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� Introduction

There has long been a chasm between theoretical mod�
els of machine learning and practical machine learn�
ing algorithms� For instance� empirically successful
algorithms such as C��� and backpropagation have
not met the criteria of the PAC model and its vari�
ants� Conversely� the algorithms suggested by com�
putational learning theory are usually too limited in
various ways to �nd wide application� The theoreti�
cal status of decision tree learning algorithms is a case
in point� while it has been proven that C��� 	and all
reasonable variants of it
 fails to meet the PAC model
criteria ��
� other recently proposed decision tree algo�
rithms that do have non�trivial performance guaran�
tees unfortunately require membership queries ��� ��
�

Two recent developments have narrowed this gap
between theory and practice�not for the PAC model�
but for the related model known as weak learning or
boosting � First� an algorithm called Adaboost was
proposed that meets the formal criteria of the boosting
model and is also competitive in practice ���
� Second�
the basic algorithms underlying the popular C��� and
CART programs have also very recently been shown
to meet the formal criteria of the boosting model ���
�
Thus� it seems plausible that the weak learning frame�
work may provide a setting for interaction between
formal analysis and machine learning practice that is
lacking in other theoretical models�

Our aim in this paper is to push this interaction
further in light of these recent developments� In par�
ticular� we perform experiments suggested by the for�
mal results for Adaboost and C��� within the weak
learning framework� We concentrate on two particu�
larly intriguing issues�

First� the theoretical boosting results for top�down
decision tree algorithms such as C��� ���
 suggest that
a new splitting criterion may result in trees that are
smaller and more accurate than those obtained using
the usual information gain� We con�rm this suggestion
experimentally�

Second� a super�cial interpretation of the theo�

retical results suggests that Adaboost should vastly
outperform C���� This is not the case in practice�
and we argue through experimental results that the
theory must be understood in terms of a measure of
a boosting algorithm�s behavior called its advantage
sequence� We compare the advantage sequences for
C��� and Adaboost in a number of experiments�
We �nd that these sequences have qualitatively dif�
ferent behavior that explains in large part the dis�
crepancies between empirical performance and the
theoretical results� Brie�y� we �nd that although
C��� and Adaboost are both boosting algorithms�
Adaboost creates successively �harder� �ltered dis�
tributions� while C��� creates successively �easier�
ones� in a sense that will be made precise�

� C��� and Adaboost

In this section� we describe the two learning algorithms
we will examine� Both algorithms take a �nite training
sample S � fhxi� f	xi
igmi�� of m labeled examples as
input� The xi are points in some instance space X�
and f is the boolean target function over X� The goal
of both algorithms is to �nd a function with small
training error on S in as few �rounds� as possible�
The notion of a round will become clear shortly� but
it can be thought of as a single step in which an algo�
rithm increases the complexity of its hypothesis� such
as splitting a leaf in the growing phase of C����

��� A Top�Down Decision Tree Algorithm

It will be helpful to think of both algorithms as be�
ginning with the empirical distribution PS on S that
gives weight ��m to each of the m instances xi in
S � fhxi� f	xi
igmi��� small training error on S is then
equivalent to small error with respect to the distribu�
tion PS � For the decision tree algorithm� we can now
de�ne some important quantities� If T is any deci�
sion tree� we let leaves	T 
 denote its leaves� For each
� � leaves	T 
� we de�ne w	�
 to be the probabilitywith
respect to PS that a random x reaches �� and q	�
 to
be the probability that f	x
 � � given that x reaches



TopDownF �S�N��
� Initialize T to be the single�leaf tree� with binary
label equal to the majority class of the sample S�

� for t 	 � to N �


 �best � ��


 for each pair ��� h� � leaves�T �� F �

� �� H�T � �H�T ��� h���

� if � � �best then �

� �best � �� �t � �� ht � h�

� T � T ��t� ht��

� Output T �

Figure �� Algorithm TopDownF �S�N��

�� We will call w	�
 the weight of the leaf� If q	�
 � �
or q	�
 � � we say the leaf is pure� Notice that given T
and S� w	�
 and q	�
 are easily computed� Let us as�
sume that each leaf � in T is labeled � if q	�
 � ���� and
is labeled � otherwise� we refer to this as the majority
labeling� Under the majority labeling of the leaves of
T � an expression for the training error ��	T 
 of T on S
is simply ��	T 
 �

P
��leaves�T �w	�
min	q	�
� � � q	�

�

Now if H	q
 is the binary entropy function� let us de�
�ne the entropy of T �

H	T 
 �
X

��leaves�T �

w	�
H	q	�

� 	�


Since H	q
 � min	q� � � q
 for all q� H	T 
 � ��	T 
�
Thus if we can �nd a tree with small entropy� we have
found a tree with small training error�

We need notation to describe incremental changes
to the tree T � If � � leaves	T 
 and h is a boolean
function over the input space X� we use T 	�� h
 to
denote the tree that is the same as T � except that now
we �split� the leaf �� we make a new internal node at
� and label this node by the function h� The newly
created child leaves �� and �� 	corresponding to the
outcomes h	x
 � � and h	x
 � � at the new internal
node
 are labeled by their majority labels�

Our �rst algorithm� which we call TopDownF � is
given in Figure �� It is parameterized by F � the class of
splitting functions that can label the nodes of the tree�
The algorithm takes as inputs the training sample S
and the number of rounds N � At each round 	i�e�� each
iteration of the outer for loop
� a search is performed
	inner for loop
 for the leaf� and for the function in F
labeling that leaf� that together maximize the resulting
drop in entropy to the tree 	information gain
�

Notice that if N is su�ciently large� TopDownF
will eventually split all impure leaves and grow the
same unpruned tree as C���� Regardless of the value
of N � the tree grown by TopDownF is always a sub�
tree of the unpruned tree of C���� Thus� the main
di�erence between TopDownF and C��� is in their
approaches to limiting the complexity of the resulting
tree� In C���� the unpruned tree is grown until there

AdaboostF �S�N��
� Initialize vector w to be wi 	 ��m� � � i �m�

� for t 	 � to N �


 Let the distribution Pt be w normalized� so
Pt�xi� 	 wi�

Pm

j��
wj�


 Let ht � F have the smallest error �t
�with respect to f and Pt��

� Set �t 	 �t���� �t��

� Update w� if ht�xi� 	 f�xi�� then wi 	 �t �wi�
else wi remains unchanged�

� Output h such that h�x� 	 � if and only ifPN

t��
log����t�ht�x� � �����

PN

t��
log����t��

Figure �� Algorithm AdaboostF �S�N��

are no impure leaves� Then� a pruning process is ap�
plied� Since the unpruned tree is always grown until
purity in C���� the order in which leaves are split is
irrelevant� and depth��rst growth is acceptable� This
means C��� may choose to �rst split a leaf that re�
duces the entropy of the tree much less than some
later split� In contrast� in TopDownF the complex�
ity of the tree is limited by explicitly bounding the
number of rounds N � In this case� since every split
may be our last� the sensible thing to do is to always
split next the leaf that maximizes the entropy reduc�
tion� TopDownF will choose the same function to
label this split as C���� but may choose to perform
the splits in a di�erent order� Although there is ex�
perimental evidence that growth to purity followed by
pruning may result in better performance than explic�
itly limiting the growth� algorithmTopDownF is eas�
ier to analyze� We believe that the theoretical results
we will discuss shortly for TopDownF are relevant to
C���� but are perhaps on the pessimistic side�

Note that we have left the choice of the split�
ting function class F as a parameter of the algorithm�
While allowing a more expressive class F may reduce
the entropy 	and thus the training error
 more rapidly�
there are two costs for this� First� the search for the
best function in F in the inner for loop of TopDownF
becomes more expensive� Second� the relationship be�
tween the training and generalization errors will de�
grade as we increase the expressive power of F � The
choice of F is a design decision that must be made
with these trade�o�s in mind� We shall assume that F
is a rather simple class that can be searched rapidly�
such as the individual attributes of the instance space�

��� A Boosting Algorithm

We are now ready to describe the second algorithm�
whose code is given in Figure �� We will not go
into the detailed motivation for this algorithm� in�
stead referring the reader to the paper of Freund and
Schapire ���
� For our purposes� the most important
idea is the creation of a �ltered distribution at each



round� At round t� the algorithm �adds� to its �nal
hypothesis the function ht from F that has the low�
est error on the �ltered distribution Pt� The weight
vector w 	which determines the next �ltered distri�
bution through normalization
 is then updated to de�
crease the relative weight of sample points on which
ht agrees with the target function� and to increase the
relative weight of the sample points on which ht errs�
The next �ltered distribution will thus be more con�
centrated on points that the preceding ht�s found �dif�
�cult�� A reasonable intuition is that successive �l�
tered distributions are focusing more and more on the
hard part of the learning problem�

��� The Weak Hypothesis Assumption

Let us point out a number of similarities between the
algorithms TopDownF and AdaboostF � First� both
algorithms proceed in rounds� where at each round
a new function is chosen from the class F � These
functions are incrementally combined to form a ��
nal hypothesis� although in rather di�erent ways� In
TopDownF � the function chosen at each round la�
bels the internal node of a decision tree� while for
AdaboostF � it becomes a member of a thresholded
linear combination� For training error� we would ex�
pect both algorithms to perform better with more
powerful classes F � but both would pay the computa�
tional and generalization error costs mentioned above�

Finally� both algorithms have some measure by
which they choose the �best� function to add in each
round� For TopDownF � this measure is the infor�
mation gain resulting from the chosen split 	Figure ��
line �
� For AdaboostF � it is the error on the �ltered
distribution for that round 	Figure �� line �
�

We will shortly discuss theoretical results for
AdaboostF that relate the training error after N
rounds to the best errors �t 	see Figure �� line �

on the sequence of �ltered distributions P�� � � � � PN �
brie�y� if these errors are just slightly smaller than
the trivial value of ��� 	achieved by random guessing
�
very strong performance guarantees can be given for
AdaboostF � But �rst� let us show that there is also a
natural de�nition for the ��ltered distributions� gen�
erated by TopDownF � If � is any leaf of the current
decision tree T � we can de�ne P� to be the empirical
distribution on only those instances in the sample S
that reach �� Now q	�
 is simply the probability of
drawing a positive example from P�� The information
gain of splitting T at � is simply the information gain
with respect to P�� weighted by w	�
�

What happens if� as for AdaboostF � we assume
that on the sequence of distributions P��� � � � � P�N
	where �t is the t�th node split in the call to
TopDownF 	S�N 

� there is always a function in F
whose predictive power is slightly better than random
guessing� The answer is that nothing happens� but
for a super�cial and easily remedied reason� Suppose

that q	�
 � q is close to � 	that is� the examples reach�
ing � are mainly positive
� Then a function h that is
always positive will have error � � q� which is much
better than random guessing� but will induce a trivial
and useless split at �� It turns out ���
 that we need
to slightly alter our de�nition of the �ltered distribu�
tions for TopDownF � Let the balanced distribution
P �

� at � be de�ned by P �

�	x
 � P�	x
�	�q
 if f	x
 � �
and P �

�	x
 � P�	x
�	�	�� q

 if f	x
 � �� Thus P �

� is
P� modi�ed to give equal weight to the positive and
negative examples of f � We rede�ne the t�th �ltered
distribution Pt for TopDownF to be the distribution
P �

�t
� where �t is the leaf split on the t�th round� P� is

the empirical distribution PS on the training data�
Kearns and Mansour ���
 show that if we assume

there is always a function in F outperforming random
guessing on the �ltered distributions P �

�t
� then there is

a function in F giving a nontrivial information gain�
This allows us to directly compare AdaboostF and
TopDownF in the model sometimes known as boost�
ing or weak learning � which we now de�ne�

De	nition � For any � � 	�� ���
� we say that
F ��satis	es the Weak Hypothesis Assumption
�or WHA for short� with respect to f if for any dis�
tribution P over X� there is an h � F satisfying
PrP �h	x
 �� f	x

 � ������ We call � the advantage
�over random guessing��

It is known that if F ��satis�es the WHA with re�
spect to f � then f can be well�approximated by thresh�
olded linear combinations of functions from F in a
sense that can be made precise ��
� Thus the WHA
is not unlike the PAC model and other standard theo�
retical models� where one obtains leverage by making
a priori assumptions on the form of the target function
f � However� in the WHA this assumption is indirect�
as we simply assume that the �simple� class F contains
weak approximations to f on any distribution�

We now state results for the two algorithms under
the WHA� The �rst is for AdaboostF �

Theorem ��� �Freund and Schapire �	
�� Let F
be any class of boolean functions� let � � 	�� ���
� and
let f be any target boolean function that ��satis�es the
WHA with respect to F � Let S be any training sam�
ple of f � and let h denote the hypothesis output by
AdaboostF 	S�N 
� Then for any �� the training er�
ror of h on S is less than � provided that

N �
�

���
ln

�

�
� 	�


Kearns and Mansour ���
 show that TopDownF
can also be pro�tably analyzed under the WHA� Per�
haps the most signi�cant aspect of their result is that
it provides a performance guarantee for a popular
and experimentally successful heuristic in an indepen�
dently motivated theoretical model of learning�



Theorem ��� �Kearns and Mansour �	��� Let F
be any class of boolean functions� let � � 	�� ���
� and
let f be any target boolean function that ��satis�es
the WHA with respect to F � Let S be any train�
ing sample of f � and let T denote the tree output by
TopDownF 	S�N 
� Then for any �� the training error
of T on S is less than � provided that

N �

�
�

�

�c log��������
	�


for some constant c � ��

Two important remarks on these theoretical results
are in order here� First� notice that in both theorems�
the number of rounds required to achieve a desired
training error is independent of the training sample
size m� Thus� if m is su�ciently large compared to
the given bounds� statements about generalization er�
ror can be obtained by standard Occam�s Razor ��
 or
VC dimension arguments ��
� These statements will of
course be di�erent for the two algorithms due to the
di�ering bounds on N and their di�ering hypothesis
spaces� see the papers for details ���� ��
�

Second� the bound given for TopDownF in Theo�
rem ��� is not the best possible for a top�down decision
tree algorithm� By modifying the information gain cri�
terion used by TopDownF � Kearns and Mansour are
able to show an improved bound of

N �

�
�

�

�c���
	�


where c � � is a constant� They also show that this
bound is close to the best possible for any top�down
decision tree algorithm�

��� Issues Raised by the Theoretical Results

There are two intriguing issues raised by the theoret�
ical results given above� and their experimental inves�
tigation is the primary contribution of this paper�

First� the Kearns and Mansour results suggest that
top�down decision tree algorithms such as C��� might
be improved by a change in the splitting criterion� We
investigate this suggestion in detail in Section ��

Second� even if we examine the improved bound of
Equation 	�
� the di�erence between this bound and
that given for AdaboostF in Theorem ��� suggests
that AdaboostF should vastly outperform C����
In Section �� using experiments due to Freund and
Schapire � 
 as our starting point� we �nd that the
two algorithms are in fact rather comparable� We
show experimentally that the discrepancy between this
�nding and the theory lies 	at least in part
 in our
interpretation of the WHA advantage �� We show
that the advantage � 	or rather� the sequence of ad�
vantages ��� � � � � �N obtained on the �ltered distribu�
tions P�� � � � � PN
 must be regarded as an algorithm�
dependent and distribution�dependent quantity� and

thus the theoretical bounds given for the two algo�
rithms are incomparable� In other words� even though
AdaboostF has a better bound than TopDownF
for the same �xed advantage �� in practice the ad�
vantage sequence for C��� is �better� than that for
AdaboostF � resulting in the approximate parity of
the two algorithms�

� An Improved Splitting Criterion�

As we have already mentioned� the bound given by
Theorem ��� is not the best that can be obtained for a
top�down decision tree algorithm� In particular� de�ne
G	q
 � �

p
q	�� q
� and in analogy with Equation ��

de�ne
G	T 
 �

X
��leaves�T �

w	�
G	q	�

� 	�


Kearns and Mansour prove that if we replace the en�
tropy measure H	T 
 in TopDownF with the new
measure G	T 
 	that is� we change line � in Figure � to
read ! � G	T 
 � G	T 	�� h

