated
 or it may be missing� Applying Theorem �
 we see
that if

m �
�

�

�
ln
�

�
� n ln �

�
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Table �� Sizes of various concept description languages

Hypothesis Space Size

Boolean conjunctions �n

k	term	DNF �O�kn�

k	DNF �O�nk�

k	CNF �O�nk�

k	DL �O�nkk lgn�

LTU �O�n��

DNF ��
n

then any hypothesis consistent with the examples will be PAC� Furthermore
 the number of exam	
ples required grows only linearly with the number of features�

Likewise
 consider the set of hypotheses that can be expressed as linear threshold functions over
n Boolean variables
 x�� � � � � xn� A linear threshold function is described by a vector of real	valued
weights
 w�� � � � � wn and a real	valued threshold
 �� It returns a � if

Pn
i��wixi � �� In �Muroga

��
��
 it is shown that jH j � �n
�

� Hence
 if

m �
�

�

�
ln
�

�
� n� ln �

�

then any linear threshold function consistent with the training examples is PAC�
Table � shows the hypothesis space sizes for several popular concept representations� The class

k	term	DNF contains Boolean formulas in disjunctive normal form with at most k disjuncts �i�e�
 a
k	term disjunction where each term is a conjunction of unlimited size�� The class k	DNF contains
Boolean formulas in disjunctive normal form in which each conjunction has at most k variables
�i�e�
 a disjunction of any number of conjunctive terms
 but each conjunction is limited to length
k�� A class analogous to k	DNF is the class k	CNF� Each formula in k	CNF is a conjunction of
clauses �disjunctions�� Each clause contains at most k variables� The class k	DL is the class of
decision lists introduced by Rivest ����
�� A decision list is an ordered list of pairs of the form
h�F�� C��� � � � � �Fi� Ci�� � � � � �T� Cl���i� Each Fi is a Boolean conjunction of at most k variables
 and
each Ci indicates the result �either � or ��� A decision list is processed like a lisp COND clause�
The pairs are considered in order until one of the Fi is true� Then the corresponding Ci is returned
as the result� By convention
 the condition for the last pair in the list
 Fl��
 is always true �T ��
The class LTU contains all Boolean functions that can be represented by linear threshold units�

For comparison
 we also show the full class DNF
 consisting of any arbitrary Boolean expression
in disjunctive normal form� DNF is capable or representing any of the Boolean functions�

Note that for �xed k
 each of these classes �except DNF� requires only a polynomial number of
training examples to guarantee PAC learning according to Theorem ��

Theorem � gives results for �nite hypothesis spaces� However
 there are many applications in
which hypotheses contain real	valued parameters
 and consequently there are uncountably many
hypotheses in these spaces� In spite of this
 it is still possible to develop learning algorithms for
these cases� Consider for example the universe U consisting of points on the real number line� An
hypothesis F � U describes some subset of these points� Suppose we restrict our hypotheses to be






single closed intervals over the real line �i�e�
 our hypotheses have the form �a� b��� One algorithm
for discovering closed intervals would be to let a be the value of the smallest positive example and
b be the value of the largest positive example� How many training examples are needed to ensure
that this algorithm will return an interval that is probably approximately correct�

Answers for problems such as this can be obtained using a measure of bias called the Vapnik	
Chervonenkis dimension �VC	dimension�� The idea behind the VC	dimension is that although
an hypothesis space may contain uncountably many hypotheses
 those hypotheses may still have
restricted expressive power� Speci�cally
 we will say that a set of hypotheses can completely �t a
collection of examples E � U if
 for every possible way of labeling the elements of E positive or
negative
 there exists an hypothesis in H that will produce that labeling� The VC	dimension will
be de�ned to be the size jEj of the largest set of points that H can completely �t� This will provide
a measure of the expressive power of H �

To continue with the real	interval illustration
 let us consider the set of two points E � f�� �g�
There are four di�erent ways that these two points can be labeled as positive or negative
 corre	
sponding to four di�erent training sets�

S� � fh�� �i� h�� �ig
S� � fh�� �i� h�� �ig
S� � fh�� �i� h�� �ig
S	 � fh�� �i� h�� �ig

For each possible labeling
 there is a real interval that will produce that labeling�

S� can be labeled by ��� ��
S� can be labeled by ��� ��
S� can be labeled by ��� ��
S	 can be labeled by ��� ��

Hence
 the hypothesis space Hint consisting of closed intervals on the real line can completely �t
the set E� Indeed
 it is easy to see that any set of two points can be �tted completely by Hint�

However
 consider the set of points E� � f�� �� �g� The hypothesis space Hint cannot completely
�t this set� In particular
 there is no hypothesis in Hint that can label E� as follows�

S
 � fh�� �i� h�� �i� h�� �ig

This is because any interval containing � and � will also contain ��
Since the VC	dimension of H is de�ned as the largest set of points that H can completely �t


it is easy to see that VC	dim�Hint� � ��
A more interesting example concerns linear threshold units over arbitrary points in n	dimensional

Euclidian space� A linear threshold unit is equivalent to a hyperplane that splits Rn into two half
spaces� If a given set of training examples can be separated such that the positive examples are all
on one side of the hyperplane and the negative examples are all on the other side
 then the training
examples are said to be linearly separable� When n � �
 it is easy to see that half	spaces �in this
case
 half	planes� can completely �t any set of three points� However
 half	planes are unable to
completely �t any collection of four points �i�e�
 some labelings of the points will not be linearly
separable�� In general
 the VC	dimension for linear threshold units over n	dimensional Euclidian
space is n � ��

�



Intuitively
 the VC	dimension is proportional to the logarithm of the size of the e�ective hy	
pothesis space� Indeed
 the following theorem shows how Theorem � can be extended using the
VC	dimension�

Theorem �� �Blumer et al ������ A set of hypotheses H is PAC learnable if

m �
�

�
max

�
� lg

�

�
� � � V Cdim�H� lg

��

�

�

and the algorithm outputs any hypothesis �h � H consistent with S�

Using Theorem �
 we can tighten the bound on the number of examples required for learning
linear threshold units to O��

�
�n ln �

�
� �

�
���

Perhaps the most interesting application of Theorem � �and its relatives� is to the problem of
training feed	forward multi	layer neural networks� A di�culty with the practical application of
these networks is to decide how large the network should be for each application� If the network is
too large
 it is easy to �nd a setting of the weights that is consistent with the training examples�
However
 the resulting network is unlikely to classify additional points in U correctly�

Baum and Haussler ������ consider feed	forward networks of N linear threshold units and W
weights� They show that if the weights can be set so that at least a fraction �� �

� of the m training
examples are classi�ed correctly and if

m � O

�
W

�
log

N

�

�
�

then the network is PAC with � � � � � and � � � � O�e��m��
The VC	dimension turns out to be a fundamental notion� It permits us to exactly characterize

the set of learnable concepts
 and it allows us to derive a lower bound on the number of examples
needed for learning� These results are given in the following two theorems�

Theorem �� �Blumer et al ����� A space of hypotheses H is PAC learnable i� it has �nite
Vapnik�Chervonenkis �VC� dimension��

Theorem �� �Ehrenfeucht et al ������ Any PAC learning algorithm for H must examine

 

�
�

�

�
ln
�

�
� V Cdim�H�

��

training examples�

��� Preference Bias

With Theorems �!�
 we have a fairly complete understanding of learning with a restricted hypoth	
esis space bias� Let us now brie"y turn our attention to the problem of learning with a preference
bias� Recall that a preference bias establishes an ordering over all of the hypotheses in H � We
will let the index I�F � be the numerical position of hypothesis F in this ordering� By de�nition

hypotheses with smaller index values I�F � will be considered simpler than hypotheses with higher
index values�

�It is possible to learn concept classes having in�nite VC�dimension if the number of training examples is permitted
to vary with the complexity of the concepts in the hypothesis space� See Linial et al ��	
	��
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Now suppose we have an excellent learning algorithm that works as follows� For any given set
of training examples S
 it �nds the hypothesis �F � H of lowest index that is consistent with S�
It turns out that if the number of examples in S is su�ciently large and if the hypothesis found
by the algorithm has su�ciently small index
 then we can be quite con�dent that �F is probably
approximately correct� The reason is that for su�ciently large S
 it is unlikely that we could have
found such a simple �i�e�
 small index� hypothesis �F that is consistent with the training examples�

Following �Blumer et al ���
�
 we can formalize this by letting H � be the space of hypotheses
of index less than or equal to I� �F �� The set H � can be viewed as the e�ective hypothesis space for
our preference	bias algorithm for this particular sample S
 and therefore
 from Theorem �
 we can
conclude that the number of examples required is

�

�

�
ln
�

�
� ln I� �F �

�
�

This result can be generalized to allow the learning algorithm to output an hypothesis �F that
has small
 but not minimal
 index� See Blumer et al ����
� for details�

The famous bias of Occam�s Razor �prefer the simplest hypothesis consistent with the data� can
thus be seen to have a mathematical basis� If we choose our simplicity ordering before examining the
data
 then a simple hypothesis that is consistent with the data is provably likely to be approximately
correct� This is true regardless of the nature of the simplicity ordering
 because no matter what
the ordering
 there are relatively few simple hypotheses� Therefore
 a simple hypothesis is unlikely
to be consistent with the data by chance�

Another way of thinking about this result is to view learning programs as data compression
algorithms� They compress the training examples into an hypothesis
 �F 
 by taking advantage of
some prede�ned encoding scheme �i�e�
 simplicity ordering�� If the data compression is substantial
�i�e�
 the number of bits needed to represent the hypothesis is much less than the number of training
examples�
 then the hypothesis is likely to be approximately correct�

��� Noisy Data

All of the results described above have assumed that the training examples are complete and correct�
Unfortunately
 there are many applications where the training data are incomplete and incorrect�
For incorrect training examples�that is
 examples that are incorrectly classi�ed�all of the results
discussed above can be generalized as follows� Instead of trying to �nd a concept �F � H that is
consistent with all of the training examples
 it su�ces to �nd an �F that is consistent with fraction
� � �

� of the training examples� Theorems �!� still apply under these conditions with some slight
adjustments �see Appendix � of Blumer et al ������

��� Computational Complexity

In our review so far
 we have only considered what is called the sampling complexity�that is
 the
number of training examples required to guarantee PAC learning� There is a second aspect of
learning that has also been investigated within the Valiant framework
 namely
 the computational
complexity of �nding an hypothesis in H consistent with the training examples�

If we look again at Theorem �
 we see that the number of examples required for learning is
proportional to the log of the size of the hypothesis space� This means that with a linear number
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Table �� Computational complexity of �nding a consistent hypothesis�

Hypothesis Space Time Complexity

Boolean conjunction Polynomial
k	term	DNF NP	hard
k	DNF Polynomial
k	CNF Polynomial
k	DL Polynomial
LTU Polynomial
k	�NN NP	hard

of examples
 we can learn an exponential number of hypotheses� The most trivial algorithm for
�nding an hypothesis consistent with the examples would simply enumerate each hypothesis in
H and test it for consistency with the examples� However
 when there are exponentially many
hypotheses
 this approach will require exponential time� Therefore
 the challenge is to �nd ways of
computing a consistent hypothesis by analyzing the training examples more directly� Our goal is
to �nd algorithms that require time polynomial in the number of input features n and in �

�
and �

�
�

Table � shows the computational complexities for the best known algorithms for several hy	
pothesis spaces� Following Valiant
 we say that an hypothesis space H is polynomially learnable
if �a� only a polynomial number of training examples are required �as a function of n� �

�
� and �

�
�

and �b� a consistent hypothesis from H can be found in time polynomial in n� �
�

 and �

�
� Hence


from the table
 we can see that conjunctions
 k	DNF
 k	DL
 and the linear threshold units are
all polynomially learnable� The hypothesis space k	�NN consists of feed	forward neural networks
containing two layers of linear threshold units �often called three	layer networks�� The �rst layer
of units �usually called the �hidden layer�� contains exactly k units� There are robust proofs that
this hypothesis space is not polynomially learnable �Judd ���

 ����# Blum $ Rivest ����# Lin $
Vitter ������

As an example of a polynomial	time learning algorithm
 consider the following algorithm for
learning Boolean conjunctions� We will represent a conjunction C as a list of Boolean variables or
their negations� Given a collection S of training examples
 we �nd the �rst positive example p� in
that list and initialize C to contain all of the variables �or their negations� present in that positive
example �if there are no positive examples
 we exit and guess the null concept
 x� 	 
x��� Then for
each additional positive example pi
 we delete from C any Boolean variables appearing in pi with
a di�erent sign than they appear in C� After processing all of the positive examples
 we check all
of the negative examples to make sure that none of them are covered by C� Finally
 we return C
as the answer�

As an example
 consider the following positive examples�

h�� � � ��� �i
h�� � � ��� �i
h�� � � ��� �i

After processing the �rst example
 C � f
x�� x�� x	�
x
g# After processing the second example

C � fx�� x	�
x
g# after the third example
 C � fx��
x
g� This algorithm requires O�nm� steps�
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Surprisingly
 smaller hypothesis spaces are not always easier to learn� For example
 the space
k	term	DNF is a proper subspace of the space k	CNF
 yet k	CNF is polynomially learnable but
k	term	DNF is not �Pitt $ Valiant ������ Similarly
 the space of Boolean threshold units �i�e�

linear threshold units in which the weights are all Boolean� is not polynomially learnable
 but LTU
�which properly contains it� is� One explanation for this is that in some cases
 by enlarging the
hypothesis space
 it becomes easier to �nd an hypothesis consistent with the training examples�
The larger space provides more freedom to choose the syntactic form of the hypothesis� Another
explanation is that di�erent representations
 even of the same space
 have di�erent computational
properties� Hence
 some representations for concepts are easier to relate to the representation of
the training examples�

These observations indicate that if we want to prove that learning a concept class is computa	
tionally intractable
 we need to show that it is intractable regardless of the representation employed
by the learning algorithm� In other words
 suppose the correct concept F can be represented by
a k	term	DNF formula� Although the problem of �nding a k	term	DNF formula consistent with a
training sample for F is NP	complete
 we know that in polynomial time we can �nd an �F repre	
sented as an equivalent k	CNF formula� Hence
 we can construct an algorithm that can learn every
concept in k	term	DNF by using hypotheses represented in k	CNF�

This point is particularly important for classes
 such as k	�NN
 where although it is intractable
to �nd a consistent hypothesis using k hidden units
 it might be easier to �nd a consistent hypothesis
using k� � k hidden units� If k� is only moderately bigger than k
 the number of training examples
required to guarantee PAC learning would still be polynomial� In general
 if s is the number of bits
required to represent the correct hypothesis F 
 then any algorithm that can represent �F using p�s�
bits �where p is some polynomial� will still have polynomial sample complexity�

The question of whether every concept in k	�NN can be learned by �nding �in polynomial time�
a concept in k�	�NN �where k� � p�k� for some polynomial p� is open� However
 for two other
important concept classes
 the analogous questions have been answered negatively�

Let DFA�s� be the space of concepts that can be represented as deterministic �nite state
automata of size � s� If S is a training sample for a concept F � DFA�s�
 then the problem of
�nding an hypothesis �F � DFA�p�s�� consistent with S
 for some polynomial p is NP	complete
�Pitt $ Warmuth ������

Similarly
 if BF �s� is the space of concepts that can be represented as boolean formulas of size
� s and if S is a training sample for a concept F � BF �s�
 then the problem of �nding an hypothesis
�F � BF �p�s�� consistent with S
 for some polynomial p is as hard as factoring integers �Kearns
$ Valiant ����
 ������ In fact
 this result can be strengthened to apply to any representation
language in which �F has size � p�s��

An important way of looking at these results is from the perspective of Occam�s Razor� Consider
the class of all Boolean formulas and suppose we adopt the bias of preferring shorter formulas� The
problem of �nding the smallest Boolean formula consistent with a set of training examples has long
been known to be NP	complete �Gold ��
��� However
 we might settle for an approximation to
Occam�s Razor�we could accept any Boolean formula that is of size � p�s�
 where s is the size
of the smallest Boolean formula consistent with the data� If we assume that factoring is hard

these results imply that there is no polynomial time algorithm for �nding these �nearly simplest�
hypotheses�

In short
 it appears that there are �simple� concepts �i�e�
 that can be represented by polynomial	
sized �nite state machines or regular expressions� that cannot be discovered by any learning al	
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gorithm using any representation� Nature may be simple
 but �in the worst case� no computing
device can reveal that simplicity in polynomial time �unless P � NP 
 of course��

��� Summary

The Valiant theory allows us to quantify the role of bias in inductive learning� The main implication
of this theory is that there are no e�cient
 general purpose inductive learning methods� Speci�cally

in order to learn using a polynomial number of training examples
 by Theorem � the VC	dimension
must be a polynomial function of n� �

�
� and �

�
� The VC	dimension of the entire space of ��

n

Boolean
functions over n variables is clearly �n
 so it is impossible to learn arbitrary Boolean functions using
only a polynomial number of examples�

On the positive side
 the theory states conditions under which we can determine
 with high
con�dence
 whether a given learning algorithm has succeeded� For a given bias
 the theory says
that if a consistent hypothesis �F � H can be found and the number of examples m is large enough

then �F is probably approximately correct� Unfortunately
 the hypothesis space H must constitute
only a small fraction of the possible hypotheses
 and therefore any particular learning algorithm
is unlikely to succeed for a randomly chosen concept F � U � Indeed
 it is because H is a small
fraction of the space of possible hypotheses ��U� that we can have statistical con�dence in the
results of the learning algorithm�

Hence
 for a particular application
 the vocabulary of features chosen to represent training
examples and hypotheses must allow a consistent �F to be found� In many applications �Michalski
$ Chilausky ����
 Quinlan et al �����
 this has turned out to be easily achieved
 but there are
others where it has been quite di�cult �Quinlan ������

� RECENT DEVELOPMENTS IN PRACTICAL LEARNING

ALGORITHMS

There have been many interesting developments in practical learning algorithms�too many to
permit a complete review here� Therefore we will focus on three signi�cant directions� �a� improve	
ments to decision tree induction algorithms
 �b� the back	propagation algorithm for multi	layer
feed	forward neural nets
 and �c� �hybrid� algorithms�

��� Improvements to Decision Tree Methods

For many years
 the most popular concept learning algorithm has been Quinlan�s �����
 ����a� ID��
ID� is a top	down recursive algorithm for constructing a decision tree� Points in U are represented
as feature vectors �i�e�
 a point u � U is represented by hf��u�� f��u�� � � � � fk�u�i
 where the fi are
Boolean features�� Here is a sketch of the basic algorithm�

ID��S�
If S contains only positive examples
 return �
Elseif S contains only negative examples
 return �
Else choose the best feature fi to be the root of the tree

partition S into
S�
i � fs � Sjfi�s� � �g and
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S�
i � fs � Sjfi�s� � �g�

return tree with root fi
 left subtree ID��S
�
i �� and

right subtree ID��S�
i ��

The best feature fi is the feature with highest �information gain�� This is a measure of how
much information about the correct class F �s� is obtained by knowing fi�s�� It can be computed
as follows� First
 let n � jfs � SjF �s� � �gj and p � jfs � SjF �s� � �gj� These simply
count up the number of positive and negative examples in the training set S� Then
 compute
nij � jfs � S

j
i jF �s� � �gj and pij � jfs � S

j
i jF �s� � �gj� With these
 de�ne

I�pij � nij� � �
pij

pij � nij
lg

pij
pij � nij

�
nij

pij � nij
lg

nij
pij � nij

�

Then the information gain can be de�ned as

gain�fi� � I�p� n��
�X

j��

pij � nij
p� n

I�pij� nij��

There are three major shortcomings of this algorithm� First
 as the decision tree �and the
recursive calls� become deeper
 the number of training examples in the set S becomes so small that
it is di�cult to choose the root feature fi wisely� In other words
 because the algorithm operates
by recursively subdividing the training set
 eventually the decisions made by the algorithm lack
statistical support�

The second shortcoming is that decision trees do not provide very compact representations for
Boolean concepts in disjunctive normal form �DNF�� For example
 the smallest decision tree for
the concept �f� 	 f�� � �f	 	 
f
 	 f�� contains � nodes
 because the expression f	 	 
f
 	 f�
appears twice as shown in Figure �� This is sometimes called the �replication problem��

The third shortcoming is that the algorithm is a batch algorithm that requires all of the training
examples in order to operate�

There are two techniques that have been developed to repair these shortcomings� The �rst two
problems can be solved by converting the decision tree to a collection of production rules� This
conversion process allows us to simplify the decision tree and express DNF concepts compactly� The
third problem�that ID� is a batch algorithm�has been solved by ID�
 which is an incremental
implementation of ID�� We describe these two techniques brie"y�

The procedure for converting decision trees to production rules is described in Quinlan ����
a��
It contains three steps� First
 each leaf node in the decision tree is converted into an equivalent
rule of the form

f� 	 f� 	 � � � 	 fk � class�

where the fi are the ancestors of the leaf node in the tree and the class is either � or ��
Then
 each of these rules is analyzed to prune useless conditions from the left	hand side� Each

condition fi is evaluated to determine whether it makes a statistically signi�cant contribution to
the rule� If not
 then it is eliminated
 and the analysis is repeated on the remaining conditions�

Once each rule has been pruned in this way
 the entire collection of rules is analyzed to remove
whole rules whose presence does not signi�cantly improve the performance of the rule set on the
training examples� Let R be the collection of rules
 and let r be an element of R� De�ne c to be
the number of training examples incorrectly classi�ed by R � frg that are correctly classi�ed by

��



Figure �� Decision tree illustrating the replication problem� The right branch at each node is taken
if fi � ��

��



R� This is the number of correct classi�cations that r creates� Let d be the number of training
examples incorrectly classi�ed by R that are correctly classi�ed by R� frg� The advantage of r is
c� d
 the net change in the number of training examples correctly classi�ed by introducing r� The
algorithm repeatedly selects the rule with lowest advantage and deletes it from R as long as the
advantage is not positive�

Quinlan presents data showing that this procedure is capable of dramatically reducing the
complexity of the learned concept and simultaneously improving the accuracy of the concept on
unseen examples� For instance
 in the domain of endocrinology �speci�cally discordant assay�
 the
average number of nodes in the decision tress produced by �� independent runs of ID� was �����
This procedure converted those trees into an average of ��� rules and reduced the average error
rate on unseen cases from ���% to ���%�

Utgo� �����a
 ����� presents an incremental version of ID� called ID�� ID� processes the
training examples one	at	a	time and produces an updated decision tree after each example� The
basic idea is to grow the decision tree in the same top	down fashion �and using the same criterion
for selecting the root of each subtree� as ID�� Hence
 each time a new training example is presented

the example is �ltered through the current decision tree until it reaches a leaf node
 where it is
stored� If the leaf node contains a mix of positive and negative examples
 then a new feature is
selected to split the node as in the ID� algorithm�

A problem with this procedure is that the choice of the new feature to split a node is based on a
relatively small number of training examples
 and therefore it is likely to be incorrect� ID� recovers
from poor choices of these �splitting features� as follows� As the training example is being �ltered
through the current decision tree
 ID� reconsiders the choice of �splitting feature� at each internal
node �starting with the root�� If the information gain criterion would have chosen a di�erent feature
fj instead of fi
 then ID� searches each path in the subtree rooted at fi to �nd an internal node
that tests fj �if none exists
 then one is created at a leaf node�� Then
 the tree is rearranged so
that fj replaces fi� This rearrangement process exploits the fact that the following two trees are
equivalent�

Several rearrangements may need to be performed �recursively� in order to get fi and fj into
this �locally balanced� con�guration�

If every path through the �nal decision tree has been successfully traversed by a training example
�without causing a rearrangement�
 then this tree will be the same one produced by ID�� In general

this condition is not satis�ed
 but the trees produced by ID� are virtually identical to those produced
by ID�� The only overhead required by ID� is to store all of the training examples at the leaves
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Figure �� A simple three	layer feed	forward network�

and to maintain the statistics for computing information gain at each internal node� Utgo� ������
describes ID�R
 which is a modi�cation of ID� that guarantees that the tree produced by ID� is
the same as the tree produced by ID��

There are many other extensions to ID� that have been developed� Two particularly important
extensions involve �a� making ID� tolerant to noise in the training data and �b� �nding ways to
learn good decision trees even when the training data may contain missing values �i�e�
 training
examples in which the values for some features are unknown�� Quinlan �����b
 ���
b� discusses
noise	tolerance techniques� The best technique simply applies the algorithm in the normal way
�except that tree	growth is terminated when there is no feature with positive information gain� and
then applying the procedure for converting the tree into production rules� Quinlan ������ compares
several techniques for learning in the presence of missing values�

��� The Backpropagation Algorithm for Training Multi�layer Neural Networks

Since the early days of computer science
 researchers have been intrigued by the possibility of
structuring programs in ways that mimic the neural structures of the human brain� Early work
focused on immitating single neurons
 and one of the best known arti�cial neurons was Rosenblatt�s
������ perceptron �or linear threshold unit�� As we mentioned above
 a perceptron is speci�ed by
a vector of real	valued weights w and a real	valued threshold �� It accepts a vector of real	valued
inputs x and outputs a � if w � x � � �and a � otherwise��

The perceptron was widely criticized because it can only implement a restricted class of functions�
namely
 functions that characterize a region of Rn bounded by a single hyperplane� Hence
 although
several e�cient algorithms for learning perceptrons were discovered
 research in this area nearly
died out during the sixties and seventies�

In the past �ve years
 however
 interest in this area has exploded� There are many reasons for
this
 but one signi�cant factor has been the exploration of networks containing multiple layers of
neuron	like elements and the development of learning algorithms for these multi	layer networks�

Figure � shows a simple multi	layer feed	forward network� The input x values are fed simul	
taneously to a layer of simple neuron	like elements called �units�� The outputs of these units are
then fed simultaneously to a second layer of units
 and so on� In general
 it is possible to have
arbitrarily many layers
 but in practice
 usually only a few layers are employed� In the network of
Figure �
 the outputs of the �rst layer are all fed to a single unit in the second ��nal� layer
 and its
output comprises the output of the entire network� The units in all but the last layer are normally
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called �hidden units�� Some authors describe the vector of inputs as an �input layer
� with the
consequence that Figure � is called a three	layer network
 even though there are only two layers of
units �and only one hidden layer��

Multi	layer feed	forward networks of linear threshold functions can implement a much wider
range of functions than a single perceptron� Indeed
 given enough hidden units
 any function can be
closely approximated �K� Hornik et al
 unpublished manuscript�� The di�culty is to �nd a learning
algorithm that can process a collection of training examples and set the weights and thresholds
of each unit correctly� One of the best algorithms for this purpose is the error back	propagation
algorithm �Rumelhart et al ������

The goal of the error back	propagation algorithm is to minimize the squared error between the
output of the network and the correct outputs provided in the training examples�

minimize E �
mX
i��

�net�xi�� F �xi��
� �

where net�xi� is the output of the network on example i
 and F �xi� is the correct output supplied
in the training example�

This is accomplished by performing gradient descent search in weight space� In other words
 the
algorithm iteratively computes a slight change in all of the weights �and thresholds� in the network
in the direction of fastest decrease of E�

To apply gradient descent
 it is necessary that the functions computed by the individual units
be di�erentiable� Linear threshold units
 because they are discontinuous at �
 lack this property�
So the standard practice is to approximate the linear threshold unit by the logistic function


y �
�

� � e��w�x���
�

Each unit in the network computes this function�
To describe the algorithm
 it is useful to make the following de�nitions� Let n be the length

of the input vector x� Let us assign a number j � n� � � � �M to each unit in the network �where
unit M is the output unit�� Let yj be the output value computed by unit j
 for j � n
 and yj � xj
otherwise� Let wj�k be the weight on the input to unit k that comes from the output of unit j� It
is customary to view the threshold
 � as another weight corresponding to an input whose value is
always ��� With this convention
 let w��k be the threshold for unit k
 and let unit � always produce
the value �� �i�e�
 y� � ���� For �j� k� pairs that do not correspond to connections in the network

wj�k � �� Finally
 the parameter � is called the learning rate�

The back	propagation algorithm starts by initializing the weights in the network to small
randomly	chosen values� Then
 for each training example
 hx� ci
 the weights are updated as fol	
lows� First
 each layer in the network is evaluated in sequence
 and the output values �yj� are
saved� Then
 a generalized error value �M � �c � yM �yM ��� yM � is calculated� Each weight for
the output unit is adjusted using this error value�

wj�M �� wj�M � ��Myj �

Once the output layer has been updated
 the hidden layers are updated
 one at a time proceeding
in reverse order� When updating the weights for unit j in a hidden layer
 the generalized error
value to use is

