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Abstract

In many fields in computational sustainability, applications
of POMDPs are inhibited by the complexity of the opti-
mal solution. One way of delivering simple solutions is to
represent the policy with a small number of α-vectors. We
would like to find the best possible policy that can be ex-
pressed using a fixed number N of α-vectors. We call this
the N-POMDP problem. The existing solver α-min approx-
imately solves finite-horizon POMDPs with a controllable
number of α-vectors. However α-min is a greedy algorithm
without performance guarantees, and it is rather slow. This
paper proposes three new algorithms, based on a general ap-
proach that we call α-min-2. These three algorithms are able
to approximately solve N-POMDPs. α-min-2-fast (heuristic)
and α-min-2-p (with performance guarantees) are designed to
complement an existing POMDP solver, while α-min-2-solve
(heuristic) is a solver itself. Complexity results are provided
for each of the algorithms, and they are tested on well-known
benchmarks. These new algorithms will help users to inter-
pret solutions to POMDP problems in computational sustain-
ability.

Introduction
Partially Observable Markov Decision Processes (POMDP)
provide a powerful tool for sequential decision-making un-
der uncertainty. In computational sustainability, POMDPs
are increasingly being applied to help solve important prob-
lems in biodiversity conservation. For example, rules of
thumb were derived using POMDPs to best manage and
monitor cryptic species such as the critically endangered
Sumatran Tigers (Chadès et al. 2008; McDonald-Madden et
al. 2011), or the invasive parasitic plant species branched
broomrape with long-lasting microscopic seeds (Regan,
Chadès, and Possingham 2011). More recently, POMDPs
were employed to adaptively manage renewable natu-
ral resources (Fackler and Pacifici 2014; Springborn and
Sanchirico 2013) and migratory shorebirds threatened by the
uncertain consequences of sea level rise (Nicol et al. 2015;
2013). Despite this growing interest, POMDP solutions are
often too complex to be analyzed and communicated effi-
ciently to stakeholders, which prevents the deployment of
POMDP solutions (Tulloch et al. 2015; Nicol and Chadès
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2012). Until recently, POMDP algorithms have focused on
providing near-optimal solutions regardless of the number
of α-vectors required. Indeed, current algorithms require
manyα-vectors even when solving small problems (Poupart,
Kim, and Kim 2011). Here, we contribute to bridging the
gap between POMDP solvers and their end users by pro-
viding approximate solutions that can be represented with
a small number of α-vectors. The recently-published algo-
rithm α-min was a first attempt at approximately solving
finite-horizon POMDPs given a limit N on the number of
α-vectors (Dujardin, Dietterich, and Chadès 2015). We call
this problem N-POMDP. α-min is however a greedy algo-
rithm and does not provide satisfying performance guaran-
tees. Here, we propose three new algorithms, based on a
common approach, α-min-2, that directly searches for sub-
sets of α-vectors of size N. α-min-2-fast (heuristic) and α-
min-2-p (with performance guarantees) are designed to work
in complement of an existing POMDP solver, and α-min-2-
solve (heuristic) is a solver itself. The new approach allows
to solve infinite-horizon or finite-horizon problems and is
able to outperform α-min.

The paper is organized as follows. First, we introduce
POMDPs and the α-min principles. Next we formalize the
N-POMDP problem. Then we present the α-min-2 princi-
ple and the three related algorithms: α-min-2-fast, α-min-2-
p and α-min-2-solve. Finally we apply the three algorithms
to well-known benchmark problems and discuss the results.

POMDPs, N-POMDPs and the α-min
principle

POMDPs and related work
POMDPs are models of sequential decision-making when
the decision-maker does not have complete information
about the current state of the system (Sigaud and Buffet
2013). Formally, a discrete finite-horizon POMDP is spec-
ified as a tuple {S,A,O, τa,Ωa, R,H}, where

• H = {0, ..., T − 1} are called “time steps”, T ∈ N. H is
called the time horizon.