� but leave all other as�
pects of the algorithm unchanged
 then Theorem ���
holds with the improved bound given by Equation 	�
�
Thus a simple change in our splitting criterion func�
tion fromH	q
 toG	q
 yields a polynomial rather than
superpolynomial dependence on ����

The reason G	q
 gives a better bound than H	q

is that it has better concavity� Consider splitting a
node whose proportion of positive training examples
is q into two child nodes whose proportions of positive
training examples are p and r� Suppose that a fraction
	 of the training examples are sent to the r child� and
the remaining �� 	 examples go to the p child� Note
that these split parameters must obey the equality q �
	� � 	 
p " 	r� In this situation� the information gain
can be written as

H	q
� 	�� 	 
H	p
� 	H	r
� 	�


A geometrical interpretation of the information gain is
shown in Figure �� which plots H	q
 as a function of q�
The �gure shows vertical lines at p and r� The length
of the short line segment descending from H	q
 to the
line connecting H	p
 to H	r
 is the information gain�
The fact that the information gain is non�zero is due
to the concavity of the H curve�

In contrast� consider Figure �� This �gure plots the
observed training set error min	q� �� q
 as a function
of q� We can see that if we used this function in place
of H in TopDownF � there would be no �gain� unless
p � ��� � r� This is because both child nodes would
get the same majority class label� so making this split
would not make the tree more accurate on the training
data 	which is what min	q� �� q
 measures
� The only
reason to make the split is that it �makes progress� so
that subsequent splits will be able to separate the two
classes� Hence� the purpose of using a concave split�
ting criterion such as H is to provide some measure of
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�progress� during the tree�growing process even when
p� q� and r are all on the same side of ����

Finally� Figure � plots the new splitting criterion
G	q
 as a function of q and compares it to H	q
� We
can see that G has improved concavity compared toH�
especially for very small 	or very large
 values of q� as
shown in Figure �� This permits Kearns and Mansour
to prove the tighter result given above�

��� Do G and H Di
er in Practice�

Despite the improved bound for G and the geometric
intuition� it is reasonable to ask whether G will actu�
ally outperform H in practice� Previous studies ���� �

have generally found that decision tree algorithms are
insensitive to the choice of the splitting criterion�

Let us be a little more precise about what Theo�
rem ��� and Equation 	�
 say� Both results assert a
relationship between tree size and error� Thus� for the
same �xed tree size N � the theory predicts smaller er�
ror � for the tree obtained using G compared to that
obtained using H� Alternatively� if G and H result in
trees with roughly the same error �� the theory pre�
dicts that the tree obtained using G should be smaller
than that obtained using H�

Table � shows the results of comparingG and H on
nine challenging problems from the Irvine repository
���
� We modi�ed C��� Release  to implement the
new G function� Our modi�ed version could only han�
dle ��class problems� so we converted multiclass prob�
lems into problems of discriminating one class from
the remaining classes� For this purpose� we chose
the classes that were di�cult to discriminate� In our
comparisons� we used the C��� parameters �m � �g�
which force the tree to be grown all the way to pure
leaves and which force C��� to use the information
gain rather than the gain ratio� We also disabled the



Table �� Results of comparing C����G� and C����H�� The �rst three columns show the � error on pruned trees and a
��� con�dence interval on the di�erences� The remaining four columns show the sizes of the unpruned trees� The class
chosen for discrimination against all other classes is shown in parentheses�

� error � error ��� con�dence Tree Size
Problem C����G� C����H� interval C����G� C����H� t Pr�t�
Letter Recognition ��H�� ���� ���
 ������������ ������ ������ ����� ��
��
ISOLET ��E�� 
��
 
��� ����
����
�� ����� 

��� 
���� �������

ISOLET ��P�� 
��� 
��� �����
������ ����� 
���� 
���� �������

Annealing ��
�� 
��� 
��
 ������������ �
��� 
���� ����� �����
Chess KR�vs�KP ���� ���
 ���������
�� 
���� ����� ����� �����
Segmentation ��
�� 
��� 
��� ���
�� ��
���� ����� ����� ����� ���
�
Pima ����� 
���� ����
������� ����� ����� 
���� �����
Shuttle ����� ���
 ���� ������ ������� ����� ����� ��
�� �����
Satellite ��
�� ���
 ���
 ����
���������� ��
��� ������ ����� ��
��

new heuristic in Release  that penalizes continuous
features having a large number of distinct values�

To test for signi�cant di�erences� we employed the
methodology advocated by Hinton et al� ���
� in which
the available training data are subdivided into n dis�
joint training sets and a single test set� Each algo�
rithm is trained on each training set and the resulting
hypotheses are all tested on the single test set� The
results of classifying each test set example by each of
the �n hypotheses are tallied into a contingency table�
and a ��# con�dence interval is computed for the dif�
ference between the error rates of G and H using the
ABC method for marginal homogeneity �$� �
� This is
a very sensitive test that controls for variations due to
the di�erent training sets�

In  of the � domains� the observed test error rate
of C���	G
 is lower than C���	H
� The individual
tests for signi�cant di�erences �nd two domains where
C���	G
 is better and one where C���	H
 is better�
The combined results of all � domains� when analyzed
by a sign test� show that C���	G
 is performing bet�
ter than C���	H
 	p � �����
� Based on these results�
there is weak evidence that G produces better error
rates than H� although the di�erences are not large�
However� recall that the theory predicts that if G and
H produce trees with similar error rates� the trees ob�
tained using G should be smaller� Table � also shows
the application of paired�di�erences t tests to compare
the sizes of the unpruned decision trees� In all but one
problem� the decision trees produced by G are smaller
than those produced by H� although the di�erence is
signi�cant below the ���� level in only � problems� But
if we combine all � trials in this table into a single t
test� the di�erence is highly signi�cant p � �������
We conclude that G on the average produces smaller
unpruned trees than H�

These experiments suggest that G may be a better
splitting criterion than H� and that it merits further
development 	especially determining how it should be
extended to handle more than two classes
�

� The Advantage Sequence

As pleased as we might be to give a nontrivial proof
of performance for a C����like algorithm in a stan�
dard theoretical learning model� and despite the small
improvements that seem possible with the new split�
ting criterion discussed in Section �� there is no avoid�
ing the harsh reality that the bounds of Theorem ���
and Equation 	�
 are vastly worse than the bound of
Theorem ���� Should we really believe that C��� is
considerably inferior to AdaboostF �

As a partial answer to this question� consider Fig�
ure $� which is due to Freund and Schapire � 
� This
scatter plot compares the test errors of Adaboost �

and C��� 	with pruning
 on �$ problems from the
UCI data repository� While Adaboost enjoys signi��
cant improvements overC��� on many problems� there
are a couple on which it performs considerably worse
than C���� and on most problems the two algorithms
have similar test error rates 	within a few percent
�
It seems safe to say that C��� is at least competitive
with Adaboost� Certainly a gap in performance of
the order suggested by the theory is not present�

What� then� is missing in the theoretical results�
or more accurately� how have we been misinterpret�
ing them� In our discussion so far� we have implic�
itly assumed that the advantage � in the WHA re�
mains constant 	or is at least lower bounded by a con�
stant
 on all distributions� In fact� for Theorems ���
and ��� and Equation 	�
 to hold� it is only neces�
sary that the WHA hold on the sequence of �ltered
distributions P�� P�� � � � � PN actually generated by the
algorithm under consideration� Thus� there might be
some problems for which the WHA holds for the se�
quence of �ltered distributions created by TopDown�
but not on the sequence created by Adaboost� On

�Throughout this section� the splitting functions F used
in the implementations of AdaboostF and TopDownF is
the same as that used by C���� so we drop the subscript
F �



such problems it would be perfectly consistent with
the theoretical results for TopDown to outperform
Adaboost� Furthermore� on real problems even this
weakened version of the WHA is a rather unrealistic
expectation� we should expect the best advantage �i
that can be obtained within F on the �ltered distri�
bution Pi to be a varying� algorithm�dependent and
problem�dependent quantity � We call the resulting se�
quence ��� ��� � � � the advantage sequence of the algo�
rithm ��

For example� in Adaboost we have already sug�
gested that the successive �ltered distributions are be�
coming �harder� as more weight is given to training
examples on which previous hypotheses have erred�
Thus� for the �ltered distributions of Adaboost� we
expect the advantage sequence to be decreasing� For
TopDown� successive �ltered distributions do not fo�
cus on hard examples� but form increasingly re�ned
partitions of the input space� These partitions eventu�
ally become su�ciently �ne that very simple functions
can approximate the target function well within a cell�
Thus� we expect the advantage sequence to increase�
or at least remain roughly constant�

The key point is that even though for the same
advantage sequence the bound for Adaboost is much
better than that for TopDown� in practice the advan�
tage sequences for the two algorithms are quite di�er�
ent� This could explain the discrepancy between the
experimental parity of the algorithms and their theo�
retical disparity� Experimental results supporting this
hypothesis are the focus of this section�

��� Methods

To measure the advantage sequence for TopDown ex�
perimentally� we need to compute the advantage of
each split� Using the notation of Section �� consider a
candidate split of a decision tree node labeled by the
function h� with a fraction q of positive examples at
the parent and fractions p and r of positive examples
at the two children� Let 	 be the fraction of exam�
ples from the parent going to the r child� Kearns and
Mansour ���
 show that on the balanced distribution
at the parent� h has the advantage�����	�

�
r

q
�

�� r

�� q

����� 	$


�Freund and Schapire ���� give a generalized version
of Theorem ��� which expresses the training error of
Adaboost in terms of the advantage sequence� rather than
a �xed advantage �� A similar generalization of Theo�
rem ��� is possible� but is beyond our scope� In any case�
the resulting bounds again exhibit a disparity similar to
that of Theorems ��� and ����

�Technically� this advantage may actually be achieved
by the complement of h� but since the class of splitting
functions used by C��� is closed under complementation�
the e�ect is identical�

over random guessing 	that is� the error of h on the
balanced distribution is ��� minus the given expres�
sion
� Thus� like the information gain� the advantage
is entirely determined by the split parameters� We
modi�edC��� to compute the advantage at each split�
and to record these advantages in the order that the
splits would be generated by TopDown�

We measured the advantage sequence of algorithms
TopDown and Adaboost on three problems� an ar�
ti�cial decision list problem� the Pima Indians dia�
betes database� and the Australian credit screening
database� The advantage sequence for TopDown on
any particular run is very noisy� because when a node
containing few examples is split� the advantage tends
to be high� TopDown tends to switch frequently be�
tween splitting such sparse nodes and splitting less
sparse nodes� so the advantage sequence oscillates� To
remove this noise� we averaged the results of �� tri�
als� To generate the trials in the decision list problem�
we generated �� separate training sets of ��� exam�
ples each� For the other two problems� we performed
a ���fold cross�validation�

To ensure that this advantage sequence compari�
son was fair� we �rst ran TopDown to determine how
many rounds it required to drive the training error to
zero� We then ran Adaboost for the same number of
rounds and compared the training and test set errors
for the two algorithms� The purpose of this was not to
determine which algorithm was better� but to double�
check that the algorithms were achieving similar per�
formance for the same number of rounds of boosting�
Table � shows the results of this check� TopDown
is actually able to achieve zero training set error in
fewer rounds than Adaboost� but the test set errors
are roughly comparable� 	The test error rates for the
pruned trees of C��� 	not shown
 are slightly below
those shown for the unpruned trees�


��� Results

Figures  � �� and �� show the averaged advantage se�
quences for the three problems� In all cases� there
is a dramatic di�erence between the advantage se�
quences of TopDown and Adaboost� As predicted�
Adaboost rapidly drives the advantage to zero� falling
below ���� within �� rounds on all three problems� In
contrast� the advantage sequence forTopDown is low�
est at the beginning and tends to increase 	or at least
hold steady
 as more splits are performed�

This demonstrates that the � values in Theo�
rems ��� and ��� cannot be assumed to be the same�
If we think of the desired training error � in Theo�
rems ��� and ��� as being a small �xed constant� the
di�ering behavior of ��� for the two algorithms goes a
long way towards explaining their competitive perfor�
mance in spite of the disparate dependence on ��� in
the two theorems�

Figure �� gives a scatter plot of the value of � at a



Table �� Comparison of TopDown and Adaboost for equal numbers of boosting rounds �means of �� trials��

TopDown � rounds Adaboost TopDown Adaboost
Problem to � train error train error test error test error
Decision List ����� ��
 ���
 �
��
Pima Diabetes �

�� ���� ����� �
��
Australian Credit �
�
 ��� ����� ����

node and the fraction w of the training set that reaches
that node for the decision list experiment� Not sur�
prisingly� when w is large� the advantages are smaller�
while the partition of the input space induced by the
tree is still coarse� it may be hard to �nd good splits�
On the other hand� if we con�ne our attention to nodes
having at least �# of the training data 	which means
at least ��� examples for this problem
� we still see
many large values for the advantage� This rules out
the possibility that C��� is only enjoying large advan�
tages when there are a handful of examples at a node�

Finally� Figure �� gives a scatter plot of the ad�
vantage versus the information gain to show that the
advantage is measuring something quite di�erent from
the information gain� The information gain places
bounds on the possible values for �� but for any �xed
value of the information gain� � takes on a wide range
of values� The mere fact that this scatter plot does
not lie on a one�dimensional curve demonstrates that
the advantage sequence measures something funda�
mentally di�erent than the information gain�

��� Discussion

The Weak Hypothesis Assumption is a di�erent way
of de�ning inductive biases than previous theoretical
frameworks� In the PAC model 	and in the Bayesian
and MDL frameworks
� the bias is expressed in terms
of assumptions about the syntactic representation�
complexity� or prior probability of the target function�
The WHA makes no explicit assumptions of this kind�
Instead� it makes the incremental� procedural assump�
tion that at each round of the boosting process� some
h � F will have an advantage over random guessing�

Can our experimental results give us any intu�
ition about what the WHA means for TopDown and
Adaboost� Figures  � �� and �� show that the advan�
tage forTopDown is smallest near the root of the tree�
Hence� forC���� the WHA is most likely to be violated
early in the tree�growing process� In other words� for
C���� the WHA asserts that even at the root� a split
will have an advantage over random guessing� If we
think about cases where this is violated 	e�g�� parity
�
these are precisely cases where C��� fails�

For Adaboost� the advantages are small later in
the boosting process� so the WHA is most dubious
after several rounds of boosting have been performed�
In other words� forAdaboost� after the �main e�ects�

have been identi�ed� the WHA asserts thatAdaboost
will still be able to make progress�

We can conclude that although making the WHA
provide insights into the behavior and performance of
both Adaboost and C���� the WHA is asserting fun�
damentally di�erent things for the two algorithms�
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Figure �� Scatter plot of test errors for Adaboost and
C��� on �� problems from the UCI data repository ����
Points below the diagonal indicate superior performance
for C���� while points above the diagonal indicate supe�
rior performance for Adaboost�
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Figure �� Plot of advantage �t on �ltered distribution
Pt vs� t for the unpruned tree of C��� �top plot� and
for Adaboost �bottom plot� on the arti�cial decision list
learning problem�
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Figure �� Plot of advantage �t on �ltered distribution Pt
vs� t for the unpruned tree of C��� �top plot� and for
Adaboost �bottom plot� on the Pima Indians diabetes
problem�

0

0.1

0.2

0.3

0.4

0.5

gamma

0 10 20 30 40 50 60
t

australian experiment, avg gamma vs t (20 trials)

Figure ��� Plot of advantage �t on �ltered distribution
Pt vs� t for the unpruned tree of C��� �top plot� and for
Adaboost �bottom plot� on the Australian credit screen�
ing problem�
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Figure ��� Scatter plot of advantage � vs� weight w for
C��� on the decision list experiment� accumulated over
all �� trials� For each split made at node � and labeled
by the function h� we plot a point whose x coordinate is
the advantage over random guessing that h has on the
balanced distribution P �

� � and whose y coordinate is w����
the fraction of the training sample reaching ��
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Figure ��� Scatter plot of advantage � vs� information gain
forC��� on the decision list experiment� accumulated over
all �� trials� For each split made at node � and labeled
by the function h� we plot a point whose x coordinate is
the advantage over random guessing that h has on the
balanced distribution P �

�� and whose y coordinate is the
information gained by the split�


