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Abstract

This paper presents a new structure-based interest re-
gion detector called Principal Curvature-Based Regions
(PCBR) which we use for object class recognition. The
PCBR interest operator detects stable watershed regions
within the multi-scale principal curvature image. To detect
robust watershed regions, we “clean” a principal curva-
ture image using a combination of grayscale morphological
closing and a new “eigenvector flow” hysteresis threshold-
ing. Robustness across scales is achieved by selecting the
maximal stable regions across consecutive scales. PCBR
typically detects distinctive patterns distributed evenly on
the objects and it shows significant robustness to local in-
tensity perturbations and intra-class variations. We evalu-
ate PCBR both qualitatively (through visual inspection) and
quantitatively (by measuring repeatability and classifica-
tion accuracy in real-world object-class recognition prob-
lems). Experiments on different benchmark datasets show
that PCBR is comparable or superior to state-of-art detec-
tors for both feature matching and object recognition prob-
lems. Moreover, we demonstrate the application of PCBR
to symmetry detection.

1. Introduction

In many object recognition tasks, within-class changes
in pose, lighting, color, and texture can cause consider-
able variation in local intensities. Consequently, local in-
tensity no longer provides a stable detection cue. As such,
intensity-based interest operators (e.g., Harris, Kadir)–and
the object recognition systems based on them (e.g., Opelts
[1])–often fail to identify discriminative features. An alter-
native to local intensity cues is to capture semi-local struc-
tural cues such as edges and curvilinear shapes [23]. These
structural cues tend to be more robust to intensity, color,
and pose variations. As such, they provide the basis for a
more stable interest operator, which in turn improves ob-
ject recognition accuracy. In this paper, we introduce a new
detector that exploits curvilinear structures to reliablyde-
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Figure 1. Comparison of the gradient magnitude and principal cur-
vature responses of the image in Figure2(a). (a) Gradient magni-
tude response. (b) Principal curvature response.

tect interesting regions. The detector, called the Principal
Curvature-Based Region (PCBR) detector, identifies stable
watershed regions within the multi-scale principal curvature
image.

Curvilinear structures are lines (either curved or straight)
such as roads in aerial or satellite images or blood vessels
in medical scans. They provide a kind of sketch of the ob-
jects appearing in images. These curvilinear structures can
be detected over a range of viewpoints, scales, and illumi-
nation changes. The PCBR detector employs the first steps
of Steger’s curvilinear detector algorithm [23]. It computes
the eigenvalues of the Hessian matrix at each pixel and then
forms an image that is composed of one of the two eigen-
values. We call this the principal curvature image, as it ap-
proximates the principal curvature of the image intensity
surface. This process generates a single response for both
lines and edges, producing a clearer structural sketch of an
image than is usually provided by the gradient magnitude
image (see Fig.1).

We develop a process that detects structural regions ef-
ficiently and robustly using the watershed transform of the
principal curvature image across scale space. The water-
shed algorithm provides a more efficient mechanism for
defining structural regions than previous methods of fitting
circles, ellipses, and parallelograms [10, 26]. However, the
watershed algorithm is sensitive to noise and other small
image perturbations. To improve robustness to noise, we
“clean” the principal curvature image with a grayscale mor-
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phological close operation followed by a new hysteresis
thresholding method based on local eigenvector flow. The
watershed transform is then applied to the cleaned principal
curvature image and the resulting watershed regions (i.e.,
the catchment basins) define the PCBR regions. To achieve
robust detections across multiple scales, the watershed is
applied to the maxima of three consecutive images in the
principal curvature scale space–similar to local scale-space
extrema used by Lowe [14], Mikolajczyk and Schmidt [17],
and others–and we further search for stable PCBR regions
across consecutive scales–an idea adapted from the stable
regions detected across multiple threshold levels used by
the MSER detector [16].

This work makes two contributions. First, we develop
a new interest operator that utilizes principal curvature
to extract robust and invariant region structures based on
both edge and curvilinear features. Second, we introduce
an enhanced principle-curvature-based watershed segmen-
tation and robust region selection process that is robust to
intra-class variations and is more efficient than previous
structure-based detectors. We demonstrate the value of our
PCBR detector by applying it to object-class recognition
problems and symmetry detection.

