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Abstract

Often the most practical way to define a Markov Decision
Process (MDP) is as a simulator that, given a state and an
action, produces a resulting state and immediate reward sam-
pled from the corresponding distributions. Simulators in nat-
ural resource management can be very expensive to execute,
so that the time required to solve such MDPs is dominated by
the number of calls to the simulator. This paper presents an
algorithm, DDV, that combines improved confidence inter-
vals on the Q values (as in interval estimation) with a novel
upper bound on the discounted state occupancy probabilities
to intelligently choose state-action pairs to explore. We prove
that this algorithm terminates with a policy whose value is
within ε of the optimal policy (with probability 1− δ ) after
making only polynomially-many calls to the simulator. Ex-
periments on one benchmark MDP and on an MDP for inva-
sive species management show very large reductions in the
number of simulator calls required.

Introduction
Consider a Markov Decision Process in which the number
of states and actions is small enough that a tabular repre-
sentation of the MDP action-value function fits in memory,
but where the transition function is not provided in explicit
form. Instead, it can only be sampled from an expensive
simulator. In such cases, we desire an MDP planning algo-
rithm that minimizes the number of calls to the simulator,
runs in time polynomial in the relevant problem parameters,
and outputs a policy that is approximately optimal with high
probability.

Our motivating application involves optimal management
of a river system to control an invasive plant species,
Tamarisk. A native of the Middle East, Tamarisk has be-
come an invasive plant in the dryland rivers and streams of
the western US (DiTomaso and Bell 1996; Stenquist 1996).
It out-competes native vegetation through its thirst for water
and by introducing salt into the soil. Given a Tamarisk in-
vasion, a land manager must decide how and where to fight
the invasion (e.g., eradicate Tamarisk plants? plant native
plants? upstream? downstream?). Although approximate
or heuristic solutions to this problem would be useful, our
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collaborating economists tell us that our policy recommen-
dations will carry more weight if they are provably optimal
with high probability.

The transition function for Tamarisk involves several
phases. First the chosen treatments are applied (which
may kill some Tamarisk trees). Then each tree (native or
Tamarisk) may die according to a standard mortality prob-
ability. If the tree does not die, it then produces a stochas-
tic number of seeds. These disperse (preferentially down-
stream). Multiple seeds arriving at the same location then
compete to take root and become established. Each of these
steps is easy to specify in the form of a stochastic simulation
(e.g., as a dynamic Bayesian network), but exact computa-
tion of the transition probabilities is intractable, even for a
single state-action pair.

A large problem instance involves 4.7× 106 states with
2187 actions in each state. On a modern 64-bit machine,
the action-value function for this problem can fit into main
memory. However, computing the full transition function
to sufficient accuracy to support standard value iteration re-
quires on the order of 3×1020 simulator calls.

To minimize the number of simulator calls, we introduce a
model-based reinforcement learning algorithm called DDV
(a Romanization of ∆∆V ). Our algorithm incorporates two
innovations. First we develop an improved confidence in-
terval for the multinomial transition probabilities. This in-
terval provides tighter estimates when the transition func-
tion is sparse, which permits us to stop sampling earlier
than previous methods. Second, we introduce a new ex-
ploration heuristic that chooses which state-action pair to
sample based on an approximate value of information cal-
culation. Specifically, DDV computes a confidence interval
on the value of the start state and chooses a state-action pair
(s,a) to explore based on an estimate of the degree to which
exploring (s,a) will shrink this confidence interval. That es-
timate is based on a novel upper bound on the occupancy
measure of the MDP. The occupancy measure for a state in
the MDP is the (discounted) probability that the optimal pol-
icy will occupy that state (summed over all time) given that
it starts in a designated state. Our key observation is that
the impact of exploring (s,a) on the confidence interval at
the start state can be estimated from the impact on state s of
exploring (s,a) multiplied by the occupancy measure.