�j � yj��� yj�
X
k

�kwj�k�
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where k ranges over all units to which the output of unit j is connected� The weights of unit j are
updated according to the formula


wi�j �� wi�j � ��jyi�

The updating equations modify a weight wi�j in proportion to �a� the error committed by unit
j and �b� the input value yi� This makes sense intuitively
 since the weight should not be changed
if either �a� no error was committed or �b� the weight wi�j did not contribute the yj because yi was
zero�

To obtain gradient descent
 the learning rate � should be very small
 and the weight changes
should be accumulated over the entire training set before any weights are changed� In general
 the
training set must be processed many times �sometimes hundreds or thousands of times� before the
weight values converge� Furthermore
 it is not uncommon for the weight values to converge to a
local optimum that is not a global optimum�

In practice
 the weights are updated after every training example
 the learning rate is set to be
as large as possible
 and the updating equations are modi�ed to contain a momentum term� Let
&wi�j�t� be the change to weight wi�j during iteration t� The updating rule can then be written as

&wi�j�t� � ��jyi � 	&wi�j�t� ���

The parameter 	 is normally set to a large value
 such as ���� The momentum term generally
speeds convergence
 because it allows us to increase the learning rate � without causing oscillations
in the weight values� Additional improvements in the back propagation algorithm are reported in
�Becker $ le Cun ������

Finally
 it should be noted that it is possible to have more than one output unit in the network�
When several
 closely related
 concepts are being learned
 they can share the values computed
by hidden units
 with the result that the representation of the several concepts is signi�cantly
compressed �and hence
 the correctness of the learned concepts is probably enhanced��

There have been many successful applications of the back	propagation algorithm� For example

Sejnowski and Rosenberg ����
� trained a two	layer network �one hidden layer� to learn to pro	
nounce English words� After learning on a sample of the ���� most common words
 their NETtalk
program correctly pronounces 

% of the phonemes in a ��
���	word dictionary �which includes
the ���� words in the training set��

The major advantages of using neural	like networks for machine learning appear to be �a� the
ability to learn a wide variety of concepts and �b� the ability to learn concepts involving real	valued
features� A few recent studies have compared back	propagation with ID� �Mooney et al ����

Fisher $ McKusick ����
 Weiss $ Kapouless�� The results generally show that a �	layer neural
network trained with back	propagation performs at the same level �and sometimes at a slightly
better level� than ID� when tested on unseen examples�

The major disadvantages of neural network learning methods are �a� the need to choose the
number of hidden units and �b� the high cost of the learning process� The number of hidden units
determines the �strength� of the bias of the learning system� If there are too many hidden units

then there will be many di�erent settings of the weights that will be consistent with the training
examples
 so a trained network is unlikely to be probably	approximately correct� If there are too
few hidden units
 then there may be no setting of the weights consistent with the training examples�
Research is continuing on techniques for automatically adjusting the number of hidden units during
the learning process �Ash ����
 D� Rumelhart
 personal communication��
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Because of the NP	completeness result discussed above
 it is unlikely that a general
 e�cient
learning algorithm can be found for training multi	layer feed	forward networks� However
 research
into more restricted kinds of networks might discover representations with similar expressiveness
that can be trained more e�ciently�

��� Hybrid Algorithms

In each of the learning methods that we have reviewed thus far
 the hypotheses are constructed
from a single �combining mechanism�� In ID�
 for example
 the combining mechanism is the
decision tree� In multi	layer neural networks
 the combining mechanism is the logistic unit� Many
other algorithms employ the AND
 OR
 and NOT connectives of propositional logic �Michalski
����
 Haussler ������ In the past few years
 researchers have explored the properties of �hybrid�
methods that mix two or more of these combining mechanisms in a single algorithm� The primary
motivation for developing hybrid methods is that they may allow a learning algorithm to �nd a
more compact representation for the hypothesis �and therefore enhance the performance of the
hypothesis on unseen examples�� We will review three hybrid methods� Stagger �Schlimmer $
Granger �����
 Fringe �Pagallo �����
 and Perceptron trees �Utgo� ����b��

The idea of hybrid methods was pioneered by Schlimmer with the Stagger system �although
Utgo� is responsible for the term �hybrid��� Stagger combines a Bayesian weight	learning algorithm
with a method for constructing Boolean expressions� Let f�� f�� � � � � fn be the Boolean features used
to represent each training example� The Bayesian learning algorithm computes the odds that a new
example will be positive given the values of the n features� odds�F �u� � �jf��u� � v�� � � � � fn�u� �
vn�� The key to making this computation feasible is to assume that the features are conditionally
independent �given the value of F �u�� and apply the odds likelihood formulation of Bayes rule to
obtain

odds �F �u� � �jf��u� � v�� � � � � fn�u� � vn� � odds �F �u� � �� �
nY
i��

L �fi�u� � vi� ���

where L �fi�u� � vi� is the likelihood ratio�

L �fi�u� � vi� �
Pr �fi�u� � vijF �u� � ��

Pr �fi�u� � vijF �u� � ��
�

It is straight	forward to estimate odds �F �u� � �� and L �fi�u� � vi� from the training examples�
Let S be the training sample
 and let n � jfs � SjF �s� � �gj and p � jfs � SjF �s� � �gj� These
simply count up the number of negative and positive examples in the training set S� Furthermore

let ni � jfs � SjF �s� � �� fi�s� � vigj and pi � jfs � SjF �s� � �� fi�s� � vigj� Then
 the odds
that an unseen example is a positive example is simply p
n� The likelihood ratio for fi�u� � vi is
estimated by

pi � n

ni � p
�

To classify an unseen example u
 the odds that u is positive are calculated using equation ����
If the odds are greater than �
 then the algorithm will predict that �F �u� � �# otherwise
 �F �u� � ��
It easy to show �by taking logarithms� that equation ��� is equivalent to a linear threshold function

and therefore
 any concept representable by this Bayesian algorithm must be linearly separable�
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To extend the range of concepts that can be represented �and learned�
 Stagger combines this
Bayesian algorithm with a procedure for de�ning interesting Boolean combinations of the given
features ffig� The learning process is incremental� When each training example is presented
 equa	
tion ��� is evaluated to classify the example� If the classi�cation is correct
 the odds �F �u� � �� and
the likelihood ratios are incrementally updated and processing continues with the next training ex	
ample� If the classi�cation is incorrect
 Stagger introduces �new� features as Boolean combinations
of the existing features and updates all likelihood ratios
 including new ratios corresponding to the
new features�

For example
 when Stagger incorrectly classi�es a positive example as negative
 the algorithm
selects the two features fi � vi and fj � vj in the training example whose likelihood ratios are
largest and de�nes a new feature fk � � � �fi � vi � fj � vj�
 which has the value � whenever
either fi � vi or fj � vj � This new feature will tend to boost the estimated odds �F �u� � ��
 and
therefore increase the chances that the algorithm will correctly classify this example in the future�

Conversely
 when a negative example is incorrectly classi�ed as positive
 Stagger �nds the two
features fi � vi and fj � vj in the training example whose likelihood ratios are smallest and
de�nes the new feature fk � �fi � vi 	 fj � vj�� This new feature will tend to pull down the
estimated odds �F �u� � ��
 and therefore decrease the chances of incorrectly classifying this example
as positive�

In addition to these two simple cases
 there are four other heuristics that Stagger employs for
introducing disjunctions
 conjunctions
 and negations of existing features� Stagger also employs
heuristics for pruning features that turn out to be unnecessary� The net result is that Stagger is
able to overcome the limitations of the Bayesian weight	learning algorithm by introducing Boolean
combinations of the given features�

The Fringe algorithm �Pagallo ����� is a hybrid algorithm that integrates decision trees and
Boolean feature combinations� The general strategy is quite similar to �and inspired by� Stagger�
Fringe begins by executing ID� on the training set� Then
 it analyzes the resulting decision tree
and de�nes new features as Boolean combinations of existing features� It then discards the �rst
decision tree and repeats the process�now considering the newly introduced features as well as the
original features� This iteration continues until no new features are de�ned�

The heuristic for de�ning new features is simple� For every leaf node in the tree that is labeled
�
 Fringe de�nes a new feature as the conjunction of the parent and grandparent nodes of the leaf�
Consider again the decision tree shown in Figure �� For this tree
 the heuristic will de�ne the new
features f� � 
f
 	 f� and f
 � f� 	 f�� In the next iteration
 ID� will produce the tree shown
in Figure �� After analyzing this tree
 Fringe will de�ne f� � f� 	 f	� In the �nal iteration
 ID�
will produce the tree shown in Figure ��

By de�ning new features
 Fringe is able to overcome some of the problems plaguing ID�� Recall
that one problem with decision trees is that
 when they are used to represent DNF expressions

many of the conjunctions in the expression must be replicated in the tree� Fringe can learn larger
and more complex DNF expressions than ID�
 because each conjunction in the expression eventually
is de�ned as a single new �feature� that appears only once in the tree�

As a side	e�ect
 this also overcomes another of ID��s problems� Recall that
 because ID�
operates by recursively subdividing the training set
 the choices of �root� features made toward
the leaves of the tree are based on relatively little data and consequently lack statistical support�
Fringe
 because it eliminates replicated conjunctions
 e�ectively pools all of the training examples
that would have been split across the multiple replications of each conjunction� Hence
 in subsequent
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Figure �� The decision tree from Figure � after one iteration of Fringe�

Figure �� The �nal tree produced by Fringe�
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iterations
 ID� can make better �root� feature choices�
Fringe�s performance on large
 randomly constructed DNF expressions is very impressive� For

example
 Pagallo presents a DNF expression containing �� conjunctions de�ned over �� attributes
�each conjunction contains an average of ��� features�� Fringe was presented with �
�� training
examples for this concept and it converged after �� iterations� When tested on ���� additional
examples
 it classi�ed them all correctly� Indeed
 inspection of the decision tree showed that it was
completely correct� By contrast
 ID� incorrectly classi�ed ����% of the test examples after learning
on the same �
�� training examples� Not unrelated is the fact that the decision tree produced by
ID� contains ��� nodes
 while the �nal expression produced by Fringe contains the rough equivalent
of ���� nodes ��� actual nodes
 but each node tests a high level feature that is de�ned in terms of
an average of ��� original features��

The last hybrid method that we will review is Utgo��s �����b� perceptron tree algorithm� A
perceptron tree is a decision tree in which the leaf nodes are perceptrons
 and the internal nodes
are standard decision nodes� Figure � shows a decision tree and the equivalent perceptron tree�
In his perceptrons
 Utgo� maintains one weight for each value of each feature
 rather than just
one weight per feature �this is called the symmetric	model of instance representation# Hampson
$ Volper ������ These are shown in the �gure as two rows of weights
 one row corresponding to
fi � � and another corresponding to fi � �� The �nal weight �labeled �� encodes the threshold� To
evaluate each perceptron
 a weight is multiplied by � if the corresponding feature value is present
and by �� if the corresponding feature is absent� �The threshold is always present��

To see how this works
 consider the example hf� � �� f� � �� f	 � �� f
 � �i� To classify this
example in the perceptron tree from Figure ��b�
 we could start at the root node and take the left
branch
 since f� � �� At the next node
 we would take the right branch
 since f� � �� Finally
 we
would evaluate the perceptron at the leaf over features f	
 and f
� To do this
 we would convert
the training example into a feature vector h��� �� ����� �i corresponding to hf	 � �� f	 � �� f
 �
�� f
 � �� �i� The dot product of this vector with the weights in the perceptron is

h��� �� ����� �i � h����� ����� �i � ��

so the example is classi�ed as positive�
The perceptron tree learning algorithm is an incremental algorithm that gradually expands the

tree as training examples are processed� It begins by creating a single perceptron node as the root
of the tree� As new examples arrive
 the weights of this perceptron are updated �using the absolute
error correction procedure from Nilsson ������� until either all of the examples are processed or
else it is discovered that the training examples are not easily separated by a perceptron �explained
below�� When this is detected
 the perceptron is discarded and the information gain criterion of ID�
is applied to choose a feature to form a decision node� During subsequent iterations
 the learning
algorithm will then create perceptrons at each of the two leaves of this decision node� �In order to
apply the information gain criterion
 it is necessary to maintain
 at each perceptron node
 counts of
the number of positive and negative examples having each value of each feature� This is the same
information computed by ID� and ID���

To determine whether the examples are easily separated by a perceptron
 Utgo� keeps track of
the maximum and minimum values of each weight in the perceptron� Using this information
 he
maintains a counter C that counts the number of perceptron updates that have not changed the
maximum or minimum value of any weight� If C becomes larger than the number of weights
 the
algorithm decides to replace the perceptron node with a decision node� The justi�cation for this
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�a�

�b�

Figure �� A decision tree �a� and the equivalent perceptron tree �b� for the concept �f��f����f		f
�
�Utgo� ����b��
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heuristic is that if the maximum and minimum weight values are not changing
 then it is likely that
the perceptron is failing to converge �since if it converged
 no more perceptron updates would be
needed��

Each of these three hybrid learning algorithms employs two di�erent syntactic combination
methods to �nd more compact representations for learned concepts� The hope is that expressive
concept languages can be found that�unlike multi	layer neural networks�still have polynomial
time learning algorithms� In the immediate future
 it is expected that much more research will be
pursued on the development and testing of hybrid methods�

��� Summary

Although the theoretical results discussed in the previous section show that there can be no gen	
eral purpose learning algorithms that can learn all possible concepts e�ciently
 recent advances
in practical inductive algorithms demonstrate that
 for a wide range of concepts commonly en	
countered in applications
 domain	independent learning methods are possible� The methods can
learn concepts such as decision trees �ID��
 disjunctive	normal	form Boolean expressions �Fringe�

and disjunctions of linear threshold units �Perceptron trees� in reasonable times� Moreover
 the
back	propagation algorithm demonstrates that multi	layer feed	forward neural networks can be
learned for non	trivial problems� This area is advancing rapidly
 with many new algorithms and
new applications developed each year�

� EXPLANATION�BASED LEARNING

In the section on philosophical foundations
 we discussed two di�erent kinds of learning� acquisition
of new knowledge �typically by analyzing training examples� and speed	up learning� Thus far
 this
review has focused only on concept learning from examples� In this section
 we shift our attention
to an important new method for speed	up learning
 called explanation�based learning�

��� The Basic EBL Procedure

To introduce explanation	based learning �EBL�
 it is convenient to begin by considering traditional
caching� Suppose we have an expensive	to	evaluate function
 f�x�
 that we will need to compute
many times� If we frequently evaluate f�x� on the same value of x
 we can gain speed by maintaining
a cache memory of hx� f�x�i pairs� Whenever the value of f�xi� is needed
 we �rst search this cache
memory for the pair hxi� f�xi�i
 and if it is found
 we can immediately return the value for f�xi��
If it is not found
 we go ahead and call the expensive function f�xi� and then store the resulting
value into the cache�

One of the main drawbacks of caching is that it only succeeds when exactly the same x value is
encountered a second time� The technique of explanation	based learning can be viewed as a solution
to this problem� Like caching
 EBL maintains a memory for the results of previous problem solving
activity� Unlike simple caching
 though
 the hx� f�x�i pairs in this memory are generalized so that
for x values similar to previously computed values
 we can e�ciently compute the corresponding
f�x� value� In particular
 the x and f�x� expressions saved by EBL can contain pattern variables
and tests for pattern applicability� When a new x value is presented
 the EBL system must apply
a pattern	matching procedure �typically uni�cation� to determine whether this x value is similar

��



to some previously	stored value� If so
 then the variables in the corresponding f�x� pattern are
instantiated
 and the solution is returned�

To illustrate the EBL method
 consider the task of solving simple algebraic equations in one
variable� Each instance of this task �i�e�
 an x value� is an equation involving only one variable
�which we will denote by y� and the four arithmetic operators� A solution is an equation of the form
y � E
 where E is an expression containing only constants�	 For example
 given the problem � � �

� y
 the solution is y � ���� A simple caching system would memorize the pair h� � � 
 y� y � �
�i�
However
 by using EBL
 we can instead memorize the generalized pair hV� � V� 
 y� y � V�
V�i�
To this pair
 we must attach three applicability conditions� V� and V� must be constants and V�

must not be equal to zero�
When a new problem
 � � � � y is presented to the system
 it matches the stored pattern

�with substitution fV�
�� V�
�g��
 Furthermore
 the three applicability conditions are satis�ed�
Therefore
 the solution can be constructed by instantiating the stored solution pattern to obtain y

� ����
If there is no memorized pair that matches the new problem
 then the system must solve

the problem itself and store a new generalized problem'solution pair into memory� To construct
the new pair
 the explanation	based learning procedure maintains a record of the problem	solving
steps performed to solve the problem� After the solution is obtained
 this problem	solving record is
analyzed to determine what other problems could be solved by applying the same problem solving
steps� Two patterns are constructed� one describing these problems and another describing their
solutions� The resulting pair is stored in memory as a generalized problem'solution pair�

For example
 in the algebraic simpli�cation task
 the problem solving steps all involve applying
algebraic simpli�cation rules and performing simple tests� Table � gives a collection of rules and
facts that formalize this task� In this table
 we have employed standard logical �pre�x� notation

so that
 for example
 the equation � � � � y is written eq	�
times	�
y��� The symbol ��� is
reserved for logical equality� The overall goal of problem solving is captured by Rule �
 which says
that a problem is solved if it has the form eq	y
E� where E is an expression involving only constants
�i�e�
 a constant expression
 abbreviated ce	E��� Rules � and � describe two simple operations for
rewriting equations �dividing both sides by a value# swapping the two sides of the equation�� Rules
� through � and Facts � through � de�ne constant expressions as expressions constructed from the
arithmetic operators and simple constants �denoted by c	E��� Finally
 Facts � and � are needed to
test the applicability of Rule �� In a real system
 Facts � though � would be implemented using
the computer�s arithmetic hardware�

To solve the problem eq	�
times	�
y��
 a problem solving system could proceed as follows�

�� Apply Rule � to obtain eq	times	�
y�
���

�� Apply Fact � to show that ����


�� Apply Rule � to obtain eq	y
divide	�
����

�� Apply Fact � to show that c	���

�In the following� we follow the Prolog convention of capitalizing pattern variables while keeping constants �and
algebraic variables� in lower case�

�A substitution is a list containing pairs of the form T��T�� which states that term T� should be replaced by the
term T� in order to make the stored pattern match the new problem� See Nilsson ��	
�� for more details�
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Table �� Algebraic Simpli�cation Rules and Facts

Rule �� F� �� � � eq	times	F�
F��
F�����

eq	F�
divide	F�
F���

Rule �� eq	F�
F�� � eq	F�
F��

Rule �� ce	E� � solved	eq	y
E��

Rule �� c	E� � ce	E�

Rule �� ce	E�� � ce	E�� � ce	times	E�
E���

Rule �� ce	E�� � ce	E�� � ce	plus	E�
E���

Rule �� ce	E�� � ce	E�� � ce	divide	E�
E���

Rule �� ce	E�� � ce	E�� � ce	minus	E�
E���

Fact �� c	��

Fact �� c	��

Fact �� c	��

Fact �� c	��

Fact �� ����
Fact �� minus	�
�����

�� Apply Rule � to show that ce	���

�� Apply Fact � to show that c	���


� Apply Rule � to show that ce	���

�� Apply Rule 
 to show that ce	divide	�
����

�� Apply Rule � to show that solved	eq	y
divide	�
�����

The history of this problem	solving procedure can be viewed as a logical proof� Figure 
 shows
the proof explicitly as an AND	tree� In the tree
 rules appear as pure AND nodes
 facts appear as
leaf nodes
 and uni�cation steps are shown as vertical equalities �jj�� The variables in each rule have
been renamed to avoid name con"icts� Table � lists all of the substitutions that are needed to make
each rule apply� When these substitutions are composed
 the result includes hV�
divide��� ��i as
expected�

There are many equivalent ways to describe how the EBL procedure constructs a generalized
problem'solution pair� Visually
 the simplest way is to view EBL as pruning all of the leaf nodes
from the proof tree of Figure 

 recomposing the remaining substitutions
 and re	expressing the
tree as a problem'solution pair� The rationale for this procedure is that the leaf nodes describe
speci�c facts about the particular problem that was solved# the interior of the proof tree describes
the rules that were applied� Since the purpose of EBL is to determine what other problems could
be solved by applying the same sequence of rules
 it makes sense to construct a generalized proof
tree containing only those rules�

Figure � shows the proof tree after the leaves have been pruned� The remaining substitutions
are shown in Table �� When these substitutions are composed
 the �nal tree takes the form shown
in Figure ��

�




Figure 
� Proof tree for algebraic simpli�cation

Table �� Substitions required for Figure 


V��y V��times	�
y�

V��divide	V�
V�� V��divide	V�
V��

V��� V��V�

V��times	V�
V�� V���

V��V� V��V��

V��� V����

��



Figure �� Pruning the leaves of the tree�

Table �� Substitutions remaining after pruning�

V��y V��divide	V�
V��

V��divide	V�
V�� V��V�

V��times	V�
V�� V��V��

V��V�
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Figure �� The �nal proof tree after composing substitutions�

To extract the generalized problem'solution pair
 EBL simply extracts the leaf eq	V�
times	V�
y��
and the root eq	y
divide	V�
V���� The remaining leaves provide the applicability conditions� V�
�� �
 c	V��
 and c	V���

There are many di�erent ways to implement the EBL generalization procedure� The earliest
appears in Fikes et al ���
��� Subsequent improvements include DeJong $ Mooney ������ and
Kedar	Cabelli $ McCarty ����
��

In a rule	based system�such as the algebraic simpli�cation system that we have been examining�
there is generally no need to maintain a separate �cache� memory of problem'solution pairs� In	
stead
 the results of EBL can be represented as a new �macro� rule to be added to the rule base�
In this example
 the new rule would be

Rule � V� ��� � c	V�� � c	v�� � eq	V�
times	V�
y�� �

eq	y
divide	V�
V���


This is the usual approach taken in EBL systems�
By this point
 the reader must be wondering why this is called explanation	based learning�

The answer is that in many learning situations
 a learning system is presented with hx� yi pairs�
The learning task is to explain why y � f�x� and acquire a general rule for future application� A
nice example of this is the LEAP system �Mitchell et al �����
 which learns VLSI design rules by
�watching over the shoulder� of an expert designer� When the designer implements a functional
speci�cation �e�g�
 	AND 	OR p� p�� 	OR p� p���� in a clever way �e�g�
 using three NOR gates�
	NOR 	NOR p� p�� 	NOR p� p����
 LEAP applies its knowledge of Boolean logic to explain why
this implementation works
 and then generalizes the explanation to provide a general design rule�

In the sense of �knowledge in principle�
 LEAP already knows�before seeing the designer�s
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example�that the triple	NOR circuit is a legal solution� The learning process involves converting
this implicit knowledge into an explicit design rule that can be cached for future use� It is reasonable
to ask whether there is any bene�t to giving LEAP an hx� yi pair� After all
 by applying program
transformation methods such as partial evaluation �van Harmelen $ Bundy ����� the same triple	
NOR rule could be discovered and cached� The advantage of providing the training example is that
it focuses LEAP�s e�orts on problem'solution pairs that are likely to arise in practice�

From this perspective
 explanation	based learning can be de�ned as follows �Mitchell el at ������

Given� A domain theory �e�g�
 the rules and facts in Table ��
A target concept �e�g�
 solved	eq	y
E���
A training example �e�g�
 eq	�
times	�
y���
An operationality criterion or pruning policy �e�g�
 prune all leaves of the
proof tree�

Find� An operational su�cient condition for the target concept�

The EBL method applies the domain theory to �nd a proof �explanation� of why the training ex	
ample is an instance of the target concept� It then prunes this proof according to the operationality
criterion
 and extracts a generalized rule from the pruned proof� This rule is a su�cient condition
for the target concept�

The operationality criterion �or pruning policy� speci�es what kinds of applicability tests can
be easily evaluated at execution time� For example
 it is easy to verify that something is a constant
or that a constant is non	zero� It is much more time	consuming to determine whether a large
expression is made up only of constants and evaluates to a non	zero value� Hence
 in our algebra
example
 we have e�ectively speci�ed that the predicate c	V� is operational
 but the predicate
ce	V� is not� One can imagine many other pruning policies �including dynamic
 context	speci�c
policies�
 and some have been investigated �Braverman $ Russell ����
 Keller ���

 Segre ������

One interesting pruning policy exploits multiple training examples� Normally
 EBL only con	
siders a single example� However
 when several similar examples are available
 one approach�
sometimes called mEBL�is to compute a proof tree for each example and then �nd the largest
subtree shared by all of these proofs� Everything else is pruned away
 and a general rule is extracted
from the shared subtree� An advantage of this approach is that the learned rule is typically more
general and will be matched more often during subsequent problem solving �see Kedar	Cabelli ����

Hirsh ����
 Cohen ����
 Pazzani ����
 Flann $ Dietterich ������

Without this kind of pruning strategy
 the rules learned by EBL are often overly speci�c� For
example
 if we give EBL the problem

eq	plus	�
��
 times	minus	�
��
y��


it will produce the rule

Rule �� minus	V�
V�� ��� �

c	V�� � c	V��

c	V�� � c	V�� � eq	plus	V�
V��
times	minus	V�
V��
y�� �

eq	y
divide	plus	V�
V��
minus	V�
V����


If
 on the other hand
 we use mEBL and give it the two problems eq	�
times	�
y�� and
eq	plus	�
��
times	minus	�
��
y��
 then the new rule will be
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Rule �� V� ��� � ce	V�� � ce	v�� � eq	V�
times	V�
y�� �

eq	y
divide	V�
V���


This rule has pruned away the details of how ce	V�� and ce	V�� are checked�these conditions
are thereby deferred until the rule is applied� The result is a more general
 more useful �but
potentially more expensive� rule�

This points up an important issue in any form of explanation	based learning� EBL is basically
a process of converting problem	solving search �i�e�
 stringing together rules� into pattern	matching
search �i�e�
 checking a large collection of problem'solution pairs to see which ones apply�� Although
this is usually a tradeo� of space against time
 there are problems where the pattern	match cost
can far exceed the problem	solving cost� As an example �due to Tambe $ Newell �����
 consider
the problem of determining whether there is a path between two speci�ed nodes in a given graph
representing a partial order� This is can be solved by computing the transitive closure of the graph

and it can be performed in time O�n	� for a graph of n nodes� Suppose now that whenever we �nd a
path between two nodes
 we apply EBL to extract a rule� Each such rule will describe the subgraph
connecting the two nodes� Matching such rules against future graphs involves performing a graph
sub	isomorphism computation
 which is NP	complete� Hence
 by applying EBL it is possible to
convert a polynomial	time algorithm into an exponential	time algorithm�

��� Integrating EBL Into Problem�Solving Architectures

The past �ve years have seen the development of two problem	solving architectures that perform
EBL automatically
 as a side	e�ect of normal problem	solving activity� SOAR �Laird et al ����

���
� and Prodigy �Minton ����a
 ����b�� One goal of these architectures is to realize the long	
held dream of creating a problem	solving system that automatically improves its performance with
practice� To a limited extent
 these systems succeed� For any program written according to certain
conventions
 these architectures will automatically speed up the program each time it is executed�

In these systems
 the principal application of EBL is not to collect problem'solution pairs for
the inputs and outputs of the user�s program
 but instead to acquire control rules� In other words

EBL is applied primarily at the meta	level rather than at the base	level of problem solving� Each
of these architectures is a meta	level
 deliberative architecture� For example
 SOAR is a general	
purpose problem solver that searches a problem space of states by applying operators until some
goal is achieved� At the meta	level
 SOAR confronts four basic decisions� �a� what goal should be
processed next� �b� what problem space should be searched to achieve that goal� �c� what state in
that problem space should be explored next� and �d� what operator �i�e�
 rule� should be applied
to the selected state�

Like most meta	level problem solvers
 SOAR operates in a continuous two	phase loop called the
decision cycle� Each time through the loop
 SOAR confronts one of these four meta	level problems
and selects a solution� Then it executes the solution �e�g�
 applies the chosen operator� at the base
level�

To solve the four meta	level problems
 SOAR applies a collection of control rules that identify
and rank candidates� For example
 in the algebraic simpli�cation domain
 SOAR could learn a
control rule such as

If current state matches eq	V�
times	V�
y��
and V� and V� are constants
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Table �� Meta	rules for Algebraic Simpli�cation

Rule �� F� �� � � apply	op�
eq	times	F�
F��
F����� �

eq	F�
divide	F�
F���

Rule �� apply	op�
eq	F�
F��� � eq	F�
F��

Rule ��� solved	S� � solvable	S�


Rule ��� solvable	apply	Op
S�� � solvable	S�


Rule ��� solvable	apply	Op
S�� � good�operator	Op
S�


and V� �� �

then a good rule to apply is Rule ��

This control rule can be viewed as a memorized problem'solution pair�but now the problem is
a meta	problem �what rule to apply to the given state�
 and the solution is an answer to the
meta	problem �Rule ���

To learn these kinds of control rules
 all that we need to do is write a meta	level �domain
theory� and apply the EBL procedure to explanations that are constructed using it� Table � gives
a portion of such a meta	level domain theory for the algebraic simpli�ciation domain� Rules � and �
are restatements of the corresponding rules in Table �� These restatements are needed to give each
simpli�cation operator a name �e�g�
 op�
 op��� The notation apply	Op
S���S� indicates that the
result of applying operator Op to state S� is a new state S�� This explicit naming of operators is the
key factor distinguishing the rules of the meta	level domain theory from the rules in a base	level
domain theory�

The most important rule in Table � is Rule ��
 which says that an operator Op is a good operator
to apply to state S if it results in a solvable state� Rules �� and �� de�ne a solvable state to be
either a completely solved state or else a state that can be completely solved by recursively applying
another operator� In short
 a solvable state is one for which there exists some sequence of operators
that can be applied to solve the problem�

Now let us see how we can learn the control rule given above for operator op� �i�e�
 Rule ���
Suppose we are given the base	level problem eq	�
times	�
y�� as before� This time
 however

our goal is to prove that good�operator	op�
eq	�
times	�
y���� Figure �� shows the required
proof tree� It is very similar to the proof in Figure 
�

As with EBL applied to the base	level
 we prune the leaves of this explanation tree
 and the
result is the following control rule�

Rule �� V� ��� � c	V�� �

c	V�� � good�operator	op�
eq	V�
times	V�
y���
Similar reasoning can be applied in the same problem to learn a control rule for operator op��

Rule �� V� ��� � c	V�� �

c	V�� � good�operator	op�
eq	times	V�
y�
V���


When SOAR confronts a new �base	level� problem
 such as eq	�
times	�
y��
 it will again
confront the meta	level problem of deciding which operator to apply� Rule �� can then �re and
recommend operator op�� After op� is applied
 Rule �� can �re and recommend operator op�

which will produce the solution�
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Figure ��� Proof that op� is a good operator to apply�
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The reader may wonder why meta	level control rules are worth learning
 since we have already
seen that base	level �macro� rules can solve this same problem directly�without the need to apply
the various operators at run time� The answer is that in many domains �e�g�
 STRIPS robot
planning�
 a few control rules can produce the same results as hundreds of base	level macro rules�
This is the case in domains where it is easier to describe a general purpose �perhaps heuristic�
strategy than it is to produce a list of generalized problem'solution pairs�

It is possible to learn meta	level control rules for any meta	level decision of interest� For example

we might want to learn rules that describe bad operators�operators that should not be applied to
particular states� By de�ning bad�operator	Op
S� as a meta	level domain theory
 such rules can
be learned via EBL� Typically
 a bad operator is de�ned to be one that converts a solvable state
into an unsolvable state�

In Prodigy
 meta	rules are also learned for the target concepts sole�alternative	Op
S� and
goals�interfere	G�
G��� A sole alternative is an operator that is the only operator that will
result in a solvable state� Goal G� interferes with goal G� if any plan for achieving G� in states
where G� is already achieved must undo G��

Ideally
 one would like to learn meta	rules for the concept of best�operator	Op
S�� However

to learn such rules
 it would be necessary to perform a very expensive search to prove that applying
operator Op to state S is the best way to solve the problem �i�e�
 results in the shortest
 cheapest
solution�� In practice this is generally too expensive
 so Prodigy and SOAR work with the weaker
concepts of good and bad operators� In states where one operator is known to be good
 but the
value of other operators is unknown
 Prodigy and SOAR will select the known good operator �even
though one of the other operators might be better�� This amounts to making the assumption that
a good operator is the best operator in the absence of information to the contrary�

��� Lessons and Problems

Prodigy and SOAR have each been tested in many domains
 and as a result
 several important
lessons have been learned�

First
 the vocabulary of the domain theory must be chosen carefully in order to obtain improve	
ments in problem	solving performance� In particular
 if the vocabulary is not carefully designed

EBL can easily degenerate into simple caching of ungeneralized problem'solution pairs� For exam	
ple
 if the rules in the domain theory are very speci�c �e�g�
 eq	times	�
y�
�� � eq	y
divide	�
����

instead of very general �e�g�
 eq	times	F�
F��
F�� � eq	F�
divide	F�
F����
 then when the
EBL procedure computes the set of problems that can be solved by applying the same sequence
of operators
 this set will contain only the original problem� This is most evident when rules
for computing arithmetic are included in the domain theory �e�g�
 times	�
������� Any time a
rule of this kind is applied to evaluate a constant expression
 the resulting explanation becomes
very speci�c�which is why we did not simplify the constant expressions appearing above in our
examples�

A similar di�culty can arise if the de�nition of a solved problem is very speci�c �e�g�
 the desired
con�guration in the �	puzzle
 Laird et al ������

Second
 the quality of the rule learned by the system can be greatly a�ected by the quality of
the explanation given to the EBL procedure� In some domain theories
 for example
 it is eventually
necessary to evaluate arithmetic expressions in order to solve the given problem� However
 if this
evaluation occurs at the very end of problem solving �i�e�
 at the leaves of the explanation�
 it can
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be pruned
 and the resulting rule will be quite general� On the other hand
 if the simpli�cations
are performed as soon as possible
 it will not be possible to prune them from the explanation
 and
the learned rule will be very speci�c� In general
 the best explanation for EBL is the shortest
 most
general one that can be found� Explanations exploiting special	case rules will result in learned rules
that are also only applicable to a few special cases�

Third
 some form of post	optimization of the learned rules is critical� In SOAR
 learned rules
are optimized by carefully ordering the conditions appearing on the left	hand side of the rule so
that they can be tested most e�ciently� In Prodigy
 three techniques are applied to simplify learned
rules� �a� partial evaluation
 �b� condition ordering
 and �c� simpli�cation via domain theorems�

During partial evaluation
 equalities
 constructors �e�g�
 CONS�
 selectors �e�g�
 CDR�
 and logical
connectives �e�g�
 AND
 FORALL� are all simpli�ed as much as possible� For example
 	AND A A� is
simpli�ed to A� As with SOAR
 conditions are carefully ordered to minimize the cost of testing the
rule for applicability� Finally
 new rules are compared to existing rules to determine whether facts
from the domain can be applied to construct a simpler rule� For example
 in the blocks world

every block must either be on the table
 on another block
 or held by the robot arm� This can be
expressed as an axiom so that when a condition such as 	or 	holding x� 	on�table x� 	on x

z�� is constructed
 it can be replaced by TRUE�
Simpli�cation is attempted both within a single learned rule and between pairs of learned rules�

Signi�cant improvements can be obtained in the latter case� For example
 in the STRIPS robot
domain
 Prodigy can discover one rule stating that it is possible to travel between two connected
rooms when the door joining them is open� It can discover a second rule stating that it is possible
to travel between two connected rooms when the door joining them is closed �i�e�
 by opening the
door�� Then
 by applying the domain axiom that says a door must be either open or closed
 it
can combine these two rules into a single rule that says it is always possible to travel between two
connected rooms��

In experimental studies
 Minton found that without post	optimization
 the Prodigy system
actually slowed down rather than speeding up during learning� The application of domain	speci�c
axioms is alone responsible for a ��% speedup�

The fourth lesson from this research is that it is important to be selective in applying explanation	
based learning� In Prodigy
 for example
 heuristics are evaluated to suggest particular points in
the problem	solving process where EBL should be performed� Additionally
 once a rule has been
learned
 it is subjected to a utility analysis that estimates the net bene�t of including the rule in
the system �i�e�
 the savings obtained when the rule succeeds versus the cost of matching the rule
whether it succeeds or not�� Without utility analysis
 Prodigy obtains only a ��% speedup in the
blocks world
 whereas with utility analysis
 Prodigy obtains a ���% speedup�

In Minton�s Prodigy research
 two other interesting results were obtained� First
 Minton com	
pared the control rules learned by Prodigy with control rules coded by humans� The human	
coded rules performed better than the rules learned by Prodigy
 but the di�erences were not
great� Prodigy�s rules reduced the time required to solve ��� scheduling problems to ��% of the
time required without control rules
 whereas the human	coded rules reduced the time to ��%�
Furthermore
 the human	coded rules contained several errors that were discovered and corrected
after noticing cases where Prodigy�s rules were performing better� Hence
 the main result is that
automatically	learned control rules are more complete and more correct than human	coded rules

