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1 Introduction

Cyber situation awareness needs to operate at many levels of abstraction. In this
chapter, we discuss situation awareness at a very high level—the behavior of desktop
computer users. Our goal is to develop an awareness of what desktop users are doing
as they work. Such awareness has many potential applications including

• providing assistance to the users themselves,
• providing additional contextual knowledge to lower-level awareness components

such as intrusion detection systems, and
• detecting insider attacks.

The work described here grew out of the TaskTracer system, which is a Mi-
crosoft Windows add-in that extends the Windows desktop user interface to become
a “project-oriented” user interface. The basic hypothesis is that the user’s time at the
desktop can be viewed as multi-tasking among a set of active projects. TaskTracer
attempts to associate project “tags” with each file, folder, web page, email mes-
sage, and email address that the user accesses. It then exploits these tags to provide
project-oriented assistance to the user.

Thomas G. Dietterich
Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR, 97331 USA, e-mail:
tgd@cs.orst.edu

Xinlong Bao
Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR, 97331 USA, e-mail:
bao@eecs.oregonstate.edu

Victoria Keiser
Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR, 97331 USA, e-mail:
baileyvi@eecs.oregonstate.edu

Jianqiang Shen
Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR, 97331 USA, e-mail:
shenj@eecs.oregonstate.edu

1



2 Dietterich et al.

To do this, TaskTracer inserts instrumentation into many Windows programs
including Microsoft Outlook, Word, Excel, Powerpoint, Internet Explorer, and
Windows Explorer (the file browser). This instrumentation captures events at a
semantically-meaningful level (e.g., open excel file, navigate to web page, reply
to email message) rather than at the level of system calls or keystrokes. This in-
strumentation also allows TaskTracer to capture so-called “provenance events” that
record information flow between one object and another, such as copy-paste, attach
file to email message, download file from web page, copy file from flash drive, and
so on. These provenance events allow us to automatically discover and track user
workflows.

This chapter begins with a description of the TaskTracer system, the instrumented
events that it collects, and the benefits it provides to the user. We then discuss two
forms of situation awareness that this enables. The first is to track the current project
of the user. TaskTracer applies a combination of user interface elements and machine
learning methods to do this. The second is to discover and track the workflows of the
user. We apply graph mining methods to discover workflows and a form of hidden
Markov model to track those workflows. The chapter concludes with a discussion
of future directions for high level cyber situation awareness.

2 The TaskTracer System

The goal of the TaskTracer system is to support multi-tasking and interruption re-
covery for desktop users. Several studies (e.g., [7]) have documented that desktop
knowledge workers engage in continual multi-tasking. In one study that we per-
formed [3], we found that the median time to an interruption is around 20 minutes
and the median time to return back to the interrupted project is around 15 minutes.
Often, many hours or days can pass between periods when the user works on a par-
ticular project. These longer interruptions require even more assistance to find the
relevant documents, web pages, and email messages.

To provide assistance to knowledge workers, the TaskTracer attempts to associate
all files, folders, email messages, email contacts, and web pages with user-declared
projects. We will refer to these various data objects as “resources”. To use Task-
Tracer, the user begins by defining an initial hierarchy of projects. To be most ef-
fective, a project should be an ongoing activity such as teaching a class (“CS534”),
working on a grant proposal (“CALO”), or performing an ongoing job responsibility
(“Annual performance reviews”). Projects at this level of abstraction will last long
enough to provide payoff to the user for the work of defining the project and helping
with the resource-to-project associations.
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2.1 Tracking the User’s Current Project

Once the projects are defined, TaskTracer attempts to infer the user’s current project
as the user works. Three methods are employed to do this. First, the user can directly
declare to the system his or her current project. Two user interface components
support this. One is a drop-down combo-box in the Windows TaskBar that allows
the user to type a project name (with auto-completion) or select a project (with
arrow keys or the mouse) to declare as the current project (see Figure 1). Another
user interface component is a pop-up menu (accessed using the keystroke Control +
Backquote) of the 14 most recently used projects (see Figure 2). This supports rapid
switching between the set of current projects.

Fig. 1 The Windows TaskBar component for declaring the user’s current project.

Fig. 2 The pop-up menu that shows the 14 most recently-used projects. The mouse and arrow keys
can be used to select the project to switch to.

The second way that TaskTracer tracks the current project of the user is to apply
machine learning methods to detect project switches based on desktop events. This
will be discussed below.

The third method for tracking the user’s current project is based on applying
machine learning methods to tag incoming email messages by project. When the
user opens an email message, TaskTracer automatically switches the current project
to be the project of the email message. Furthermore, if the user opens or saves an
email attachment, the associated file is also associated with that project. The user
can, of course, correct tags if they are incorrect, and this provides feedback to the
email tagger. We will discuss the email tagger in more detail in the next section.
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TaskTracer exploits its awareness of the current project to associate each new
resource with the user’s current project. For example, if the user creates a new Word
file or visits a new web page, that file or web page is associated with the current
project. This concept of automatically associating resources with a current project
(or activity) was pioneered in the UMEA system [9].