This paper provides evidence to support two claims:



(a) DDV requires fewer samples than existing methods to
achieve good performance and (b) DDV terminates with a
policy that is approximately optimal with high probability
after only polynomially-many calls to the simulator.

Definitions
We employ the standard formulation of an infinite horizon
discounted Markov Decision Process (MDP) with a desig-
nated start state distribution (Bellman 1957; Puterman 1994)
M = 〈S,A,P,R,γ,P0〉. S is a finite set of states of world; A is
a finite set of possible actions that can be taken in each state;
P : S×A×S 7→ [0,1] is the conditional probability of enter-
ing state s′ when action a is executed in state s; R(s,a) is the
(deterministic) reward received after performing action a in
state s; γ ∈ (0,1) is the discount factor, and P0 is the distribu-
tion over starting states. It is convenient to define a special
starting state s0 and action a0 and define P(s|s0,a0) = P0(s)
and R(s0,a0) = 0. We assume that 0≤ R(s,a)≤ Rmax. Gen-
eralization of our algorithm to (bounded) stochastic rewards
is straightforward.

A strong simulator (also called a generative model) is a
function F : S×A 7→ S×ℜ that given (s,a) returns (s′,r)
where s′ is sampled according to P(s′|s,a) and r = R(s,a).

A (deterministic) policy is a function from states to ac-
tions, π : S 7→ A. The value of a policy π at the starting
state is defined as V π(s0) = E[∑∞

t=1 γ tR(st ,π(st))], where
the expectation is taken with respect to the stochastic tran-
sitions. The maximum possible V π(s0) is denoted Vmax =
Rmax/(1− γ). An optimal policy π∗ maximizes V π(s0),
and the corresponding value is denoted by V ∗(s0). The
action-value of state s and action a under policy π is defined
as Qπ(s,a) = R(s,a) + γ ∑s′ P(s′|s,a)V π(s′). The optimal
action-value is denoted Q∗(s,a).

Define pred(s) to be the set of states s− such that
P(s|s−,a)> 0 for at least one action a.
Definition 1. (Fiechter 1994). A learning algorithm is PAC-
RL if for any discounted MDP (S,A,P,R,γ,P0), ε > 0, 1 >
δ > 0, and 0 ≤ γ < 1, the algorithm halts and outputs a
policy π such that

P[|V ∗(s0)−V π(s0)| ≤ ε]≥ 1−δ ,

in time polynomial in |S|, |A|, 1/ε , 1/δ , 1/(1−γ), and Rmax.
The occupancy measure µ∗(s) is the expected discounted

number of times that the optimal policy π∗ visits state s,

µ
∗(s) = E

[
∞

∑
t=1

γ
t I[st = s]

∣∣∣∣∣ s0,π
∗

]
, (1)

where I[·] is the indicator function and the expectation taken
is with respect to the transition distribution. This can be
computed via dynamic programming on the Bellman flow
equation (Syed, Bowling, and Schapire 2008): µ∗(s) =
P0(s)+ γ ∑s− µ(s−)P(s|s−,π∗(s−)). This says that the (dis-
counted) probability of visiting state s is equal to the sum of
the probability of starting in state s (as specified by the start-
ing state distribution P0(s)) and the probability of reaching
s by first visiting state s− and then executing an action that
leads to state s.

As a learning algorithm explores the MDP, it collects the
following statistics. Let N(s,a) be the number of times the
simulator has been called with state-action pair (s,a). Let
N(s,a,s′) be the number of times that s′ has been observed
as the result. Let R(s,a) be the observed reward.

Previous work on sample-efficient MDP
Planning

Fiechter (1994) first introduced the notion of PAC reinforce-
ment learning in Definition 1 and presented a PAC-RL al-
gorithm. His algorithm assumed a discounted MDP with a
“reset” action available during learning, so that the learner
could return to the start state at any point. This matches our
application setting where an ecosystem is in state s0 now,
and we seek a good policy for managing it for the coming
years.