�This example is from Minton ��	

a�� p� 
��

��



Figure ��� A robot planning problem�

�although ultimately
 human	coded rules perform somewhat better�� Substantial performance im	
provements can be obtained by learning control knowledge�

The second interesting study by Minton compared learned meta	level control rules to learned
base	level macros� In two of his test domains �the STRIPS robot	world and a job	shop scheduling
domain�
 base	level macros produced virtually no speedup at all
 whereas the meta	level control
rules produced very substantial �more than ���% speedups�� In his third test domain �which was
the simplest�
 selective learning of base	level macros obtained results very similar to the meta	level
control rules �although the resulting plans were far from optimal�� The main conclusion is that
meta	level control rules can be signi�cantly more e�ective than base	level macro rules in speedup
learning�

��� Generalization�to�n

One important problem with explanation	based learning is its inability to learn iterative procedures�
This has come to be called the generalization�to�n problem� Consider
 for example
 a robot that
must pass through a sequence of rooms �r�
 r�
 r�
 and r�� in order to get from room r� to the
goal
 room r� �see Figure ���� The solution is simply the following plan�

gothrudoor	r�
r��

gothrudoor	r�
r��

gothrudoor	r�
r��

gothrudoor	r�
r��

gothrudoor	r�
r��

When EBL is applied to determine what other problems could be solved by this same plan
 it
will construct a rule that will apply only in situations where the robot is attempting to reach a
destination room that is connected to the current room by a string of exactly four intermediate
rooms� The problem is that EBL is unable to generalize to the case where the destination is n
rooms away�

One approach to solving this problem is to analyze the explanation to �nd iterative structure�
This iterative structure is then represented as a recursive rule
 and the explanation is reexpressed
using this recursive rule� In this case
 the recursive rule is

traverse	N
Seq
Dest� � inroom	robot
R� �
�N�� � Seq�nil � connected	R
Dest� � gothrudoor	R
Dest��

or

�




�N��� � Seq�cons	First
Rest� � connected	R
First� �

gothrudoor	R
First� � traverse	N��
Rest
Dest��


Once the explanation has been re	represented using the recursive rule
 all of the recursive calls
to the rule can be pruned from the proof tree
 and the remaining proof can be generalized by
the EBL procedure� In this case
 the proof tree
 when pruned
 collapses to the single statement
traverse	�
�r�
r�
r�
r��
r��
 which when generalized
 is converted into the general statement
traverse	N
Seq
Dest��

In general
 the secret to successfully generalizing to n is to reformulate the proof so that the
number of iterations
 n
 appears as an explicit argument to a recursive rule� Once this is achieved

the EBL procedure can generalize it to take any value�

This brief description has omitted several subtleties and alternative approaches to this problem�
See Shavlik ����
�
 Shavlik $ DeJong ����
�
 and Cohen ������ for more details�

��� Imperfect Domain Theories

In order to successfully apply EBL
 it is necessary to have a complete and correct domain theory�
that is
 a domain theory that can provide a correct explanation for every problem� How can EBL
be extended to handle cases where the domain theory is incomplete �i�e�
 missing important rules�
or incorrect �i�e�
 produces incorrect explanations�� Research on these questions is still in an early
phase
 but we will describe two techniques that provide partial solutions to these problems�

Let us �rst consider the case where a training example is presented to the system
 but the
domain theory is unable to produce a complete proof that the example is an instance of the target
concept� In such situations
 one approach that appears promising is to construct a maximal partial
proof and then hypothesize new rules to �ll the remaining �holes�� Generally
 each new rule is
constructed by taking the �bottom� and �top� of the hole and converting them into the left	
and right	hand sides of the rule� Hence
 each hole is �lled by exactly one new rule� This form
of inference is a kind of abduction �Peirce ����!�����
 so this approach to repairing incomplete
theories is sometimes called abductive theory completion�

In Wilkins ������
 for example
 the ODYSSEUS learning system �watches over the shoulder�
of a physician as the physician performs a diagnostic interview� Every time the physician asks a
question
 the learning system attempts to explain why that question is being asked� In one case
where the physician is attempting to diagnose meningitis
 the physician asks the patient if he has
�visual problems�� ODYSSEUS cannot �nd an explanation for this question� However
 it can
construct a partial explanation containing the following steps�

� The physician is trying to test the hypothesis that the patient has viral meningitis�

� Acute meningitis is evidence for viral meningitis�

� Photophobia is a kind of visual problem�

� Physicians usually ask a general question �i�e�
 visual problems� before speci�c subtypes �i�e�

photophobia��

However
 there is a missing connection between acute	meningitis and photophobia� ODYSSEUS
knows that the explanation could be completed if photophobia is evidence for acute	meningitis�
Hence
 it proposes this new rule as a �hole �ller�� The new rule can then be tested by consulting

��



a database of previous cases or by interacting with the physician� Similar systems have been
developed by Hedrick ���
��
 Hall ������
 Berwick ������
 and VanLehn ����
��

In all of these systems
 the process of constructing a maximal partial explanation is implemented
by a parser� The domain theory is viewed as a collection of grammar rules
 and the parser must
�nd a maximal partial parse of the given example� This can be very expensive�it involves both
top	down and bottom	up parsing� Furthermore
 if the remaining �holes� are very large
 the rules
proposed to �ll them will be very speci�c and ad hoc� Hence
 this technique is primarily limited to
cases where the domain theory is nearly complete
 so that the remaining holes are easy to �nd and
can be plausibly �lled by single new rules�

Now that we have considered incomplete theories
 let us turn our attention to domain theories
that produce incorrect explanations� There are many causes of incorrect explanations� Perhaps
the simplest is that the domain theory is overly general
 so that it produces explanations when it
should not� Such domain theories are called �promiscuous� domain theories
 because they tend
to be able to explain anything� In the Meta	DENDRAL system �Buchanan $ Mitchell ��
��
 for
example
 the initial domain theory is a very weak �half	order� theory of mass spectrometry that
can provide several alternative explanations for just about every data point it sees �including data
points that are actually caused by thermal noise��

One approach to re�ning promiscuous domain theories is called Induction Over Explanations
�IOE
 Dietterich $ Flann ������ The idea is to collect a set of training examples that are all
believed to have similar �true� explanations� The domain theory is employed to construct all
possible explanations for each of these examples
 and then an inductive learning algorithm is applied
to these alternative explanations to �nd a single
 maximally	speci�c shared explanation �i�e�
 a
generalized explanation that explains all of the examples�� If negative examples �i�e�
 examples
that should not have any explanation� are also available
 they can constrain the process further�
The generalized explanation found by IOE can be adopted as the new
 corrected domain theory�
Flann and Dietterich ������ have applied IOE to specialize a promiscuous domain theory for chess
in order to develop correct domain theories for several tactical chess concepts �e�g�
 knight fork

skewer
 etc���

The Meta	DENDRAL system applied a similar technique to specialize its half	order theory to
obtain a highly accurate
 specialized domain theory for mass spectroscopy�

��� Summary

Explanation	based learning is a technique for improving the computational e�ciency of reasoning
programs� In its simplest form
 EBL is a kind of generalized caching that acquires generalized
problem'solution pairs �or equivalently
 macro rules�� When EBL is integrated into a meta	level
problem solving architecture
 it can be applied to learn control rules� There is some evidence that
learning control rules is more e�ective for speeding up problem solving than learning base	level
macro rules�

When EBL cannot be applied
 some form of inductive learning must be introduced� Abductive
theory completion is a technique for generating plausible new rules to extend an incomplete domain
theory� Once generated
 the rules must be tested�typically by performing statistical tests on
a collection of examples� Induction over explanations is a technique for re�ning a promiscuous
domain theory by �nding a maximally	speci�c shared explanation� This area of combining inductive
learning with explanation	based learning is currently very active�
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� CONCLUDING REMARKS

This review has covered four areas of machine learning where substantial progress has been made
in the past �ve years� philosophical foundations
 theory of inductive learning
 practical algorithms
for learning from examples
 and explanation	based learning�

There are many topics that have been omitted�three of the most important require mention�
First
 there are many applications where the task is to discover new concepts �or patterns� in a
collection of training examples� This task is often termed �clustering�� Recently
 for instance

a program called Autoclass was applied to a large database of infrared stellar spectra
 and it
discovered a new class of stars �Cheeseman et al ������ Several interesting clustering algorithms
have been developed in the past few years�

The second major omission is the paradigm of case	based reasoning �Kolodner ������ In its
purest form
 case	based reasoning involves simply caching previous problem	solving experience
�e�g�
 caching problem'solution pairs or caching examples and explanations� and then solving fu	
ture problems by retrieving stored solutions to �similar� problems� Elaborations to the case	based
reasoning approach include developing clever indexes for speeding retrieval and performing sophis	
ticated �patching� or �tweaking� of retrieved solutions so that they solve the new problem� Several
interesting applications of case	based reasoning have been developed �e�g�
 Koton ������

Finally
 this article has not discussed the application of machine learning techniques to the devel	
opment and re�nement of expert systems� A few laboratory studies have shown that rules acquired
through inductive learning can match or exceed the performance of rules acquired via intervewing
experts �Michalski $ Chilausky ����
 Quinlan et al ������ Furthermore
 several commercially	
available expert system shells include inductive learning components� Hence
 machine learning
techniques are providing additional tools for aiding the construction of high	performance expert
systems�
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