2.2 Assisting the User

How does all of this project association and tagging support multi-tasking and in-
terruption recovery? TaskTracer provides several user interface components to do
this. The most important one is the TaskExplorer (see Figure 3). The left panel of
TaskExplorer shows the hierarchy of projects defined by the user. The right panel
shows all of the resources associated with the selected project (sorted, by default,
according to recency). The user can double click on any of these items to open them.
Hence, the most natural way for the user to recover from an interruption is to go to
TaskExplorer, select a project to resume (in the left panel), and then double-click
on the relevant resources (in the right panel) to open them. A major advantage of
TaskExplorer is that it pulls together all of the resources relevant to a project. In cur-
rent desktop software such as Windows, the relevant resources are scattered across
a variety of user interfaces including (a) email folders, (b) email contacts, (c) file
system folders, (d) browser history and favorites, (e) global recent documents (in
the Start menu), and (f) recent documents in each Office application. Pulling all of
these resources into a single place provides a unified view of the project.

Fig. 3 The TaskExplorer displays all of the resources associated with a project, sorted by recency.

The second way that TaskTracer supports multi-tasking and interruption recov-
ery is by making Outlook project-centered. TaskTracer implements email tagging
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by using the Categories feature of Outlook. This (normally hidden) feature of Out-
look allows the user to define tags and associate them with email messages. The
TaskTracer email tagger utlizes this mechanism by defining one category tag for
each project. TaskTracer also defines a “search folder” for each tag. A search folder
is another Outlook feature that is normally hidden. It allows the user to define a
“view” (in the database sense) over his or her email. This view looks like a folder
containing email messages (see Figure 4). In the case of TaskTracer, the view con-
tains all email messages associated with each project. This makes it easy for the user
to find relevant email messages.

Fig. 4 TaskTracer tags each email message with the project to which it is associated. This tag is
assigned as a “category” for the email message. At left are search folders for each of the TaskTracer
projects.

A third method of assisting the user is the Folder Predictor. TaskTracer keeps
track of which folders are associated with each project. Based on the current project,
it can predict which folders the user is likely to want to visit when performing an
Open or Save. Before each Open/Save, TaskTracer computes a set of three folders
that it believes will jointly minimize the expected number of mouse clicks to get
to the target folder. It then initializes the File Open/Save dialogue box in the most
likely of these three folders and places shortcuts to all three folders in the so-called
“Places Bar” on the left (see Figure 5). Shortcuts to these three folders are also
provided as toolbar buttons in Windows Explorer so that the user can jump directly
to these folders by clicking on the buttons (see Figure 6). Our user studies have
shown that these folder predictions reduce the average number of clicks by around
50% for most users as compared to the Windows default File Open/Save dialogue
box.
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Fig. 5 The Folder Predictor places three shortcuts in the “Places Bar” on the left of the File
Open/Save dialogue box. In this case, these are “Task Tracer”, “email-predictor”, and “reports”.

Fig. 6 The Folder Predictor adds a toolbar to the windows file browser (Windows Explorer) with
the folder predictions; see top right.

2.3 Instrumentation

TaskTracer employs Microsoft’s addin architecture to instrument Microsoft Word,
Excel, Powerpoint, Outlook, Internet Explorer, Windows Explorer, Visual Studio,
and certain OS events. This instrumentation captures a wide variety of application
events including the following:
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• For documents: New, Open, Save, Close,
• For email messages: Open, Read, Close, Send, Open Attachment, New Email

Message Arrived,
• For web pages: Open,
• For windows explorer: New folder, and
• For Windows XP OS: Window Focus, Suspend/Resume/Idle.

TaskTracer also instruments its own components to create an event whenever the
user declares a change in the current project or changes the project tag(s) associated
with a resource.

TaskTracer also instruments a set of provenance events that capture the flow of
information between resources. These include the following:

• For documents: SaveAs,
• For email messages: Reply, Forward, Attach File, Save Attachment, Click on

Web Hyperlink,
• For web pages: Navigate (click on hyperlink), Upload file, Download file,
• For windows explorer: Rename file, Copy file, Rename folder, and
• For Windows XP OS: Copy/Paste, Cut/Paste.

All of these events are packaged up as TaskTracer events and transmitted on
the TaskTracer publish/subscribe event bus. A component called the Association
Engine subscribes to these events and creates associations between resources and
projects. Specifically, when a resource is opened and has window focus for at least
10 seconds, then the Association Engine automatically tags that resource with the
user’s current project.

3 Machine Learning for Project Associations

There are three machine learning components in TaskTracer: (a) the email tagger,
(b) the project switch detector, and (c) the folder predictor. We now describe the
algorithms that are employed in each of these.

3.1 The Email Tagger

When an email message arrives, TaskTracer extracts the following set of features to
describe the message:

• All words in the subject line and body (with stop words removed),
• One boolean feature for each recipient email address (including the sender’s

email address), and
• One boolean feature for each unique set of recipients. This is a particularly valu-

able feature, because it captures the “project team”.
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These features are then processed by an online supervised learning algorithm to
predict which project is the most appropriate to assign to this email message. Our
team recently completed a comparison study of several online multiclass learning
algorithms to determine which one worked best on our email data set. The data set
consists of 21,000 messages received by Tom Dietterich, dating from 2004 to 2008.
There are 380 classes (projects), ranging in size from a single message to 2500
messages. Spam has already been removed.

Six different machine learning algorithms were examined: Bernoulli Naive Bayes
[6], Multinomial Naive Bayes [11], Transformed Weight-Normalized Complement
Naive Bayes [13], Term Frequency-Inverse Document Frequency Counts [14], On-
line Passive Aggressive [5], and Confidence Weighted [5].

Bernoulli Naive Bayes (BNB) is the standard Naive Bayes classification algo-
rithm which is frequently employed for simple text classification [6]. BNB estimates
for each project j and each feature x, P(x| j) and P( j), where x is 1 if the feature (i.e.,
word, email address, etc.) appears in the message and 0 otherwise. A message is pre-
dicted to belong to the project j that maximizes P( j) ∏x P(x| j), where the product
is taken over all possible features. (This can be implemented in time proportional to
the length of the email message.)

Multinomial Naive Bayes (MNB) [11] is a variation on Bernoulli Naive Bayes
in which x is a multinomial random variable that indexes the possible features, so
P(x| j) is a multinomial distribution. We can conceive of this as a die with one “face”
for each feature. An email message is generated by first choosing the project ac-
cording to P( j) and then rolling the die for project j once to generate each feature
in the message. A message is predicted to belong to the project j that maximizes
P( j)∏x P(x| j), but now the product x is over all appearances of a feature in the
email message. Hence, multiple occurrences of the same word are captured.

Rennie et al. [13] introduced the Transformed Weight-Normalized Complement
Naive Bayes (TWCNB) algorithm. This improves MNB through several small adap-
tations. It transforms the feature count to pull down higher counts while maintaining
an identity transform on 0 and 1 counts. It uses inverse document frequency to give
less weight to words common among several different projects. It normalizes word
counts so that long documents do not receive too much additional weight for re-
peated occurrences. Instead of looking for a good match of the target email to a
project, TWCNB looks for a poor match to the project’s complement. It also nor-
malizes the weights.

Term Frequency-Inverse Document Frequency (TFIDF) is a set of simple counts
that reflect how closely a target email message matches a project by dividing the
frequency of a feature within a project by the log of the number of times the feature
appears in messages belonging to all other projects. A document is predicted to
belong to the project that gives the highest sum of TFIDF counts [14].

Crammer et al. [5] introduced the Online Passive Aggressive Classifier (PA), the
multiclass version of which uses TFIDF counts along with a shared set of learned
weights. When an email message is correctly predicted by a large enough confi-
dence, the weights are not changed (“passive”). When a message is incorrectly pre-



High Level Situation Awareness 9

dicted, the weights are aggressively updated so that the correct project would have
been predicted with a high level of confidence.

Confidence Weighted Linear Classification (CW) is an online algorithm intro-
duced by Dredze et al. [5]. It maintains a probability distribution over the learned
weights of the classifier. Similar in spirit to PA, when a prediction mistake is made,
CW updates this probability distribution so that with probability greater than 0.9,
the mistake would not have been made. The effect of this is to more aggressively
update weights in which the classifier has less confidence and less aggressively for
weights in which it has more confidence.

It should be emphasized that all of these algorithms only require time linear in
the size of the input and in the number of projects. Hence, these algorithms should
be considered for other cyber situation awareness settings that require high speed
for learning and for making predictions.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec
is
io
n
(E
m
ai
ls
Co

rr
ec
t/
Em

ai
ls
Pr
ed

ic
te
d)

Coverage (Emails Predicted / Total Emails)

PA TFIDF BNB MNB TWCNB CW

Fig. 7 Precision/Coverage curves for six online learning algorithms applied to email tagging by
project.

Figure 7 shows a precision-coverage plot comparing the online performance of
these algorithms. Online performance is measured by processing each email mes-
sage in the order that the messages were received. First, the current classifier is
applied to predict the project of the message. If the classifier predicts the wrong
project, then this is counted as an error. Second, the classifier is told the correct
project, and it can then learn from that information. Each curve in the graph cor-
responds to varying a confidence threshold θ . All of these classifiers produce a
predicted score (usually a probability) for each possible project. The confidence
score is the difference between the score of the top prediction and the score of the
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second-best prediction. If this confidence is greater than θ , then the classifier makes
a prediction. Otherwise, the classifier “abstains”. By varying θ , we obtain a tradeoff
between coverage (shown on the horizontal axis)—which is the percentage of email
messages for which the classifier made a prediction—and precision (on the vertical
axis)—which is the probability that the prediction is correct. For email, a typical
user would probably want to adjust θ so that coverage is 100% and then manually
correct all of the mislabeled email.

We can see that the best learning algorithm overall is the Confidence Weighted
(CW) classifier. It achieves about 78% precision at 100% coverage, so the user
would need to correct 22% of the email tags. In contrast, without the email tag-
ger, the user would need to assign tags (or sort email into folders) 100% of the time,
so this represents a 78% reduction in the amount of time spent tagging or sorting
email messages.

One surprise is that the venerable Bernoulli Naive Bayes algorithm performed the
second-best, and many classifiers that were claimed to be improvements over BNB
performed substantially worse. This probably reflects the fact that email messages
are quite different from ordinary textual documents.

3.2 Project Switch Detector

As we discussed above, TaskTracer monitors various desktop events (Open, Close,
Save, SaveAs, Change Window Focus, and so on). In addition, once every minute
(or when the user declares a project switch), TaskTracer computes an information
vector Xt describing the time interval t since the last information vector was com-
puted. This information vector is then mapped into feature vectors by two func-
tions: FP:(Xt ,y j)→R

k and FS : (Xt)→R
m. The first function FP computes project-

specific features for a specified project y j; the second function FS computes switch-
specific features. The project-specific features include

• Strength of association of the active resource with project y j: if the user has
explicitly declared that the active resource belongs to y j (e.g., by drag-and-drop
in TaskExplorer), the current project is likely to be y j. If the active resource was
implicitly associated with y j for some duration (which happens when y j is the
declared project and then the resource is visited), this is a weaker indication that
the current project is y j.

• Percentage of open resources associated with project y j: if most open resources
are associated with y j, it is likely that y j is the current project.

• Importance of window title word x to project y j. Given the bag of words Ω ,
we compute a variant of TF-IDF [8] for each word x and project y j: TF(x,Ω) ·
log |S|

DF(x,S)
. Here, S is the set of all feature vectors not labeled as y j, TF(x,Ω) is

the number of times x appears in Ω and DF(x,S) is the number of feature vectors
containing x that are not labeled y j.
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These project-specific features are intended to predict whether y j is the current
project.

The switch-specific features predict the likelihood of a switch regardless of which
projects are involved. They include

• Number of resources closed in the last 60 seconds: if the user is switching
projects, many open resources will often be closed.

• Percentage of open resources that have been accessed in the last 60 seconds: if
the user is still actively accessing open resources, it is unlikely there is a project
switch.

• The time since the user’s last explicit project switch: immediately after an explicit
switch, it is unlikely the user will switch again. But as time passes, the likelihood
of an undeclared switch increases.

To detect a project switch, we adopt a sliding window approach: at time t, we
use two information vectors (Xt−1 and Xt ) to score every pair of projects for time
intervals t−1 and t. Given a project pair 〈yt−1,yt〉, the scoring function g is defined
as

g(〈yt−1,yt〉) = Λ1 ·FP(Xt−1,yt−1)+Λ1 ·FP(Xt ,yt)
+φ(yt−1 �= yt)(Λ2 ·FS(Xt−1)+Λ3 ·FS(Xt)) ,

where Λ = 〈Λ1,Λ2,Λ3〉 ∈R
n is a set of weights to be learned by the system, φ(p) =

−1 if p is true and 0 otherwise, and the dot (·) means inner product. The first two
terms of g measure the likelihood that yt−1 and yt are the projects at time t−1 and t
(respectively). The third term measures the likelihood that there is no project switch
from time t − 1 to t. Thus, the third component of g serves as a “switch penalty”
when yt−1 �= yt .

The project switch detector searches for the pair 〈ŷ1, ŷ2〉 that maximizes the score
function g. If ŷ2 is different from the current declared project and the score is larger
than a confidence threshold, then a switch is predicted. At first glance, this search
over all pairs of projects would appear to require time quadratic in the number of
projects. However, the following algorithm computes the best score in linear time:

y∗t−1 := argmax
y

Λ1 ·FP(Xt−1,y)

A(y∗t−1) := Λ1 ·FP(Xt−1,y
∗
t−1)

y∗t = argmax
y

Λ1 ·FP(Xt ,y)

A(y∗t ) = Λ1 ·FP(Xt ,y
∗
t )

S = Λ2 ·FS(Xt−1)+Λ3 ·FS(Xt)
y∗ = argmax

y
Λ1 ·FP(Xt−1,y)+Λ1 ·FP(Xt ,y)

AA(y∗) = Λ1 ·FP(Xt−1,y
∗)+Λ1 ·FP(Xt ,y

∗)
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Each pair of lines can be computed in time linear in the number of projects. We
assume y∗t−1 �= y∗t . To compute the best score g(〈ŷ1, ŷ2〉), we compare two cases:
g(y∗,y∗) = AA(y∗) is the best score for the case where there is no change in the
project from t − 1 to t, and g(y∗t−1,y

∗
t ) = A(y∗t−1)+ A(y∗t ) + S if there is a switch.

When y∗t−1 = y∗t , we can compute the best score for the “no switch” case by tracking
the top two scored projects at time t −1 and t.

A desirable aspect of this formulation is that the classifier is still linear in the
weights Λ . Hence, we can apply any learning algorithm for linear classification to
this problem. We chose to apply a modified version of the Passive-Aggressive (PA)
algorithm discussed above. The standard Passive-Aggressive algorithm works as
follows: Let the real projects be y1 at time t −1 and y2 at time t, and 〈ŷ1, ŷ2〉 be the
highest scoring incorrect project pair. When the system makes an error, PA updates
Λ by solving the following constrained optimization problem:

Λt+1 = argmin
Λ∈Rn

1
2
‖Λ −Λt‖2

2 +Cξ 2

subject to g(〈y1,y2〉)−g(〈ŷ1, ŷ2〉) ≥ 1− ξ .

The first term of the objective function,
1
2
‖Λ −Λt‖2

2, says that Λ should change as

little as possible (in Euclidean distance) from its current value Λ t . The constraint,
g(〈y1,y2〉)−g(〈ŷ1, ŷ2〉)≥ 1−ξ , says that the score of the correct project pair should
be larger than the score of the incorrect project pair by at least 1−ξ . Ideally, ξ = 0,
so that this enforces the condition that the margin (between correct and incorrect
scores) should be 1.

The purpose of ξ is to introduce some robustness to noise. We know that in-
evitably, the user will occasionally make a mistake in providing feedback. This
could happen because of a slip in the UI or because the user is actually inconsis-
tent about how resources are associated with projects. In any case, the second term
in the objective function, Cξ 2, serves to encourage ξ to be small. The constant pa-
rameter C controls the tradeoff between taking small steps (the first term) and fitting
the data (driving ξ to zero). Crammer et al. [2] show that this optimization problem
has a closed-form solution, so it can be computed in time linear in the number of
features and the number of classes.

The Passive-Aggressive algorithm is very attractive. However, one risk is that Λ
can still become large if the algorithm runs for a long time, and this could lead to
overfitting. Hence, we modified the algorithm to include an additional regularization
penalty on the size of Λ . The modified weight-update optimization problem is the
following:

Λt+1 = argmin
Λ∈Rn

1
2
‖Λ −Λt‖2

2 +Cξ 2 +
α
2
‖Λ‖2

2

subject to g(〈y1,y2〉)−g(〈ŷ1, ŷ2〉) ≥ 1− ξ .
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The third term in the objective function,
α
2
‖Λ‖2

2, encourages Λ to remain small.

The amount of the penalty is controlled by another constant parameter, α .
As with Passive-Aggressive, this optimization problem has a closed-form solu-

tion. Define Zt =
〈
Z1

t ,Z
2
t ,Z

3
t

〉
where

Z1
t = FP(Xt−1,y1)+FP(Xt ,y2)−FP(Xt−1, ŷ1)−FP(Xt , ŷ2)

Z2
t = (φ(y1 �= y2)−φ(ŷ1 �= ŷ2))FS(Xt−1)

Z3
t = (φ(y1 �= y2)−φ(ŷ1 �= ŷ2))FS(Xt).

Then the updated weight vector can be computed as

Λt+1 :=
1

1+ α
(Λt + τtZt),

where

τt =
1−Λt ·Zt + α
‖Zt‖2

2 + 1+α
2C

.

The time to compute this update is linear in the number of features. Furthermore,
the cost does not increase with the number of classes, because the update involves
comparing only the predicted and correct classes.
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Fig. 8 User 1: Precision of different learning methods as a function of the recall, created by varying
the confidence threshold.

To evaluate the Project Switch Detector, we deployed TaskTracer on Windows
machines in our research group and collected data from two regular users, both of
whom were fairly careful about declaring switches. In addition, an earlier version
of the Switch Detector that employed a simpler set of features and a support vector
machine (SVM) classifier was running throughout this time, and the users tried to
provide feedback to the system throughout.
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Fig. 9 User 2: Precision of different learning methods as a function of the recall, created by varying
the confidence threshold.

The first user (User 1) is a “power user”, and this dataset records 4 months of
daily work, which involved 299 distinct projects, 65,049 instances (i.e., information
vectors), and 3,657 project switches. The second user (User 2) ran the system for 6
days, which involved 5 projects, 3,641 instances, and 359 projects switches.

To evaluate the online learning algorithm, we make the assumption that project
switches observed in the users’ data are all correct. We then perform the following
simulation. Suppose the user forgets to declare every fourth switch. We feed the
information vectors to the online algorithm and ask it to make predictions. A switch
prediction is treated as correct if the predicted project is correct and if the predicted
time of the switch is within 5 minutes of the real switch point. When a prediction is
made, our simulation provides the correct time and project as feedback.

The algorithm parameters were set based on experiments with non-TaskTracer
benchmark sets. We set C = 10 (which is a value widely-used in the literature) and
α = 0.001 (which gave good results on separate benchmark data sets).

Performance is measured by precision and recall. Precision is the number of
switches correctly predicted divided by the total number of switch predictions, and
recall is the number of switches correctly predicted divided by the total number of
undeclared switches. We obtain different precision and recall values by varying the
score confidence threshold required to make a prediction.

The results comparing our online learning approach with the SVM approach are
plotted in Figures 8 and 9. The SVM method only uses the bag of words from
the window titles and pathname/URL to predict project switches. As we described
above, the online passive-aggressive approach incorporates much richer contextual
information. This makes our new approach more accurate. For Figure 8, we see that
for levels of recall below 60%, the passive-aggressive approach has higher precision.
If we tune the confidence threshold to achieve 50% recall (so half of all project
switches are missed), the precision is greater than 85%, so there are only 15% false
predictions. Qualitatively, the user reports that these false predictions are typically
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very sensible. For example, suppose the user is working on a new project Pnew and
needs to access a document from a previous project Pold . When the document is
opened, the project switch detector will predict that the user is switching to Pold , but
in fact, the user wants the document to now become associated with Pnew. It is hard
to see how the project switch detector can avoid this kind of error. For the second
user, the online passive-aggressive approach is hugely superior to the SVM method.

It should be noted that the new method is also much more efficient than the SVM
method. On an ordinary PC, the passive-aggressive algorithm only took 4 minutes
to make predictions for User 1’s 65,049 instances while the SVM approach needed
more than 12 hours!

3.3 The Folder Predictor

The Folder Predictor is much simpler than either of the other two learning methods.
Folder Predictor maintains a count N( j, f ) for each project j and folder f . N( j, f ) is
the discounted number of opens or saves of files stored in folder f while the current
project is j. Each time the user opens or saves a file in folder f when the current
project is j, this count is updated as

N( j, f ) := ρN( j, f )+ 1,

where ρ is a discount factor, which we typically set at 0.85. At the same time, for
all other folders, f ′ �= f , the counts are updated as

N( j, f ′) := ρN( j, f ′).

