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Abstract 

Local feature-based matching is robust to both clutter 
and occlusion. However, a primary shortcoming of local 
features is a deficiency of global information that can 
cause ambiguities in matching. Local features combined 
with global relationships convey much more information, 
but global spatial information is often not robust to 
occlusion and/or non-rigid transformations. This paper 
proposes a new framework for including global context 
information into local feature matching, while still 
maintaining robustness to occlusion, clutter, and non-
rigid transformations. To generate global context 
information, we extend previous fixed-scale, circular-bin 
methods by using affine-invariant log-polar elliptical bins. 
Further, we employ a reinforcement matching scheme that 
provides greater robustness to occlusion and clutter than 
previous methods that non-discriminately compare 
accumulated bins values over the entire context. We also 
present a more robust method of calculating a feature’s 
dominant orientation. We compare reinforcement 
matching to nearest neighbor matching without region 
context and to robust matching methods (RANSAC and 
PROSAC). 

1. Introduction 

Feature matching or correspondence is critical in many 
computer vision applications. Most feature matching tasks 
can be divided into one of three categories. The first 
application domain determines feature correspondences 
between multiple images of the same scene under different 
viewing conditions for tasks such as 3D reconstruction or 
recovering camera motion in a static scene. These 
applications usually need to recover epipolar geometry or 
solve for a rigid 3D motion model to find a consistent set 
of matching features. The second category involves object 
class recognition, where there is typically no rigid 
transformation to recover and the spatial relationships 
between features, as well as the descriptors identifying 
matching object “parts”, can have considerable variation. 
The third application area is non-rigid object tracking in 
video. This domain combines the similar local appearance 
of matching features, as in the first domain, with non-rigid 

spatial geometry common in object class recognition. 
For the first application domain, feature correspondence 

typically occurs by first matching local descriptors and 
then finding a set of consistent correspondences (or 
equivalently rejecting outliers) relative to some geometric 
constraints [2,17,18,19]. In the second and third 
application areas, the spatial arrangement of matched 
features can exhibit variations that are not accurately 
modeled with 3-D rigid transformations. Often, the 
features are organized into larger structures and matching 
is considered a global optimization problem. There are 
several possible approaches including graph-based models 
[6,7,10], fuzzy or relaxation algorithms [4,9], and spatial 
binning models [1,3,16]. 

Our method can be viewed as an extension to spatial 
binning. The spatial bins approach proposed by Belongie 
et al. [1] starts with a collection of shape points and builds, 
for each point, a histogram describing the relative 
distribution of the other points in log-polar space. Carneiro 
and Jepson [3] build log-polar bins around each feature 
and accumulate the weighted count of other features 
within each bin. Mortensen et al. [16] augment local 
descriptors to include global context information to 
develop a feature vector that includes both local features 
and global curvilinear information. 

The above methods demonstrate that it is difficult to 
find an efficient matching method that is flexible enough 
to handle all kinds of correspondence tasks. Matching 
based on estimating a transformation matrix cannot handle 
non-rigid transformations-and the required planar 
assumptions are rarely satisfied in real-world images—
while graph-based and optimization methods are often 
very computationally expensive. Our method can match 
regions strictly, as required by the first kind of application, 
and it can match regions with some deformations, as 
required by the second kind. Unlike the shape context 
method, which only analyzes the distribution of features, 
our method matches feature appearance as well. Both 
shape context and global context descriptors employ 
circular bins and thus cannot handle affine 
transformations. We use elliptical bins to make our 
method affine-invariant. Furthermore, in the bins in all 
previous spatial binning methods contains a single value 
that simply represents the accumulation of points, features, 
or pixel values within the bin, these methods are 
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susceptible to cluttered backgrounds and occlusion. We 
can achieve partial matching because our method is based 
on distributed local regions. 