2. Related Work

Interest operators can typically be classified into two cat-
egories: intensity-based detectors and structure-based de-
tectors [19]. Intensity-based detectors depend on analyz-
ing local differential geometry or intensity patterns to find
points or regions that satisfy some uniqueness and stabil-
ity criteria. The Harris corner detector [7] finds points or
pixels where both eigenvalues of the second moment ma-
trix are large by evaluating the simple-to-computer “Har-
ris measure”. The Harris-affine and Hessian-affine detec-
tors [17, 18] compute maximum determinants of the sec-
ond moment matrix and the Hessian matrix respectively
across scale space and then apply Laplacian-based char-
acteristic scale selection [12] and second-moment-matrix-
based shape adaptation [13, 2]. MSER [16] uses a thresh-
old selection process to detect stable regions that are either
brighter or darker than the surrounding region. SIFT (i.e.,
the DoG extrema detector used by Lowe in [14]) finds lo-
cal extrema across three consecutive difference-of-Gaussian
scales and then removes spurious detections via a DoG-
response threshold followed by a Harris-like metric to elim-
inate edge detections. Kadir’s salient region detector [24]
calculates the entropy of the probability density function
(PDF) of intensity values over the scale and ellipse param-
eter spaces to find regions with entropy extrema. Other
intensity-based detectors include SUSAN [22], intensity
extrema-based regions (IBR) [25], and the work of Moravec
[9] and Beaudet [3].

Structure-based detectors depend on structural image

features such as lines, edges, curves, etc. to define interest
points or regions. These detectors tend to be very compu-
tationally expensive and typically depend on reliable prior
detection of structural features. Early structure-based de-
tectors analyzed various 2D curves such as the curvature
primal sketch or B-splines extracted from edges, ridges,
troughs, etc. and then selected high curvature points, lineor
curve intersections, corners, ends, bumps, and dents as in-
terest points [8, 6, 20, 21, 5]. Tuytelaar’s edge-based region
(EBR) detector [26] fits a parallelogram defined by Harris
corner point and points on two adjacent edge contours (ex-
tracted by the Canny detector [4]). Scale-invariant shape
features (SISF) [10] detects circles at different locations and
scales by evaluating salient convex arrangements of Canny
edges based on a measure that maximizes how well a circle
is supported by surrounding edges.

3. Principal curvature-based Region Detector

3.1. Principal Curvature Image

There are two types of structures that have high curvature
in one direction and low curvature in the orthogonal direc-
tion: lines (i.e., straight or nearly straight curvilinearfea-
tures) and edges. Viewing an image as an intensity surface,
the curvilinear structures correspond to ridges and valleys
of this surface. The local shape characteristics of the sur-
face at a particular point can be described by the Hessian
matrix,

H(x, σD) =

[

Ixx(x, σD) Ixy(x, σD)
Ixy(x, σD) Iyy(x, σD)

]

, (1)

whereIxx, Ixy andIyy are the second-order partial deriva-
tives of the image evaluated at the pointx andσD is the
Gaussian scale at which the second partial derivatives are
computed.

We note that both the Hessian matrix and the related sec-
ond moment matrix have been applied in several other in-
terest operators (e.g., the Harris [7], Harris-affine [19], and
Hessian-affine [18] detectors) to find image positions where
the local image geometry is changing in more than one di-
rection. Likewise, Lowe’s maximal difference-of-Gaussian
(DoG) detector [14] also uses components of the Hessian
matrix (or at least approximates the sum of the diagonal ele-
ments) to find points of interest. However, our PCBR detec-
tor is quite different from these other methods and is com-
plementary to them. Rather than finding extreme “points”,
our detector applies the watershed algorithm to ridges, val-
leys, and cliffs of the image intensity surface to find “re-
gions”. Just like extreme points, the ridges, valleys, and
cliffs can be detected over a range of viewpoints, scales,
and appearance changes.

Many of the interest point detectors mentioned previ-
ously [7, 19, 18] apply the Harris measure (or a similar met-
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Figure 2. Interest Regions detected by the PCBR detector. (a) Original butterfly image. (b) Principal curvature and (c) cleaned binary
images. (d) Watershed regions. (e) Detected regions represented byellipses.

ric [14]) to determine a point’s saliency. The Harris measure
is given bydet(A)− k · tr2(A) > threshold wheredet is
the determinant,tr is the trace, and the matrixA is either
the Hessian matrix or the second moment matrix. The Har-
ris measure penalizes (i.e., produces low values for) “long”
structures for which the first or second derivative in one par-
ticular orientation is very small. One advantage of the Har-
ris metric is that it does not require explicit computation
of the eigenvalue or eigenvectors. However, computing the
eigenvalues and eigenvectors for a2×2 matrix requires only
a single Jacobi rotation to eliminate the off-diagonal term,
Ixy, as noted by Steger [23].