Given these statistics, when the user initiates a new Open or Save, Folder Predic-
tor estimates the probability that the user will want to use folder f as

P( f | j) =
N( j, f )

∑ f N( j, f )
,

where j is the user’s current project.
As we described in Section 2, the Folder Predictor modifies the “Places Bar” of

the File Open/Save dialogue box to include shortcuts to three folders, which we will
refer to as f1 (the top-most), f2, and f3. In addition, where Windows permits, Task-
Tracer initializes the dialogue box to start in f1. Given the probability distribution
P( f | j), the Folder Predictor chooses these three folders in order to minimize the
expected number of clicks that the user will need to perform in order to reach the
user’s desired folder. Specifically, Folder Predictor computes ( f 1, f2, f3) as follows:

( f1, f2, f3)= argmin
( f1, f2, f3)

∑
f

P( f | j)min{clicks( f1, f ),1+clicks( f2, f ),1+clicks( f3, f )}.
(1)
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In this formula, clicks(i, j) is the number of clicks (or double clicks) it takes to
navigate from folder i to folder j in the folder hierarchy. We performed a user study
that found, among other things, that the most common way that users find and open
files is by clicking up and down in the folder hierarchy using the File Open/Save
dialogue box. Hence, the number of click operations (were a single click or a double
click are both counted as one operation) is just the tree distance between folders i
and j. The min in Equation 1 assumes that the user remembers enough about the
layout of the folder hierarchy to know which of the three folders f 1, f2, or f3 would
be the best starting point for navigating to the target folder. The second and third
items inside this minimization include an extra click operation, because the user
must click on the Places Bar shortcut before navigating through the hierarchy.

Users can have thousands of folders, so we do not want to consider every possible
folder as a candidate for f1, f2, and f3. Instead, we consider only folders for which
P( f | j) > 0 and the ancestors of those folders in the hierarchy.

Table 1 Folder Predictor Data Sets
ID User Type Data Collection Time Set Size
1 Professor 12 months 1748
2 Professor 4 months 506
3 Graduate Student 7 months 577
4 Graduate Student 6 months 397

To evaluate the Folder Predictor, we collected Open/Save data from four Task-
Tracer users. Table 1 summarizes the data. One beautiful aspect of folder prediction
is that after making a prediction, TaskTracer will always observe the user’s true tar-
get folder, so there is no need for the user to provide any special feedback to the
Folder Predictor. We added a small amount of instrumentation to collect the folder
that Windows would have used if Folder Predictor had not been running.
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Figure 10 compares the average number of clicks for these four users using
Folder Predictor with the average number of clicks that would have been required by
the Windows defaults. Folder Predictor has reduced the number of clicks by 49.9%.
The reduction is statistically significant (p < 10−28). Figure 11 shows a histogram
of the number of clicks required to reach the target folder under the windows default
and the folder predictor. Here we see that the Windows default starts in the target
folder more than 50% of the time, whereas Folder Predictor only does this 42% of
the time. But if the Windows default is wrong, then the target folder is rarely less
than 2 clicks away and often 7, 8, or even 12 clicks away. In contrast, the Folder
Predictor is often one click away, and the histogram falls smoothly and rapidly. The
reason Folder Predictor is often one click away is that if P( f | j) is positive for two or
more sibling folders, the folder the minimizes the expected number of clicks is often
the parent of those folders. The parent is only 1 click away, whereas if we predict
the wrong sibling, then the other sibling is 2 clicks away.

Figure 12 shows a learning curve for Folder Predictor. We see that as it observes
more Opens and Saves, it becomes more accurate. After 30 Opens/Saves, the ex-
pected number of clicks is less than 1.

Qualitatively, Folder Predictor tends to predict folders that are widely spaced in
the folder hierarchy. Users of TaskTracer report that it is their favorite feature of the
system.

4 Discovering User Workflows

For many knowledge workers, a substantial fraction of their time at the computer
desktop is occupied with routine workflows such as writing reports, performance
reviews, filling out travel reimbursements, and so on. It is easy for knowledge work-
ers to lose their situation awareness and forget to complete a workflow. This is true
even when people maintain “to-do” lists (paper or electronic). Indeed, electronic to-
do managers have generally failed to help users maintain situation awareness. One
potential reason is that these tools introduce substantial additional work, because
the user must not only execute the workflows but also maintain the to-do list [1].

An interesting challenge for high level situation awareness is to create a to-do
manager that can maintain itself. Such a to-do manager would need to detect when
a new to-do item should be created and when the to-do item is completed. More
generally, an intelligent to-do manager should track the status of each to-do item
(due date, percentage complete, etc.). Often, a to-do item requires making requests
for other people to perform certain steps, so it would be important for a to-do man-
ager to keep track of items that are blocked waiting for other people (and offer to
send reminder emails as appropriate).

A prerequisite for creating such an intelligent to-do manager is developing a
system that can discover and track the workflows of desktop knowledge workers.
The central technical challenge is that because of multi-tasking, desktop workflows
are interleaved with vast amounts of irrelevant activity. For example, a workflow for
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assembling a quarterly report might require two weeks from start to finish. During
those two weeks, a busy manager might receive 1000 email messages, visit several
hundred web pages, work on 50-100 documents, and make progress on dozens of
other workflows. How can we discover workflows and then track them when they
are embedded in unrelated multi-tasking activity?

Our solution to this conundrum is to assume that a workflow will be a connected
subgraph within an information flow graph that captures flows of information among
resources. For example, a travel authorization workflow might involve first exchang-
ing email messages with a travel agent and then pasting the travel details into a Word
form and emailing it to the travel office. Finally, the travel office replies with an au-
thorization code. Figure 13 shows a schematic representation of this workflow as a
directed graph. The advantage of this connected-subgraph approach is that it allows
us to completely ignore all other desktop activity and focus only on those events
that are connected to one another via information flows. Of course the risk of this
approach is that in order for it to succeed, we must have complete coverage of all
possible information flows. If an information flow link is missed, then the workflow
is no longer a connected graph, and we will not be able to discover or track it.

Outgoing Incoming Document Outgoing Incoming

ReplyToReplyTo Copy/
Paste

Attach

Email Email
Document

Email Email

Fig. 13 Information flow graph for the travel authorization workflow. Circular nodes denote email
messages, and squares denote documents. Shaded nodes denote incoming email messages. Each
node is labeled with the type of resource, and each edge is labeled with an information flow action.
Multiple edges can connect the same two nodes (e.g., SaveAs and Copy/Paste).

Our current instrumentation in TaskTracer captures many, but not all, important
information flows. Cases that we do not capture include pasting into web forms,
printing a document as a pdf file, exchanging files via USB drives, and utilities that
zip and unzip collections of files. We are also not able to track information flows
that occur through “cloud” computing tools such as Gmail, GoogleDocs, Share-
Point, and wiki tools. Finally, sometimes the user copies information visually (by
looking at one window and typing in another), and we do not detect this information
flow. Nonetheless, our provenance instrumentation does capture enough information
flows to allow us to test the feasibility of the information-graph approach.

The remainder of this section describes our initial efforts in this direction. These
consist of three main steps: (a) building the information flow graph, (b) mining the
information flow graph to discover workflows, and (c) applying an existing system,
WARP, to track these workflows.
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4.1 Building the Information Flow Graph

The basic information flow graph is constructed from the provenance events cap-
tured by TaskTracer. In addition, for this work, we manually added two other in-
formation flow events that are not currently captured by our instrumentation: (a)
converting from Word files to PDF files and (b) referring to a document from an
email message (e.g., by mentioning the document title or matching keywords).

As we will see below, our graph mining algorithm cannot discover loops. Nonethe-
less, we can handle certain kinds of simple loops by pre-processing the graph.
Specifically, if the graph contains a sequence of SaveAs links (e.g., because the
user created a sequence of versions of a document), this sequence is collapsed to
a single SaveAs* relationship. Similarly, if the graph contains a sequence of email
messages to and from a single email address, this is collapsed to a single ReplyTo*
relationship.

4.2 Mining the Information Flow Graph

The goal of our graph mining algorithm is to find all frequent subgraphs of the
information flow graph. These correspond to recurring workflows. Two subgraphs
match if the types of the resources match and if they have the same set of edges
with the same event labels. A subgraph is frequent if it occurs more than s times; s
is called the minimum support threshold.

To find frequent subgraphs, we apply a two step process. The first step is to find
frequent subgraphs while ignoring the labels on the edges. We apply the GASTON
algorithm of Nijssen and Kok [12] to find maximal subgraphs that appear at least s
times in the information flow graph. The second step is then to add edge labels to
these frequent subgraphs to find all frequent labeled subgraphs. We developed a dy-
namic programming algorithm that can efficiently find these most frequent labeled
subgraphs [15].

4.3 Recognizing Workflows

The labeled subgraphs can be converted to a formalism called the Logical Hidden
Markov Model or LHMM [10]. An LHMM is like a standard HMM except that the
states are logical atoms such as ATTACH(MSG1, FILE1), which denotes the action
of attaching a file (FILE1) to an email message (MSG1). This formalism allows us
to represent the parameters of a workflow, such as the sender and recipients of an
email message, the name of a file, and so on.

Each frequent labeled subgraph is converted to a LHMM as follows. First, each
edge in the subgraph becomes a state in the LHMM. This state generates the corre-
sponding observation (the TaskTracer event) with probability 1. An initial “Begin”
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state and a final “End” state are appended to the start and end of the LHMM. Second,
state transitions are added to the LHMM for each observed transition in the match-
ing subgraphs from the information flow graph. If an edge was one of the “loop”
edges (ReplyTo* or SaveAs*), then a self-loop transition is added to the LHMM.
Transition probabilities are estimated based on the observed number of transitions
in the information flow graph. The “Begin” state is given a self-loop with proba-
bility α . Finally, each state transition in the LHMM is replaced by a transition to a
unique “Background” state. The Background state generates any observable event.
It also has a self-loop with probability β . This state is intended to represent all of
the user actions that are not part of the workflow.

Hung Bui (personal communication) has developed a system called WARP that
implements a recognizer for logical hidden Markov networks. It does this by per-
forming a “lifted” version of the usual probabilistic reasoning algorithms designed
for standard HMMs. WARP handles multiple interleaved workflows by using a Rao-
Blackwellized Particle Filter [4], which is an efficient approximate inference algo-
rithm.

4.4 Experimental Evaluation

To evaluate our discovery method, we collected desktop data from four participants
at SRI International as part of the DARPA-sponsored CALO project. The partic-
ipants performed a variety of workflows involving preparing, submitting, and re-
viewing conference papers, preparing and submitting quarterly reports, and sub-
mitting travel reimbursements. These were interleaved with other routine activities
(reading online newspapers, handling email correspondence). Events were captured
via TaskTracer instrumentation and augmented with the two additional event types
discussed above to create information flow graphs. Figure 14 shows one of the four
flow graphs. There were 26 instances of known workflows in the four resulting in-
formation flow graphs.

Figure 15 shows an example of one discovered workflow. This workflow arose as
part of two scenarios: (a) preparing a quarterly report and (b) preparing a conference
paper. In both cases, an email message is received with an attached file. For the
quarterly report, this file is a report template. For the conference paper, the file as
a draft paper from a coauthor. The user saves the attachment and then edits the file
through one or more SaveAs events. Finally, the user attaches the edited file to an
email that is a reply to the original email message.

Another workflow that we discovered was the counterpart to this in which the
user starts with a document, attaches it to an outgoing email message, and sends
it to another person (e.g., to have them edit the document and return it). There is
a series of exchanged emails leading to an email reply with an attached file from
which the user saves the attachment. Our current system is not able to fuse these
two workflows into a multi-user workflow, although that is an important direction
for future research.
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Save SaveAs* Attach

ReplyTo

Attachment

Fig. 15 Example of a discovered workflow.

Three other workflows or workflow sub-procedures were discovered from the
four participant’s information graphs.

To evaluate the method, we performed two experiments. First, we conducted a
leave-one-user-out cross-validation by computing how well the workflows discov-
ered using the three remaining users matched the information flow graph of the
held-out user. For each information graph, we first manually identified all instances
of known workflows. Then for each case where a discovered workflow matched a
subgraph of the information graph, we scored the match by whether it overlapped a
known workflow. We computed the precision, recall, and F1 score of the matched
nodes and arcs for the true workflows. The precision is the fraction of the matched
nodes and arcs in the information graph that are part of known workflows. The recall
is the fraction of all nodes and arcs in known workflows that are matched by some
discovered workflow subgraph. The F1 score is computed as

F1 =
2(precision× recall)

precision+ recall
.
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With a minimum support of 3, we achieved an F1 score of 91%, which is nearly
perfect.

The second experiment was to test the ability of the WARP engine to recognize
these workflows in real time. Each discovered workflow was converted to a Logical
HMM. Then the events recorded from the four participants were replayed in time
order and processed by WARP. For each event, WARP must decide whether it is the
next event of an active workflow instance, the beginning of a new workflow instance,
or a background event. After each event, we scored whether WARP had correctly
interpreted the event. If it had not, we then corrected WARP and continued the pro-
cessing. We computed WARP’s precision and recall as follows. Precision is the ratio
of the number of workflow states correctly recognized divided by the total number
recognized. Recall is the ratio of the number of workflow states correctly recognized
divided by the total number of true workflow states in the event sequence. WARP
obtained a precision of 91.3%, a recall of 66.7%, and an F1 score of 77.1%. As these
statistics show, WARP is failing to detect many states. Most of these were the initial
states of workflows. An analysis of these cases shows that most initial states involve
an email message. There are many email messages, but only a small fraction of them
initiate new workflows. We believe that distinguishing these “workflow initiation”
emails requires analyzing the body of the email to detect information such as a re-
quest for comments, a call for papers, a response to a previous request, and so on.
Neither TaskTracer nor WARP currently has any ability to do this kind of analysis.

5 Discussion

This chapter has presented the TaskTracer system and its machine learning compo-
nents as well as a workflow discovery system and its workflow tracking capabili-
ties. These operate at two different levels of abstraction. TaskTracer is tracking high
level projects. These projects are unstructured tags associated with a set of resources
(files, folders, email messages, web pages, and email addresses). TaskTracer does a
very good job of tracking these high level projects, and it is able to use this project
information to organize the user’s information and support interruption recovery and
information re-finding.

The workflow discovery work is looking for more detailed patterns of informa-
tion flow. The most important idea in this work is to capture a large set of informa-
tion flow actions, represent those as an information flow graph, and then formulate
the workflow discovery problem as one of finding frequently-occurring subgraphs
within the information flow graph. The workflow discovery algorithm was able to
find the key subgraphs corresponding to known workflows. However, it often did not
discover the complete workflows but only the “kernels”. For example, a complete
workflow for quarterly reporting involved a combination of two workflow fragments
discovered by our system: one fragment for receiving the report template and fill-
ing it out and another fragment for sending the report template to multiple team
members, collecting their responses, and then editing them into the original report
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template. Hence, the workflows discovered by the system do not necessarily cor-
respond directly to the user’s notion of a workflow. Nonetheless, these discovered
workflows could be very useful for providing a kind of “auto-completion” capabil-
ity, where the system could offer to perform certain steps in a workflow (e.g., saving
a file attachment or initiating an email reply with the relevant file attached).

Another shortcoming of our workflow discovery approach is that it cannot dis-
cover workflows involving conditional (or unconditional) branching. Unconditional
branching occurs when there are multiple ways of achieving the same goals. For ex-
ample, when submitting a letter of reference, a web page may support either pasting
text into a text box or uploading a text file to a web site. Conditional branching could
occur when a workflow involves different steps under certain conditions. For exam-
ple, a travel requisition may require different steps for international travel versus
domestic travel. Extending our workflow discovery methods to handle such cases is
an important area for future research.

The focus of this chapter has been on high level situation awareness to support
the knowledge worker. But it is also interesting to consider ways in which high level
situation awareness could help with cyber defense. One possibility is that this high
level situation awareness could provide greater contextual understanding of lower-
level actions. For example, if a user is visiting a novel web page or sending email
to a novel recipient, this could be the start of an insider attack or it could be a new
instance of a known workflow. In the latter case, it is unlikely to be an attack.

A second possibility is that this higher level situation awareness could help dis-
tinguish those actions (e.g., sending email messages, accessing web pages) that
were intentionally initiated by the user from actions initiated by malware. The user-
initiated actions should involve known workflows and known projects, whereas the
malware actions would be more likely to involve files and web sites unrelated to the
user’s current project.

6 Concluding Remarks

The difficulty of maintaining cyber situation awareness varies depending on the level
of abstraction that is required. This chapter has described two of the highest levels:
projects and workflows. An important challenge for future research is to integrate
situation awareness at all levels to provide systems that are able to exploit a broad
range of instrumentation and context to achieve high accuracy, rapid response, and
very low false alarm rates. Research is still quite far from this goal, but the work
reported in this chapter suggests that this goal is ultimately achievable.
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