 Our reinforcement matching has two advantages over 
sample consensus methods such as RANSAC [8], or more 
recently PROSAC [5]. First, reinforcement matching 
doesn’t need a consistency model (e.g., epipolar geometric 
constraints) and consequently, our method works on any 
reasonable (including non-rigid/non-linear) transformation 
without requiring a constraint model, and consequently a 
sample set size. Second, when there are a high percentage 
of outliers, RANSAC is much less likely to select a 
sample set from among the inliers—which is necessary to 
compute the correct transformation. On the other hand, 
reinforcement matching is more tolerate by effectively 
ignoring outliers.     

2. Reinforcement Matching 

In this paper we use the Hessian-affine interest operator 
developed by Mikolajczyk and Schmid in [12, 15] due to 
its performance, repeatability and affine invariant 
properties. We use SIFT [11] to describe each detected 
region. Our reinforcement matching algorithm can be 
summarized as follows: 

1) For each detected region, calculate the dominant 
gradient orientation and use it to choose the 
reference orientation of the ellipse region. 

2) Scale the detected affine region (i.e., the innermost 
ellipse) to obtain two additional regions that are 8 
and 16 times larger (the outer two ellipses in Fig. 
1(a-b)). The features detected within these enlarged 
ellipses form the “region context” for the center 
feature. 

3) Normalize the enlarged regions, including the 
positions of all the contained context features. 
Define context bins for each normalized region and 
construct, for each bin, a list of context features that 
fall in that bin. 

4) Construct the initial matching distance matrix using 
Euclidean distance and local features only. From this 
matrix, a fixed fraction of one-to-one best matches 
are chosen to form “anchor regions”. 

5) Compute the final match score between each pair of 
regions by combining the Euclidean distance match 
score with the context score, which is computed by 
counting, for corresponding bins in the context of the 
two regions, the number of matching anchor regions 
they contain. 

The details of our matching procedure are given below. 
 

 
(a) 

 
(b) 
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(d) 

 
Figure 1: (a-b) Affine regions used to build the region context. 
(c-d) Circles shows that non-affine regions fail to capture similar 
context. 

2.1. Building Region Context 
To build the feature’s region context for a detected 

feature, we enlarge the feature’s original affine region 
while maintaining its elliptical shape. This methodology is 
based on the belief that the deformation of the area around 
the detected region is somewhat similar to the deformation 
of the center region. Figures 1(a-b) show sample of 
corresponding context regions for a pair of images. The 
innermost ellipse is the original detected region. The 
second one is used to calculate the SIFT descriptor. The 
outer two ellipses—which are eight and sixteen times 
larger than the inner ellipse—are used to build context 
bins. The size of the context bins follows the log-polar bin 
design of [1, 16]; thereby allowing for image deformations 
due to perspective and non-rigid transformation. Fig. 1 (c-
d) shows that circular (non-affine) bins fail to cover the 
same area. We can see that the area enclosed by the circle 
in (c) is different from the area enclosed by the circle in 
(d) although the two circles have the same size relative to 
the initial keypoint’s scale. 

2.2. Dominant Orientation Calculation 
A stable and robust reference orientation is critical to 
ensure rotation invariance for both the SIFT descriptor and 
the region context. Both Lowe [11] and Mikolajczyk [14] 
compute dominant gradient orientation in a small circular 
neighborhood around each keypoint. The size of the 
circular neighborhood is determined by the keypoint’s 
scale but its shape is not affine-invariant. The gradient 
vector of every pixel in the circular region is used to build 
a histogram of gradient angles weighted by the gradient 
magnitude, and the orientation corresponding to the largest 
histogram bin is chosen as the dominant gradient.  



 
 

3 

 
(a) 

 
(b) 
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(d) 

 
Figure 2: (a-b) Illustration of how the dominant orientation for a 
local feature can be affected by using circular neighborhoods that 
enclose different areas. (c-d) The dominant orientation computed 
using the affine detected region is more stable. 

 
For images with uniform scale change, in-plane 

rotation, and even minor affine deformations, computing 
gradient orientation from a circular region is acceptable. 
However, using a circular region in the presence of large 
affine transformations does not produce a stable dominant 
orientation since the area contained within the circles will 
be different (see Figures 2(a-b)). On the other hand, 
calculating the dominant orientation using the elliptical 
regions is more stable since the enclosed areas more 
closely match (Fig. 2(c-d)). 

To sample the gradient within an affine region, we use 
an efficient scan-line algorithm to determine the pixels 
contained within the ellipse. Centering the coordinate axis 
on the keypoint, the implicit equation of the ellipse is 

 Ax2 + Bxy + Cy2 = 1. (1) 

Given the eigenvalues (λ1, λ2) and eigenvectors (v1, v2) of 
the matrix 

 







=

CB
BA

M , (2) 

the vertical scanline range of the ellipse is given by 
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are scale factors for the ellipse’s major and minor axes, 
respectively. 
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Figure 3: (a-b) Region context of two corresponding features. 
Yellow crosses are features within the top 10% of high 
confidence matched regions. Black dots are other detected 
features in this context. (c-d) Normalized region context of the 
two corresponding regions above. 
 

For each horizontal scanline in the range ymin ≤ y ≤ ymax, 
the starting, xmin, and ending, xmax, points are obtained by 
solving the implicit ellipse equation (1) with known y 
value. Once the gradient values within the ellipse have 
been computed, the same histogram building process as in 
[11] is used to find the dominant gradient. In Section 3 we 
note that using the elliptical region to compute dominant 
orientation achieves better matching results than using the 
circular region (Fig.8). 

2.3. Region Context and Reinforcement Matching 

2.3.1. Choosing the Reference Orientation 
After computing the dominant orientation, θD, we form 

a unit vector, vD = [cos(θD), sin(θD)]T, and use it to choose 
the orientation of the ellipse. Since the dominant 
orientation tends to point in the direction of the minor 
axis, v1 or –v1, we choose the reference orientation as the 
direction along the major axis, v2 or –v2, that produces a 
positive cross product with vD. In other words, our 
reference orientation, α, is defined as 
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2.3.2. Region Context Selection 
Given the equation for an ellipse in Eq. (1), a point 

(x, y) is within an ellipse that is S times larger if 

 Ax2 + Bxy + Cy2 ≤ S 2. (6) 

In Figure 3, the second innermost ellipse corresponds to 
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S = 3 and it is used to calculate the SIFT descriptor (as 
noted earlier). The third and fourth ellipses correspond to 
S = 8 and S = 16, respectively. Since the region inside the 
second ellipse is already described by the SIFT descriptor, 
the region context consists of all the features between the 
second (S = 3) and fourth (S = 16) ellipses. The black dots 
and yellow crosses in Fig. 3(a-b) are the features that fall 
within the region context. These features, of course, also 
represent an elliptical region with its own sizes and 
orientations, but are shown as crosses and dots to improve 
visibility. 

2.3.3. Normalization of Region Context Bins  
 To ensure that each context feature maps to the 

correct context bin, we normalize the region context by 
using the ellipse parameters from the keypoint’s second 
moment matrix. The transformation that maps the 
reference orientation to the x-axis and the inner ellipse 
(S = 1) to a unit circle is 
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where λ1, λ2 are eigenvalues of Eq. (2), ra, rb are scale 
factors defined in Eq. (4), and α is the reference 
orientation from Eq. (5). The position of each context 
feature, x, that falls within the region context is then 
mapped to its normalized position, 

 xMx ′=′ , (8) 

and the context feature is added to the context bin that it 
falls in, as determined by the radial and angular position of 
x′ in the normalized space. Rather than simply accumulate 
a count of the number of features in each bin, each context 
bin maintains a list of features (i.e., a list of SIFT 
descriptor indices). Given a feature, the feature’s region 
context tells us what other features are near it and at what 
angle and distance. These context bin lists are the key to 
reinforcement matching since corresponding bins can be 
compared to determine the number of matching features in 
each bin while ignoring features that don’t match. 
 

2.4. Reinforcement Matching 
The goal of reinforcement matching is to use the region 

context to efficiently improve matching accuracy by 
increasing the confidence of a good match between two 
features if they have a similar spatial arrangement of 
neighboring features. We first compute the m×n matching 
cost matrix that contains the Euclidean distance, c(i, j) for 
1 ≤ i ≤ m, 1 ≤ j ≤ n, between each pair of SIFT descriptors, 
where m is the number of features in the first image and n 

is the number in the second image. From these 
correspondences, we select a portion of the best matches 
(e.g., 20% of min(m, n)) by iteratively selecting the best 
match in the matrix and then removing that match’s row 
and column from further consideration. This process 
continues until reaching the target percentage. The 
selected matches are called anchor features. Note that this 
produces a one-to-one mapping. Figure 3 illustrates the 
two types of regions: anchor features (indicated with 
crosses) and other features (indicated with dots). 

For each bin that has an anchor feature, we check 
whether the matching feature is in the corresponding bin 
of the other context and count the number of such feature 
matches. The final matching distance is 
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where numsupport is the number of matched anchor features. 
If there are no matched anchor features in any of the 
context bins, then the denominator is unity and the central 
feature match is not reinforced. However, as the number 
of context matches increases, these matches reinforce the 
central match by increasing the denominator and thus 
lowering the final matching distance. 
  

 
 

Figure 4: Illustration of how the region context is robust to 
occlusion. Reinforcement matching counts the number of 
matching features in corresponding bins. If a feature is occluded, 
it is simply ignored and features in other bins still provide 
sufficient support to reinforce the central feature match. 

 
Figure 4 illustrates how this matching methodology is 

robust to occlusion and changes in background. If some of 
features are occluded in one or more bins, or if a context 
bin contains background that can change from one image 
to another, the missing features in those bins do not 
penalize the final matching distance (other than to reduce 
the support number) while other matches in other bins still 
contribute to sufficiently reinforce the central feature 
match. Note that this strategy provides a distinct 
advantage over global support methods that simply 
accumulate a single value in each bin. For example, if 
each bin simply summed up the number of feature/shape 
points [1] or gradient/curvature pixel values [16] in each 
bin, then bins that are occluded or contain differing 
background imagery would actually increase the matching 
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distance since the difference of accumulated bin values 
can be significant in these examples. Thus, using a single 
accumulated value in these cases can often lead to reduced 
matching rates. 

3. Results 

 To evaluate performance, we use the INRIA dataset 
[13] that contains eight image sets representing five 
transformations (viewpoint change, zoom-rotation, image 
blur, JPEG compression, and lighting change). Each set 
contains six images at various degrees of transformation.  

 We compare our method with PROSAC (a recent, 
RANSAC-style robust matching method that uses 
progressive sample consensus) [5]. Since the INRIA 
image sets all represent homographies, they are well suited 
to RANSAC-style matching using epipolar geometric 
constraints. We use the same matching performance 
framework provided by Mikolajczyk and Schmid [15] 
(recall vs. 1 – precision curves) to evaluate matching 
performance for two different matching strategies: nearest 
neighbor (NN) and nearest-neighbor-ratio (NNR)—which 
finds the highest ratio of the nearest neighbor to the 
second nearest neighbor. The same experiments are done 
in all image sets. In every image set, images 2 through 6 
are matched to the first image in their respective set. For 
each of these two matching strategies, we measure 
performance with (using c′(i, j)) and without (using c(i, j)) 
reinforcement matching and with PROSAC (using c(i, j)). 
Test results show that reinforcement matching provides 
higher accuracy than matching without region context on 
all images and is comparable to PROSAC with NN and 
better than PROSAC with NNR (Fig. 9). 

One reason that reinforcement matching provides better 
matching rates than RANSAC methods is that, like shape 
context [1], our method provides for general-purpose two-
dimensional constraints with some degree of positional 
flexibility (in that a reinforcing match can fall anywhere 
within a corresponding bin) while transformational 
constraints in RANSAC methods are typically more rigid 
and, in the case of epipolar geometry, only constrain 
matches to one-dimensional epipolar lines. However, 
Figure 5 demonstrates how highly textured images can 
still produce many duplicated patterns even along a one-
dimensional epipolar line. Figure 9(f) shows the recall vs. 
1 – precision curves for matching this image with the first 
image from this (the tree image) set. 

 

 
 

Figure 5: Example of how matching ambiguity can still exist 
even with 1-D epipolar constraints. 

 
Another advantage of our method over RANSAC 

methods is that reinforcement matching doesn’t need a 
transformation model and is therefore more flexible in that 
it can handle non-rigid or unknown transformations. We 
demonstrate this flexibility by matching images that have 
undergone affine, projective, polynomial, piecewise linear, 
sinusoidal and barrel transformations (some of which are 
shown in Figure 6). All seven transformations are applied 
to every image in the INRIA data set and compared with 
the first, untransformed image from each corresponding 
set. Results show that our method can increase the 
matching rate 8% on average over matching without 
region context (Figure 7). We do not show results using 
RANSAC or PROSAC since an epipolar model is clearly 
incorrect and, consequently, these methods typically fail to 
arrive at a correct consensus. While we could apply the 
correct transformation, since it is known, a different 
consistency model would have to be applied for each of 
the seven transformations. On the other hand, 
reinforcement matching does not require a transformation 
model and, as such, can be applied directly to all of the 
images regardless of the transformation. 
 To evaluate the performance of our new dominant 
gradient calculation, we compared the new method with 
the standard method on all images in the INRIA dataset. 
On images without large affine changes, matching 
performance using our new method is the same or slightly 
better than that of the previous method. For images with 
large affine changes, the performance of our method is 
noticeably better (Fig. 8). 

To evaluate the influence of the number of bins, we 
measured performance using configurations with 8, 16 and 
24 bins. The configuration with 24 bins provides the best 
performance, but the difference between 24 bins and 16 
bins is marginal. 
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Figure 6: Examples of transformed images from the INRIA data. 
 

 
Figure 7: Matching rate on changing viewpoint images of a 
structured scene. 

 
We examined the effect of using 5%, 10%, 20%, 40%, 

60% and 100% of the total matched features as anchors. 
Variations of the recall score can be as large as 10%. The 
basic trend is that a higher percentage of anchor features 
improves performance— however, we achieve a rate of 
diminishing returns at about 20%. An exception to this 
increasing trend is that on some images with large zoom 
and rotation, the best-matched features have many errors, 
resulting in decreased performance with increased 
percentage of anchor features. 

The worst case computational complexity for n features 
is O(n3), but this only occurs when all the anchor features 
are in a single bin for all the matches. In practice, the 
complexity is O(n2m) where m << n is the average number 
of anchor points in a bin. 

 

 
Figure 8: Comparison of two methods for dominant orientation 
calculation. 

4. Conclusion and Future Work 

This paper has presented a method including global 
context information into local feature matching, while still 
maintaining robustness to occlusion, clutter, and non-rigid 
transformations. The log-polar context bins employ a 
matching scheme that reinforces a local match with 
spatially consistent neighboring matches. Reinforcement 
matching also provides greater robustness to occlusion and 
clutter than previous methods that non-discriminately 
compare accumulated bins values over the entire context. 
Our evaluation indicates that matching with region context 
increases matching performance compared to matching 
without region context. Reinforcement matching is more 
robust and flexible than RANSAC-style methods in that it 
effectively ignores outlier matches without requiring a 
consistency model for each type of transformation. This 
paper also describes a more robust method of calculating a 
feature’s dominant orientation. 

Capturing spatial deformations with log-polar bins 
simplifies the description of spatial relations, but it still 
fails on large deformations. Also, features that are near the 
border of a bin can sometimes fall into the wrong bin and 
fail to be correctly matched. Future research will explore 
methods that relax these constraints and achieve a more 
flexible matching methodology.  
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Figure 9: Comparison of matching performance with and without region context and with PROSAC for two matching strategies using 
six types of image transformations: (a) boat (previous page), (b) bark (previous page), (c) graffiti, (d) wall, (e) bike, (f) trees, (g) Leuven, 
(h) UBC. Images can be downloaded from: http://www.robots.ox.ac.uk/~vgg/research/affine/index.html. 
 