Our PCBR detector complements the previous interest
point detectors in that we abandon the Harris measure and
exploit those very long structures as detection cues. The
principal curvature image is given by either

P (x) = max(λ1(x), 0) (2)

or
P (x) = min(λ2(x), 0) (3)

whereλ1(x) and λ2(x) are the maximum and minimum
eigenvalues, respectively, ofH at x. Eq.2 provides a high
response only for dark lines on a light background (or on
the dark side of edges) while Eq.3 is used to detect light
lines against a darker background.

Principal curvature images are calculated in scale space
in a fashion similar to that of SIFT [14]. We first double
the size of the original image to produce our initial image,
I11, and then produce increasingly Gaussian smoothed im-
ages,I1j , with scales ofσ = kj−1 wherek = 21/3 and
j = 2..6. This set of images spans the first octave consist-
ing of 6 images,I11 to I16. ImageI14 is downsampled to
half its size to produce imageI21, which becomes the first
image in the second octave. We apply the same smoothing
process to build the second octave, and continue to create a
total of n = log2(min(w, h)) − 3 octaves, wherew andh

are the width and height of the doubled image, respectively.
Finally, we calculate a principal curvature image,Pij , for
each smoothed image by computing the maximum eigen-
value (Eq. 2) of the second derivative Hessian matrix at

each pixel. For computational efficiency, each smoothed
image and its corresponding Hessian image is computed
from the previous smoothed image using an incremental
Gaussian scale.

Given the principal curvature scale space images, we cal-
culate the maximum curvature over every three consecutive
principal curvature images to form the following set of four
images in each of then octaves:

MP12 MP13 MP14 MP15

MP22 MP23 MP24 MP25

...

MPn2 MPn3 MPn4 MPn5

(4)

whereMPij = max(Pij−1, Pij , Pij+1).
Figure 2(b) shows one of the maximum curvature im-

ages,MP , created by maximizing the principal curvature
at each pixel over three consecutive principal curvature im-
ages. From these maximum principal curvature images we
find the stable regions via our watershed algorithm.

3.2. Enhanced Watershed Regions Detections

The watershed transform is an efficient technique that is
widely employed for image segmentation. It is normally
applied either to an intensity image directly or to the gradi-
ent magnitude of an image. We instead apply the watershed
transform to the principal curvature image. However, the
watershed transform is sensitive to noise (and other small
perturbations) in the intensity image. A consequence of this
is that the small image variations form local minima that re-
sult in many, small watershed regions. Figure3(a) shows
the oversegmentation results when the watershed algorithm
is applied directly to the principal curvature image in Figure
2(b)). To achieve a more stable watershed segmentation, we
first apply a grayscale morphological closing followed by
hysteresis thresholding. The grayscale morphological clos-
ing operation is defined asf • b = (f ⊕ b) ⊖ b wheref

is the imageMP from Eq. 4, b is a disk-shaped structur-
ing element, and⊕ and⊖ are the grayscale dilation and
erosion, respectively. The closing operation removes small
“potholes” in the principal curvature terrain, thus eliminat-



ing many local minima that result from noise and that would
otherwise produce watershed catchment basins.

(a) (b)

Figure 3. (a) Watershed segmentation of original principal curva-
ture image (Fig.2b). (b) Watershed segmentation of the “clean”
principal curvature image (Fig.2c).

However, beyond the small (in terms of area of influence)
local minima, there are other variations that have larger
zones of influence and that are not reclaimed by the mor-
phological closing. To further eliminate spurious or unsta-
ble watershed regions, we threshold the principal curvature
image to create a clean, binarized principal curvature image.
However, rather than apply a straight threshold or even hys-
teresis thresholding–both of which can still miss weak im-
age structures–we apply a more robust eigenvector-guided
hysteresis thresholding to help link structural cues and re-
move perturbations. Since the eigenvalues of the Hessian
matrix are directly related to the signal strength (i.e., the
line or edge contrast), the principal curvature image may, at
times, become weak due to low contrast portions of an edge
or curvilinear structure. These low contrast segments may
potentially cause gaps in the thresholded principal curvature
image, which in turn cause watershed regions to merge that
should otherwise be seperate. However, the directions of
the eigenvectors provide a strong indication of where curvi-
linear structures appear and they are more robust to these
intensity pertubations than is the eigenvalue magnitude.