Subsequent work criticized Fiechter’s approach because
it posits a separation between “explore time” and “exploit
time”. Within the reinforcement learning framework, vir-
tually all subsequent work has focused on algorithms that
manage the exploit-explore tradeoff. These algorithms all
follow a single (potentially-infinite) trajectory and seek to
converge to optimal behavior. Optimality has been defined
in three different ways.

Under the first definition, the algorithm announces (at
some time t∗ in state st∗ ) that it has found a policy π̂ such
that from this point forward, the expected return V π̂(st∗) is
within ε of the optimal return V ∗(st∗) with probability 1−δ .
Examples of this approach include the Explicit Explore-
Exploit (E3) algorithm of Kearns and Singh (1998) and the
Rmax algorithm of Brafman, et al. (2003).

The second definition of optimal behavior is in terms of
the total (infinite horizon) regret of the algorithm, which is
the difference between the reward that would have been re-
ceived using the optimal policy and the reward that is ac-
tually received by the algorithm as it explores and exploits.
Jaksch, Ortner, and Auer (2010) introduce UCRL2, which
achieves a total regret of no more than 34D|S|

√
|A|t log t

δ

for any time t > 1, where D is a parameter, called the “di-
ameter” of the MDP, that quantifies the difficulty of getting
from any state si to any other state s j.

The third definition of optimal behavior is in terms of the
total number of times that the algorithm executes a non-ε-
optimal action (Kakade 2003). Model-based Interval Esti-
mation (MBIE) (Strehl and Littman 2008) introduces a prac-
tical algorithm satisfying Kakade’s optimality criterion.

From the perspective of sustainability problems, all of
these critera based on optimal behavior are not useful. The
key difficulty is that in most cases, it is likely that the starting
state s0 is a transient state that we expect (indeed, we hope)
will not be visited again if the ecosystem is being managed
optimally. For example, in our invasive species problem, s0
will correspond to a situation in which an invading species
is spreading rapidly, whereas we hope that the optimal pol-
icy can eradicate the species and quickly eliminate it if it
re-appears. Because s0 is a transient state, algorithms that
follow a single trajectory will not revisit it very often, and
hence, will not learn how to behave ε-optimally in that state.



Although virtually all work in model-based reinforcement
learning does not address transient-state behavior, many im-
portant innovations have been made since Fiechter’s 1994
paper. The goal of the present paper is to build on these inno-
vations to develop a “next generation” algorithm for model-
based MDP planning for a designated start state.

Building Blocks
This section provides the definitions, results, and algorithm
components needed to define DDV.

Value Iteration for Confidence Intervals
Suppose we have collected a sample of 〈st ,at ,rt ,st+1〉 data
points and recorded the results using N(s,a,s′) and R(s,a).
MBIE employs the following confidence interval for multi-
nomial distributions, introduced by Weissman, et al. (2003).
Let P̂(s′|s,a) = N(s,a,s′)/N(s,a) be the maximum likeli-
hood estimate for P(s′|s,a), and let P̂ and P̃ denote P̂(·|s,a)
and P̃(·|s,a). Let

CI(P̂|N(s,a),δ ) =
{

P̃
∣∣ ‖P̃− P̂‖1 ≤ ω(N(s,a),δ )

}
, (2)

(where ‖ · ‖1 is the L1 norm and ω(N(s,a),δ ) =√
2[ln(2|S|−2)−lnδ ]

N(s,a) ) denote a set of probability distributions.

Weismann et al. (2003) prove that with probability 1− δ ,
P(·|s,a) ∈ CI(P̂(·|s,a)|N(s,a),δ ). The confidence interval
is an L1 “ball” of radius ω(N(s,a),δ ) around the maximum
likelihood estimate for P.

Given confidence intervals for all (s,a), we wish to obtain
confidence intervals on the Q and V values for the optimal
value function of the MDP. For any state where N(s,a) = 0,
define Qlower(s,a) = 0 and Qupper(s,a) =Vmax. Then, gener-
alizing Strehl and Littman (2008), we perform the following
Q iterations to convergence:

Qupper(s,a) = R(s,a)+

max
P̃(s,a)∈CI(P(s,a),δ1)

γ ∑
s′

P̃(s′|s,a)max
a′

Qupper(s′,a′) (3)

Qlower(s,a) = R(s,a)+

min
P̃(s,a)∈CI(P(s,a),δ1)

γ ∑
s′

P̃(s′|s,a)max
a′

Qlower(s′,a′) (4)

At convergence, define Vupper(s) = maxa Qupper(s,a) and
Vlower(s) = maxa Qlower(s,a).
Proposition 1. If δ1 = δ/(|S||A|), then with probability
1−δ , Qlower ≤ Q∗(s,a)≤ Qupper for all (s,a) and Vlower ≤
V ∗(s)≤Vupper for all s.

Proof. Strehl and Littman (2008) prove that (3) is a con-
traction mapping, and hence, value iteration will converge.
By symmetry, the same holds for (4). Dividing δ by |S||A|
ensures that the |S||A| separate confidence intervals hold si-
multaneously with probability 1−δ . The result follows.

Strehl and Littman provide Algorithm UPPERP (Algo-
rithm 1) for solving the optimization over CI(P(s,a),δ1) in
(3) and (4) efficiently. Let us consider (3). If the radius
of the confidence interval is ω , then we can solve for P̃ by

Algorithm 1: UPPERP(s,a,δ ,M0)
Input: s,a
δ : Confidence parameter
M0: missing mass limit
Lines marked by GT: are for the Good-Turing extension
N(s,a) := ∑s′ N(s,a,s′)
P̂(s′|s,a) := N(s,a,s′)/N(s,a)
P̃(s′|s,a) := P̂(s′|s,a)
∆ω := ω(N(s,a),δ )/2

GT: N0(s,a) := {s′|N(s,a,s′) = 0}
while ∆ω > 0 do

S′ := {s′ : P̂(s′|s,a)< 1} recipient states
GT: if M0 = 0 then S′ := S′ \M(s,a)

s := argmins′:P̃(s′|s,a)>0 Vupper(s′) donor state
s := argmaxs′∈S′,P̃(s′|s,a)<1)Vupper(s′) recipient state
ξ := min{1− P̃(s|s,a), P̃(s|s,a),∆ω}
P̃(s|s,a) := P̃(s|s,a)−ξ

P̃(s|s,a) := P̃(s|s,a)+ξ

∆ω := ∆ω−ξ

GT: if s ∈ N0(s,a) then M0 := M0−ξ

return P̃

shifting ∆ω = ω/2 of the probability mass from outcomes
s′ for which Vupper(s′) = maxa′Qupper(s′,a′) is low (“donor
states”) to outcomes for which it is maximum (“recipient
states”). This will result in creating a P̃ distribution that is at
L1 distance ω from P̂. The algorithm repeatedly finds a pair
of successor states s and s and shifts probability from one to
the other until it has shifted ∆ω .

Note that in most cases, s will be a state for which
N(s,a,s) = 0—that is, a state we have never visited. In such
cases, Vupper(s) =Vmax.

An analogous algorithm solves (4).

An Improved Confidence Interval for Sparse MDPs
A drawback of the Weissman et al. confidence interval is that
ω(N,δ ) scales as O(

√
|S|/N), so the intervals are very wide

for large state spaces. In many real-world MDPs, the tran-
sition probability distributions are sparse in the sense that
there are only a few states s′ such that P(s′|s,a) > 0. We
would like a tighter confidence interval for sparse distribu-
tions.

Our approach to this is to intersect the Weissman et
al. confidence interval with a confidence interval based
on the Good-Turing estimates of the missing mass (Good
1953). For a given state-action pair (s,a), let Nk(s,a) =
{s′|N(s,a,s′) = k} be the set of all result states s′ that have
been observed exactly k times. We seek to bound the to-
tal probability of those states that have never been observed:
M0(s,a) = ∑s′∈N0

P(s′|s,a). The Good-Turing estimate of
M0(s,a) is

M̂0(s,a) =
|N1(s,a)|
N(s,a)

.

In words, Good and Turing count the number of successor
states that have been observed exactly once and divide by



the number of samples.
Proposition 2. With probability 1−δ ,

M0(s,a)≤ M̂0(s,a)+(1+
√

2)

√
ln(1/δ )

N(s,a)
. (5)

Proof. Let S(M0(s,a),x) be the Chernoff “entropy”, defined
as

S(M0(s,a),x) = sup
β

xβ − lnZ(M0(s,a),β ),

where Z(M0(s,a),β ) = E[eβM0(s,a)]. McAllester and Ortiz
(2003) prove (Theorem 16) that

S(M0(s,a),E[M0(s,a)]+ ε)≥ N(s,a)ε2.

From Lemmas 12 and 13 of Kearns and Saul (1998),

E[M0(s,a)]≤ M̂0(s,a)+

√
2log1/δ

N(s,a)
.

Combining these results yields

S

(
M0(s,a),M̂0(s,a)+

√
2log1/δ

N(s,a)
+ ε

)
≥N(s,a)ε2. (6)

Chernoff (1952) proves that

P(M0(s,a)≥ x)≤ e−S(M0(s,a),x).

Plugging in (6) gives

P

(
M0(s,a)≥ M̂0(s,a)+

√
2log1/δ

N(s,a)
+ ε

)
≤ e−N(s,a)ε2

.

(7)
Setting δ = e−N(s,a)ε2

and solving for ε gives ε =√
(log1/δ )/N(s,a). Plugging this into (7) and simplifying

gives the result.

Define CIGT (P̂|N(s,a),δ ) to be the set of all distribu-
tions P̃∈CI(P̂|N(s,a),δ/2) such that ∑s′∈N0(s,a) P̃(s′|s,a)<

M̂0(s,a)+(1+
√

2)
√

ln(2/δ )
N(s,a) .

We can incorporate the bound from (5) into UpperP by
adding the lines prefixed by “GT:” in Algorithm 1. These
limit the amount of probability that can be shifted to unob-
served states according to (5). Note that since we are inter-
secting two confidence intervals, we must compute both (2)
and (5) using δ/2 so that they will simultaneously hold with
probability 1−δ .

An Upper Bound on the Occupancy Measure
The exploration heuristic for DDV is based on an occu-
pancy measure µupper. This section defines this measure and
presents a dynamic programming algorithm to compute it.

At each point during the execution of DDV, the states
S of the unknown MDP can be partitioned into three sets:
(a) the unobserved states s (i.e., N(s−,a−,s) = 0 for all
s−,a−); (b) the observed but unexplored states s (i.e.,
∃(s−,a−)N(s−,a−,s) > 0 but N(s,a) = 0 for all a), and (c)
the (partially) explored states s (i.e., N(s,a,s′)> 0 for some
a). Consider the set M̃ = 〈S̃, Ã, T̃ , R̃,s0〉 of MDPs satisfying
the following properties:

• S̃ consists of all states s that have been either observed or
explored,

• Ã = A, the set of actions in the unknown MDP,

• T̃ consists of any transition function T such that
for explored states s and all actions a, T (s,a, ·) ∈
CIGT (P̂(s,a),δ ). For all observed but not explored states
s, T (s,a,s) = 1 for all a, so they enter self-loops.

• R̃: For explored (s,a) pairs, R̃(s,a) = R(s,a). For unex-
plored (s,a) pairs, R̃(s,a) ∈ [0,Rmax].

• s0 is the artificial start state s0.

M̃ contains all MDPs consistent with the observations with
the following restrictions. First, the MDPs do not contain
any of the unobserved states. Second, the unexplored states
contain self-loops and so do not transition to any other states.

Define Pupper(s′|s,a) as follows:

Pupper(s′|s,a) = max
P̃(s,a)∈CIGT (P,δ )

P̃(s′|s,a).

Define µupper as the solution to the following dynamic
program. For all states s,

µupper(s) = ∑
s−∈pred(s)

max
a−

γPupper(s|s−,a−)µupper(s−). (8)

The intuition is that we allow each predecessor s− of s to
choose the action a− that would send the most probabil-
ity mass to s and hence give the biggest value of µupper(s).
These action choices a− do not need to be consistent for
multiple successors of s−. We fix µupper(s0) = µ(s0) = 1.
(Recall, that s0 is an artificial start state. It is not reachable
from any other state—including itself—so µ(s0) = 1 for all
policies.)

Proposition 3. For all MDPs M̃ ∈ M̃ , µupper(s) ≥
µπ∗(M̃)(s), where π∗(M̃) is any optimal policy of M̃.

Proof. By construction, Pupper(s′|s,a) is the maximum over
all transition distributions in M̃ of the probability of
(s,a)→ s′. And according to (8), the probability flowing
to s is the maximum possible over all policies executed in
the predecessor states {s−}. Finally, all probability reaching
a state s must come from its known predecessors pred(s),
because all observed but unexplored states only have self-
transitions and hence cannot reach s or any of its predeces-
sors.

In earlier work, Smith and Simmons (2006) employed a
less general path-specific bound on µ as a heuristic for fo-
cusing Real-Time Dynamic Programming (a method that as-
sumes a full model of the MDP is available).

The DDV Algorithm
Algorithm 2 presents the pseudo-code for DDV. In each
iteration, DDV performs dynamic programming to update
the bounds on Q, V , and µ . If ∆V (s0) < ε , then it com-
putes the optimal policy based on the maximum likelihood
estimate of the MDP and exits. Otherwise, it computes



Algorithm 2: DDV (s0,γ,F,ε,δ )
Input: s0:start state
γ: discount rate
F : a simulator
ε,δ : accuracy and confidence parameters
S̃ = {s0} // observed and/or explored states
N(s,a,s′) = 0 for all (s,a,s′)
repeat forever

update Qupper, Qlower, Vupper, Vlower, µupper by
iterating equations 3,4, and 8 to convergence
if Vupper(s0)−Vlower(s0)≤ ε then

// compute optimal policy and terminate
compute Q̂
π̂(s) = argmaxa Q̂(s,a)
return π̂

forall the explored or observed states s do
forall the actions a do

compute Q′upper(s,a) and Q′lower(s,a) (see
text)
∆∆Q(s,a) := [Qupper(s,a)−Qlower(s,a)]−
[Q′upper(s,a)−Q′lower(s,a)]
∆∆V (s0|s,a) := µupper(s)∆∆Q(s,a)

(s,a) := argmax(s,a) ∆∆V (s0|s,a)
(s,a,r,s′)∼ F(s,a) // draw sample
S̃ := S̃∪{s′}
update N(s,a,s′),N(s,a), and R(s,a)

∆∆Q(s,a) for each (s,a) and chooses the (s,a) that maxi-
mizes ∆∆V (s0|s,a). Then it draws a sample from P(s′|s,a).
To make the dynamic programming efficient, we employ pri-
oritization methods (Wingate and Seppi 2006).

To compute ∆∆Q(s,a), we must compute the expected
values Qupper(s,a) and Qlower(s,a) after drawing one more
sample (s,a,r,s′). We denote these by Q′upper(s,a) and
Q′lower(s,a). We consider two cases.
Case 1: N(s,a) = 0. In this case, our current bounds are
Qlower(s,a) = 0 and Qupper(s,a) = Vmax. After we sample
(s,a,r,s′), we will observe the actual reward R(s,a) = r and
we will observe one of the possible successor states s′. For
purposes of deriving our heuristic, we will assume a uni-
form prior on R(s,a) so that the expected value of R is
R=Rmax/2. We will assume that s′ will be a “new” state that
we have never observed before, and hence Vupper(s′) =Vmax
and Vlower(s′) = 0. This gives us

Q′upper(s,a) = R(s,a)+ γRmax/(1− γ) (9a)

Q′lower(s,a) = R(s,a), (9b)

If a more informed prior is known for R(s,a), then it could
be employed to derive a more informed exploration heuris-
tic.
Case 2: N(s,a)> 0. In this case, we have observed R(s,a),
so it is no longer a random variable. Hence, the expectation
is only over s′. For purposes of deriving our exploration
heuristic, we will assume that s′ will be drawn according to

our current maximum likelihood estimate P̂(s′|s,a) but that
N1(s,a) will not change, so the Good-Turing estimate will
not change. Under this assumption, the expected value of Q
will not change, M0(s,a) will not change, so the only change
to Qupper and Qlower will result from replacing ω(N(s,a),δ )
by ω(N(s,a)+1,δ ).

Note that DDV explores a state-action pair (s,a) even if
a is not currently the optimal action in s. That is, even if
Qupper(s,a) < Qupper(s,a′) for some a′ 6= a. An alternative
rule would be to only explore (s,a) if it would reduce the
expected value of ∆V (s) = Vupper(s)−Vlower(s). However,
if there are two actions a and a′ such that Qupper(s,a) =
Qupper(s,a′), then exploring only one of them will not
change ∆V (s). We have studied another variant in which
we defined Vupper(s) = softmax(τ)aQupper(s,a) (the soft-
max with temperature τ). This gave slightly better results,
but it requires that we tune τ , which is a nuisance.

We now present the main theoretical result of the paper.

Theorem 1 (DDV is PAC-RL). There exists a sample size m
polynomial in |S|, |A|, 1/ε , 1/δ , 1/(1− γ),Rmax, such that
DDV(s0,F,ε,δ/(m|S||A|)) terminates after no more than
m|S||A| calls on the simulator and returns a policy π such
that |V π(s0)−V ∗(s0)|< ε with probability 1−δ .

Proof. We begin with sample complexity. At the point
where DDV terminates, let P̃upper be the set of probability
transition functions chosen in equation (3), R(s,a) be the
learned reward function, and Qupper be the computed up-
per bound on the Q function. We can view this as defining
an MDP Mupper whose optimal policy πupper selects actions
πupper(s) := argmaxa Qupper(s,a). Define Mlower and πlower
analogously. Then Lemma 1 of Strehl and Littman (2008)
establishes that for all (s,a),

Qπupper
upper (s,a)−Qπlower

lower (s,a)≤
2γRmaxω

(1− γ)2 ,

where ω is the radius of the confidence interval from (2).
We want this to be ≤ ε . Solving for ω gives

ω ≤ ε(1− γ)2

2γRmax
.

Now we substitute the definition of ω and solve for the sam-
ple size m to obtain

m≥ 8[ln(2|S|−2)− lnδ ]γ2R2
max

ε2(1− γ)4 .

Now let’s consider s0. Given that Qupper(s0,a) −
Qlower(s0,a) ≤ ε for all a, it follows that
Vupper(s0) − Vlower(s0) ≤ ε . To see this, let aupper =
argmaxa Qupper(s0,a). Then Vupper(s0) = Qupper(s0,aupper).
Clearly Vlower(s0)≥ Qlower(s0,aupper), so ∆V (s0)< ε .

If DDV samples every (s,a) at least m =
Õ(|S|γ2(1/ε)2(1/(1 − γ))4) times, then it will termi-
nate with ∆V (s0) ≤ ε . Hence, the sample complexity
of DDV is Õ(|S|2|A|γ2(1/ε)2(1/(1 − γ))4), which is
polynomial in the relevant quantities.



To prove the approximate correctness of the result, we
know from Proposition 1 that if we had 1− δ/|S||A| con-
fidence intervals on all (s,a), then with probability 1−δ ,

Vupper(s0)≤V ∗(s0)≤Vlower(s0).

However, DDV may not have explored all (s,a). Given that
Qupper and Qlower assume Vmax and 0 in unexplored states
(respectively), and given that DDV did not explore them,
this implies that exploring those states would not increase
∆V (s0).

Because DDV recomputes the confidence interval for one
Q(s,a) after every sample (s,a,r,s′), it computes no more
than |S||A|m confidence intervals. So by invoking DDV
with confidence parameter δ/|S||A|m, we ensure that the
final confidence interval contains V ∗(s0) with probability
1−δ .

Experimental Evaluation
We report three experiments. First, we tested the effective-
ness of the ∆∆V (s0) exploration heuristic on two benchmark
MDPs, RiverSwim and SixArms, that have been studied by
Strehl and Littman (2004; 2008). They showed that MBIE
out-performs Rmax, E3, and ε-greedy exploration on these
problems, so we compare against MBIE and Q learning
(with greedy exploration based on optimistic initialization).

In this experiment, we do not employ the Good-Turing
confidence intervals in order to focus on the ∆∆V heuris-
tic. Figures 1(a) and 1(b) show the computed confidence
intervals as a function of the number of simulator calls for
the first 106 calls. On RiverSwim, DDV rapidly shrinks the
bounds (at around 104 calls). But in general, both MBIE and
DDV do well. Q learning gets stuck exploring in the wrong
part of the MDP. In SixArms, MBIE and Q learning do well
at first, but then they both get stuck, while DDV continues
to converge.

In the second experiment, we tested the effectiveness of
incorporating the Good-Turing bound into the confidence in-
terval by running DDV with and without the improved con-
fidence interval. We employed a “combination lock” MDP
with 500 states. In each state i, there are two possible ac-
tions. The first makes a transition to state i+1 with reward
0 except for state 500, where the reward is 1. The second
makes a transition (uniformly) to one of the states 1, . . . , i−1
with reward 0. The optimal policy is to choose the first ac-
tion in every state, even though it doesn’t provide a reward
until the final state. Figure 2(a) compares the confidence
intervals for the two configurations. Note that even though
the two configurations use different confidence intervals dur-
ing exploration, the figure reports Vupper(s0) and Vlower(s0)

computed using CIGT . We see that in this sparse MDP, the
Good-Turing bound substantially accelerates learning.

In the final experiment, we compare MBIE, Q learning,
and DDV on a small instance (3 river segments, 4 actions,
216 states) of our Tamarisk management MDP. Figure 2(b)
shows that the lower bound for DDV is improving, but
DDV’s upper bound and all of the bounds for MBIE and
Q learning are not changing. We don’t know the optimal
solution for this problem.
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Figure 1: Learning curves for MBIE, Q-learning, and DDV
as measured by confidence bounds on V (s0)
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Figure 2: Left: Learning curve for DDV with and with-
out incorporating Good-Turing confidence bounds. Right:
Learning curves for MBIE, Q-learning, and DDV on a
Tamarisk management MDP.

Concluding Remarks

This paper has developed a new algorithm for MDP plan-
ning (for a fixed start state) by building on recent advances in
reinforcement learning and introducing two improvements.
The first is a tighter confidence bound for sparse MDPs
that incorporates Good-Turing estimates of the probability
of transitioning to unseen states. The second is a new ex-
ploration heuristic based on an upper bound on the state oc-
cupancy measure. The resulting algorithm, DDV, is proved
to be PAC-RL. Experiments show that both innovations con-
tribute improved learning speed.

With these improvements, we are able to solve moderate-
sized instances of our Tamarisk MDP. However, additional
improvements in the algorithm (e.g., action elimination,
adapting the partitioning of δ to the number of explored
states) will be required to solve problems of significant size.
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