In eigenvector-flow hysteresis thresholding, there are
two thresholds (high and low) just as in traditional hystere-
sis thresholding. For this application, we have set the high
threshold at 0.04 to indicate a strong principal curvature re-
sponse. Pixels with a strong response act as seeds that ex-
pand out to include connected pixels that are above the low
threshold. Unlike traditional hysteresis thresholding, our
low threshold is a function of the support that each pixel’s
major eigenvector receives from neighboring pixels. The
low threshold is set on every pixel by comparing the direc-
tion of the major (or minor) eigenvector to the direction of
the adjacent pixels’ major (or minor) eigenvectors. This can
be done by taking the absolute value of the inner product of
a pixel’s normalized eigenvector with that of each neigh-
bor. If the average dot product over all neighbors is high
enough, we set the low-to-high threshold ratio to 0.2 (for
a low threshold of0.04 · 0.2 = 0.008); otherwise the low-

to-high ratio is set to 0.7 (giving a low threshold of0.028).
These ratios were chosen based on experiments with hun-
dreds of images.

Figure4 illustrates how the eigenvector flow supports an
otherwise weak region. The red arrows are the major eigen-
vectors, and the yellow arrows are the minor eigenvectors.
To improve visibility, we draw them at every fourth pixel.
At the point indicated by the large white arrow, we see that
the eigenvalue magnitudes are small and the ridge there is
almost invisible. Nonetheless, the directions of the eigen-
vectors are quite uniform. This eigenvector-based active
thresholding process yields better performance in building
continuous ridges and in handling perturbations, which re-
sults in more stable regions (Fig.3(b)).

The final step is to perform the watershed transform
on the clean binary image (Fig.2(c)). Since the image
is binary, all black (or0-valued) pixels become catchment
basins and the midlines of the thresholded white ridge pixels
become watershed lines if they separate two distinct catch-
ment basins. To define the interest regions of the PCBR
detector in one scale, the resulting segmented regions are fit
with ellipses, via PCA, that have the same second-moment
as the watershed regions (Fig.2(e)).

Figure 4. Illustration of how the eigenvector flow helps overcome
weak principal curvature responses.

3.3. Stable Regions over Scales

Choosing maximum principal curvature images is only
one way to achieve stable region detections. To improve
robustness further, we adopt a key idea from MSER and
keep only those regions that can be detected in at least three
consecutive scales. In a method similar to the process of
selecting stable regions via thresholding in MESR, we se-
lect regions that are stable across local scale changes. To
achieve this, we compute the overlap error of the detected
regions across each triplet of consecutive scales in every oc-
tave. The overlap error is calculated the same as in [19].

Overlapping regions that are detected at different scales
normally exhibit some variation. This kind of variation is
valuable for object recognition because it provides multiple
descriptions of the same pattern. An object category nor-
mally exhibits large within-class variation even in the same
area. Since detectors usually have difficulty in locating the
interest area accurately, rather than attempt to find a single



region and extract a single descriptor vector, it is better to
identify multiple overlapping regions and extract multiple
descriptor vectors, provided that these multiple vectors can
be handled properly by the classifier.

To determine a threshold value for the permitted amount
of overlap, we analyze the sensitivity of the SIFT descrip-
tor. Three transformations (translations from1 to 10 pixels,
rotations from2 to 20 degrees and minor axis enlargements
from1 to10 pixels) are applied on all detected regions in the
Inria dataset [19]. Overlap errors and similarities of SIFT
descriptors between the transformed regions and the orig-
inals are calculated. To keep regions that can be detected
over local scales, only regions with overlap error less than
30% are chosen. However, as indicated in Figure5, SIFT
similarity decreases to70% for regions that have an overlap
error of30%. As such, we keep all stable regions with an
overlap error greater than30% to maintain more descrip-
tions for similar regions. We also notice that the similarity
of the SIFT descriptors is above90% when overlap error is
less than10%. These very similar regions are merged into
a single region.

Figure 5. Sensitivity analysis of SIFT descriptor.

4. Evaluation and Discussion

We evaluate our PCBR detector in three ways: 1) quali-
tative visual inspection, 2) quantitative repeatability using a
published framework [19], and 3) quantitative and qualita-
tive evaluation using real world applications.

4.1. Visual Inspection

To provide a visual evaluation of PCBR, Figures6 and
7 show PCBR detection results on a variety of different
types of images. Fig.6 shows PCBR detections on two
graffiti images from the INRIA dataset [19] while Fig. 7
shows detection results for face, motorbike, and cars (rear)
images from the Caltech dataset. In Figure7, we remove
background detections to improve visibility. From these
images we note that PCBR detections appear to be evenly
distributed, highly consistent, and robust to intra-classvari-
ations.

Figure 6. PCBR detections on the first and second graffiti images
from the INRIA dataset [19].

Detectors Motorbikes Airplanes Faces Cars(Side)

PCBR 87.7 91.7 97.7 87
HL & HA 92.2 88.9 93.5 83

Table 1. Comparison of PCBR with the combination of Harris-
Laplace and Harris-affine detectors on the Caltech dataset using
Opelt’s object-class recognition method [1].

4.2. Repeatability

Although the PCBR detector was designed for object-
class recognition rather than repeatable wide-baseline fea-
ture matching, we still evaluate its repeatability and com-
pare it to other detectors using the INRIA dataset and eval-
uation code [19]. The relative ranks of the PCBR detec-
tor compared to various other detectors are listed in Table
2. Ranks are determined from the repeatability vs. trans-
formation curves as output by the INRIA evaluation code
(with the overlap error parameter set to20%). A rank of
1 represents the highest repeatability while7 represents the
lowest repeatability. From Table2 we can see that PCBR is
comparable to other detectors in terms of repeatability.

4.3. Applications

To quantitatively evaluate the PCBR detector on object
recognition tasks, we have conducted two recognition tasks
using the Caltech dataset and a database of larval stonefly
images. To build a recognition system, we build SIFT de-
scriptors for each detected (and normalized) region and then
apply recent state-of-the-art object-class recognition algo-
rithms to perform the final classification. We then measure
classification accuracy using the PCBR detector and com-
pare it to the accuracy using other interest operators.

4.3.1 Object Recognition on Caltech Dataset

The Caltech dataset contains images from many different
object classes. In this experiment, we measure recogni-
tion accuracy on four commonly-used object classes (mo-
torbikes, airplanes, faces, and cars) using Opelt’s object-
class recognition algorithm [1]. We use Opelt’s Matlab
code (adapted to use the PCBR detector) with all the default
parameter settings (see [1]) with the only variation being
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Figure 7. PCBR detections on faces, cars (rear), and motorbikes from the Caltech dataset.

Images PCBR Hessian-affine Harris-Affine MSER IBR EBR Salient

Bikes 5 1 3 4 6 2 7
Trees 3 1 4 2 5 6 7
Boats 5 1 3 2 6 4 7
Leuven (cars) 3 2 4 1 5 6 7
Graffiti 2 5 6 1 3 4 7
Walls 4 2 3 1 5 6 7

Table 2. Repeatability ranking (1 is the best, 7 is the worst) for PCBR and various other detectors on the INRIA dataset [19].

that we use PCBR instead of the Harris-Laplace and Harris-
affine detectors. The recognition performance is evaluated
using ROC equal error rates. Table1 compares recognition
accuracy using PCBR with those reported by Opelt in [1]
(using Harris-Laplace and Harris-affine detectors). We see
from Table1 that the PCBR detector produces higher recog-
nition accuracy than the combination of Harris detectors on
three of the four object-class datasets.

4.3.2 Object Recognition on Stonefly Dataset

Population counts of larval stoneflies inhabiting stream sub-
strates are known to be a sensitive and robust indicator of
stream health and water quality. Consequently, automated
classification of stonefly larva can make great strides in
overcoming current bottlenecks–such as the considerable
time and technical expertise required–to large scale imple-
mentation of this important biomonitoring task. As such,
we evaluate the effectiveness of our PCBR detector on a
more fine-grained object-class recognition problem, that of
distinguishing between two related species of stonefly larva,
Calineuria californicaand Doroneuria baumanni. These
two stonefly species are from the same taxonomic family
and, as such, are very similar in appearance. Indeed, this
problem is challenging even for humans and is akin to vi-

sually distinguishing between nearly identical car models.
As such, this problem is more difficult than differentiating
between faces and airplanes as per the Caltech dataset.

Figure8 (a-b) shows four specimens images (and their
relative sizes) from each of the two taxa. To verify the dif-
ficulty of discriminating these two taxa, we conducted an
informal study to test the human classification accuracy of
CalineuriaandDoroneuria. A total of 26 students and fac-
ulty were trained on 50 randomly-selected images ofCa-
lineuria andDoroneuria, and were subsequently tested with
another 50 images. Most of the subjects (21) had some prior
entomological experience. The mean human classification
accuracy is78.6% correctly identified (std. dev. =8.4).

We compare PCBR with the Kadir salient region detector
and the Hessian-affine detector on the stonefly recognition
problem. All classification settings are identical except
for the detector. For this comparison, we use the Hessian-
affine and salient region detectors available on the web
(http://www.robots.ox.ac.uk/ ˜ vgg/research/affine/ ).
Figure9 shows the detections for the fourCalinueria im-
ages in Fig. 8(a). Notice again how well distributed and
consistent the PCBR detections.

We apply two state-of-the-art object-class recognition al-
gorithms to the stonefly dataset: logistic model trees (LMT)
by Landwehret al. [11] and Opelt’s method [1]. We use

http://www.robots.ox.ac.uk/~vgg/research/affine/


(a) (b)

Figure 8. Visual comparison ofCalinueria and Doroneuria and
their relative specimen sizes. (a) Four differentCalinueriaand (b)
Doroneuriaspecimens.

(a) (b) (c)

Figure 9. Comparison of three detectors onCalinueriaimages. (a)
Hessian-affine, (b) Kadir salient regions, and (c) PCBR

Taxon Specimens Images

Calineuria 85 400
Doroneuria 91 463

Table 3. Specimens and images employed in the study.

our own LMT implementation and, as before, use Opelt’s
Matlab code (adapted to use other detectors). The number
of specimens and images used in this experiment is listed
in Table3 while Table4 summarizes the classification ac-
curacy for this two-class recognition problem. As can be
seen, both classifiers yield better recognition accuracy with
the PCBR detector than with the other two detectors.

4.3.3 Symmetry Detection

Symmetry is quite common in biological and artificial ob-
jects. Since our PCBR detector detects robust structure-
based interest regions, it is good at detecting symmetrical
regions in images containing objects with bilateral symme-

Hessian Kadir Accuracy[%]
Affine Entropy PCBR Opelt [1] LMTs [11]
√

60.59 70.10√
62.63 70.34√
67.86 79.03

Table 4.Calineuria andDoroneuriaclassification rates compari-
son of different detectors when applied with Opelt’s method and
LMTs. A

√
indicates that the corresponding detector is used.

try. To demonstrate this, we combine the PCBR detector
with (our implementation of) the SIFT-based symmetry de-
tection method of Loy and Eklundh [15] and test it on vari-
ous images. Figure10 shows the symmetrical detections is
several images. We can see that the detected symmetry re-
gions are quite accurate and distinctive, so provide valuable
cue for the detection and recognition of the symmetrical ob-
jects.

We also apply symmetry detection to choose good dorsal
(or back side) views of stonefly larvae from among the var-
ious poses. Dorsal views exhibit more bilateral symmetry
than do other poses. As such, symmetry detection is a use-
ful mechanism for identifying those images that are best for
classification. Figure11 shows various poses of the stone-
flies as contained in the database. Figure12 shows the four
selected dorsal views with symmetrical PCBR detections on
them. The PCBR detector is better at finding bilaterally-
symmetric regions in the stonefly images than are other de-
tectors.

Figure 11. Different object poses in the stonefly database.

Figure 12. Good dorsal views selected using bilateral symmetry
detection with PCBR.



Figure 10. Bilateral symmetry detection using PCBR.

5. Conclusion and Future Work

This paper has presented a new structure-based interest
region detector called Principal Curvature-Based Regions
(PCBR) and has demonstrated its successful application to
several tasks. The PCBR interest operator detects stable wa-
tershed regions within the multi-scale principal curvature
image that describes both edge and curvilinear structures.
Grayscale morphology and a new eigenvector-flow hystere-
sis thresholding provide for robust watershed detections.
Further, robustness across multiples scales is acheived by
selecting the maximal stable regions across consecutive
scales. Finally, we have demonstrated the utility of our
PCBR detector to reliable wide-baseline feature detection,
object-class recognition, and symmetry detection.

Unlike detectors designed for wide-baseline matching of
rigid static scenes, detectors for object recognition should
be more intelligent in identifying object-class-relevantre-
gions. As such, a future direction for this work is to develop
discriminative interest operators and region descriptorsthat
learn to detect and describe characteristic regions on a per
object-class basis.
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