• S, ∀t ∈ H, st ∈ S is the state of the system at t.
• A, ∀t ∈ H, at ∈ A is the action taken at t.
• O, ∀t ∈ H, zt ∈ O is the observation at t.



• τa is the transition matrix for action a. Its elements are
τa (st, st+1).

• Ωa is the observation matrix for action a. Its elements are
Ωa(st+1, zt+1).

• R is the reward matrix. Its elements are R (at, st).

For sake of clarity, we define the following notation:
• For action a ∈ A and for observation z ∈ O, let
Ma,z be the matrix of dimension S × S such that
Ma,z(st+1, st) = Ωa(z, st+1)τa(st+1, st).

• For every a ∈ A, the vector ra = R(a, ·) corresponds to
the row of the matrix R corresponding to the action a.
The optimal decision at time t may depend on the com-

plete history of past actions and observations. Because it is
neither practical nor tractable to use the history of the action-
observation trajectory to compute an optimal solution, belief
states (also called beliefs), i.e., probability distributions over
states, are used to summarize and overcome the difficulties
of imperfect detection (Åström 1965). A POMDP can be
cast into a fully observable Markov decision process defined
over the continuous belief state space, B.

Solving exactly a finite-horizon POMDP means find-
ing an optimal policy Π0 = ∪t∈Hπt, where πt :
B → A maps belief states at time t to actions. Π0

maximizes the expected sum of rewards E[
∑
t∈H rat · bt]

over the time horizon H (· denotes the scalar product).
For each time step t, for a given belief state bt and a
given policy Πt = ∪t′∈{t,...,T−1}πt′ , the expected sum
E[

∑
t′∈{t,...,T−1} rat · bt] is also referred to as the value

function Vt,Πt
(bt). A value function allows us to rank poli-

cies by assigning a real value to each belief bt. An op-
timal policy Π∗t is a policy such that, ∀ bt ∈ B, ∀ Πt,
Vt,Π∗t (bt) ≥ Vt,Πt

(bt). Several policies can be optimal and
share the same optimal value function Vt, which can be
computed using Bellman’s principle of optimality (Bellman
1957): ∀bt ∈ B,

Vt(bt) = max
at∈A
{rat · bt +

∑
zt∈O

p(zt+1|at, bt)Vt+1(bt+1)}

(1)
where each component bt+1(st+1) of the new belief can be
computed as follows:

bt+1(st+1) =
Ωa(st+1, zt+1)

∑
st∈S τa(st, st+1)bt(st)∑

st,s′t+1∈S
Ωa(s′t+1, zt+1)τa(st, s′t+1)bt(st)

(2)
Equation 1 can be rewritten Vt = BL(Vt+1), where BL

is the Bellman operator (Shani, Pineau, and Kaplow 2012),
sometimes also called backup operator (Pineau, Gordon, and
Thrun 2006). While various algorithms from the operations
research and artificial intelligence literature have been de-
veloped over the past years, exact solving of POMDPs is
intractable: finite-horizon POMDPs are PSPACE-complete
(Papadimitriou and Tsitsiklis 1987) and infinite-horizon
POMDPs are undecidable (Madani, Hanks, and Condon
2003).

Equation 1 can be solved by directly manipulating α-
vectors (Smallwood and Sondik 1973). For every t ∈ H ,

there exists a finite set Γt of vectors of dimension |S| (the
so-called α-vectors) that define entirely Vt such as |Γt| is
minimal and

∀t ∈ H,∀bt ∈ B, Vt (bt) = max
αt∈Γt

αt · bt. (3)

Given that ΓT−1 = {ra| a ∈ A, ra is not dominated},
one can in theory build a set of α-vectors defining the
value function Vt from Γt+1 at any time step t ∈ H ′ =
{0, ..., T − 2}, because every αt ∈ Γt can be written:

αt = [rat +
∑

zt+1∈O
(α
at,zt+1

t+1 )TMat,zt+1 ]T (4)

where at ∈ A andαat,zt+1

t+1 , zt+1 ∈ O are elements of Γt+1.
The set of α-vectors Gt given by Equation 4 is such that

Γt ⊆ Gt. Note that some α-vectors of Gt could be domi-
nated by others and therefore do not belong to Γt.

In most of exact algorithms, complexity when calculated
is exponential in at least one component of the instance
(Kaelbling, Littman, and Cassandra 1998). For example, a
natural way to compute Γt from a given Γt+1, is first to com-
pute Gt entirely, and then prune the dominated vectors that
are not useful for representing the value function. This ap-
proach has a complexity exponential in the number of obser-
vations |O| (Sigaud and Buffet 2013, sections 7.3 and 7.4).
Conversely, the one-pass algorithm (Smallwood and Sondik
1973), the linear-support algorithm (Cheng 1988), and the
relaxed-region algorithm (Cheng 1988) all try to generate Γt
directly. In particular, the linear-support algorithm (Cheng
1988) systematically looks for new beliefs allowing to it-
eratively compute new vectors of BL(Γt+1). Although not
proven by the authors, the complexity is then controlled by
the number of explored beliefs, which in turn is at least expo-
nential in |Γt|. The witness algorithm (Kaelbling, Littman,
and Cassandra 1998) has a running time exponential in |A|.

N-POMDPs
Definition 1. An N-POMDP is a POMDP with an addi-
tional parameterN that defines the maximum size of any ad-
missible policy represented by a set of α-vectors at each time
step (for the infinite-horizon case, we consider that there is
only one time step).

Solving an N-POMDP means finding the best possible
policy of size at most N at each time step (Problem 5).

max
Γ0,...,ΓT−1∈Θ, s.t.∀t∈H,|Γt|≤N

V0,Γ(b0) (5)

where V0,Γ(b0) is the value function corresponding to the
policy Γ = ∪t∈HΓt for the initial belief b0. Θ is the set of
all possible sets of α-vectors. In the infinite case, we only
consider one set Γ of α-vectors.
Proposition 1. The N-POMDP problem is an NP-hard
problem.

Proof. Because N-POMDPs concern both finite and infinite
horizon cases, one just needs to prove the NP-hardness for
one case. For the finite-horizon case, this is a direct conse-
quence of the NP-hardness of the exact backup operation: in



(Littman, Cassandra, and Kaelbling 1995), it is stated that,
unless P = NP , no representation of the optimal value
function Vt given an optimal value function Vt+1 can be
found in polynomial time in the instance and the number
of α-vectors needed to describe Vt (i.e. in N in our case).
If an N-POMDP could be solved in polynomial time in the
instance of the POMDP and N, one could then set N to the
actual number of α-vectors needed to describe Vt and find an
optimal policy of the corresponding POMDP in polynomial
time.

The α-min principle
Dujardin, Dietterich, and Chadès (2015) show that an ap-
proximate solution for N-POMDPs can be found by mini-
mizing the Bellman error iteratively at every time step (Prob-
lem 6).

min
Γ̃t⊆BL(Γ̃t+1),|Γ̃t|≤N

max
b∈B

[BL(Ṽt+1)(b)− Ṽt(b)] (6)

where BL is the Bellman operator, Γ̃t is the set of approx-
imate α-vectors for BL(Γ̃t+1) and Ṽt is the value function
corresponding to Γ̃t, t ∈ H .

To approximately solve Problem 6, α-min solves Prob-
lem 7 N times at each time step using a mixed integer linear
program.

max
b∈B

[BL(Ṽt+1)(b)− Ṽt(b)] (7)

In each iteration, the α-vector that maximizes α · b∗ is added
to the current Γ̃t (Figure 1).
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Figure 1: Two successive iterations (a) and (b) of α-min for
a given time step t. In both figures, solid lines represent Ṽt
while dashed lines represent BL(Ṽt+1), and belief b∗t cor-
responds to the current solution of Problem 7. (Reproduced
from (Dujardin, Dietterich, and Chadès 2015))

α-min shares some similarities with the linear support al-
gorithm (Cheng 1988) because it iteratively constructs new
α-vectors, but it is much quicker than Cheng’s algorithm and
can solve bigger problems. Neither α-min nor linear support
are designed to solve N-POMDPs exactly. The main reason
is that new α-vectors are added greedily at each iteration,
and therefore the optimal combination of α-vectors is un-
likely to be found.

One can easily construct a 2-state example (S = {0, 1})
where the greedy strategy can be arbitrary bad. We consider
Γ = {α1, α2, α3} with α1 = (x,−x), α2 = (0, 0), α3 =
(−x, x), x ∈ R+. α1 is a dominating vector for b ∈ {b ∈
B | b(0) ≤ b(1)}, α2 is dominating for b ∈ {b ∈ B | b(0) =

b(1)} and α3 is dominating for b ∈ {b ∈ B | b(0) ≥ b(1)}.
A greedy approach starting with α2 would return the policy
Γ̃ = {α2, α1} or Γ̃ = {α2, α3} with a maximum gap of x,
which can be arbitrary large, while the optimum gap is 0 and
corresponds to the policy Γ̃∗ = {α1, α3}.

The goal of the α-min-2 algorithms is to solve Problem 6
by looking for the best combinations of α-vectors instead of
using the α-min greedy algorithm.

The α-min-2 algorithms
Given that good POMDPs solvers already exist (Spaan and
Vlassis 2005; Kurniawati, Hsu, and Lee 2008), a natural ap-
proximate approach to solve an N-POMDP is to first gen-
erate a good initial policy Γ without any size limitation and
then to select the best combination of α-vectors of Γ mini-
mizing the gap between the initial policy and the new policy
(Problem 8).

g∗ = min
Γ̃⊆Γ,|Γ̃|≤N

max
b∈B

[V (b)− Ṽ (b)] (8)

In doing so we hope that if Γ is good enough, Γ̃ should be
good enough too. This approach constitutes the main princi-
ple for both algorithms α-min-2-fast (heuristic) and α-min-
2-p (approximate approach with performance guarantees).
Unfortunately, α-min-2-fast and α-min-2-p are unable to
solve N-POMDPs when no initial policy is given. If Γ is
not good enough or not available, one would like to solve
Problem 5 directly. α-min-2-solve aims to do that.

The α-min-2-fast algorithm
Suppose we have at hand a policy Γ, and we want to solve
Problem 8.

Let s be a positive semi-definite function such as
s(α̃, α) = maxb∈B(α)(α · b− α̃ · b), α, α̃ ∈ Γ, where B(α)
is the subspace ofB where α dominates the other α-vectors.

We have

max
b∈B

[V (b)− Ṽ (b)] ≤ max
b∈B

(max
α∈Γ

α · b−max
α̃∈Γ̃

α̃ · b)

≤ max
α∈Γ

min
α̃∈Γ̃

max
b∈B(α)

(α · b− α̃ · b)

≤ max
α∈Γ

min
α̃∈Γ̃

s(α̃, α)

Solving Problem 9 then provides an upper bound for
Problem 8.

min
Γ̃⊆Γ,|Γ̃|≤N

max
α∈Γ

min
α̃∈Γ̃

s(α̃, α) (9)

for N ≥ 1.
Problem 9 is very similar to the k-center clustering prob-

lem (Gonzalez 1985) but cannot be solved using classic al-
gorithms because s is not a distance.

However, Problem 9 can easily be modelled by a mixed
integer linear program, Linear Program 10, with |Γ|2 0-1
variables and constraints, where s(α̃, α) are pre-calculated
using linear programs with |S| variables and |Γ| constraints
each.



min g

s.t. g ≥ s(α, α′)yα,α′ , α, α′ ∈ Γ∑
α∈Γ yα,α′ ≥ 1, α′ ∈ Γ

xα ≥ yα,α′ , α, α′ ∈ Γ∑
α∈Γ xα ≤ N
yα,α′ ∈ {0, 1}
xα ∈ {0, 1}

(10)
where every 0-1 variable xα is such that xα = 1 iff α is in
Γ̃ and yα,α′ are 0-1 variables such that yα,α′ = 1 iff α ∈ Γ̃
and α′ ∈ Γ minimizes s(α, α′).

Linear Program 10 is a mixed integer linear programs
with many 0-1 variables (|Γ|2) and is consequently slow
to solve. We propose a faster way to solve Problem 9, us-
ing pure integer linear programs and with only |Γ| variables,
within an arbitrary precision p (Algorithm 1). The principle
of Algorithm 1 is to perform a binary search on a decision
version of Linear Program 10.

Algorithm 1 α-min-2-fast
1: procedure FAST(Γ, p,N ≥ 1)
2: ε+ = εub, ε

− = 0, δ = ε+ − ε−
3: while δ > p do
4: ε = ε++ε−

2

5: for α, α′ ∈ Γ do
6: if sα,α′ ≤ ε then cα,α′ = 1
7: else cα,α′ = 0

8: C = {cα,α′ | α, α′ ∈ Γ}
9: Γ̃← LPFAST (C,N)

10: if LPFAST (C,N) has no solution then ε+ = ε
11: else ε− = ε
12: ε+ = εub, ε

− = 0, δ = ε+ − ε−
return Γ̃, ε

Here, εub is an upper bound of the solution value ε
of Problem 9 and Γ̃ (line 9) is the solution returned by
LPFAST , given that α ∈ Γ̃ ⇐⇒ x∗α = 1.

min
∑
α∈Γ xα

s.t.
∑
α∈Γ cα,α′xα ≥ 1, α′ ∈ Γ∑
α∈Γ xα ≤ N
xα ∈ {0, 1}

(LPFAST )
Remark. Linear Program LPFAST actually does not need
any objective function since only the feasibility is checked in
Algorithm 1. An objective function has been added to obtain
a formal integer linear program.

Proposition 2. Algorithm 1 solves Problem 9 within preci-
sion p in a finite number of iterations.

Proof. Computing a first upper bound εub of g∗ is easy:
choose randomly α0 ∈ Γ and set εub = maxα∈Γ s(α0, α)
(can be solved with linear programming). We have then
εub ≥ maxα∈Γ minα̃∈Γ̃ s(α̃, α), Γ̃ ⊆ Γ, |Γ̃| ≥ 1, so εub ≥
minΓ̃⊆Γ,|Γ̃| ≤N maxα∈Γ minα̃∈Γ̃ s(α̃, α) for N ≥ 1.

At the first iteration, LPFAST is feasible because the
column cα0,α′ only contains ones so it is enough to set
xα0

= 1 to get a feasible solution (given that N ≥ 1).
If LPFAST is feasible for a given ε, then ε is an up-
per bound of the optimal solution value of Problem 9. In-
deed, we have Γ̃ ⊆ Γ, |Γ̃| ≤ N (vectors corresponding to
x∗α = 1) such that ∀α ∈ Γ,∃α̃ ∈ Γ̃, s(α̃, α) ≤ ε. This
implies ∀α ∈ Γ, minα̃∈Γ̃ s(α̃, α) ≤ ε and consequently
maxα∈Γ minα̃∈Γ̃ s(α̃, α) ≤ ε. Similarly, if LPFAST is not
feasible, then one cannot find any solution Γ̃ where every
α ∈ Γ is controlled by α̃ ∈ Γ̃, so ε in this case is a lower
bound.

A binary search is then possible on ε to solve Problem 9,
by setting the first upper bound ε+ to εub and ε− to 0. This
is exactly what Algorithm 1 performs.

Algorithm 1 has time complexity
O(log( εub

p )P (|Γ|, log(N))2|Γ|), where P is a polyno-
mial, due to the binary search and the Branch&Bound for
solving the 0-1 integer linear program LPFAST .

The α-min-2-p algorithm
Solutions provided by α-min-2-fast have no performance
guaranties and can produce, in theory, very bad solu-
tions, because, for every Γ̃, the real gap gr(V, Ṽ ) =

maxb∈B [V (b) − Ṽ (b)] between V and Ṽ is approximated
by an upper bound only.

In order to get a better approximation of gr(V, Ṽ ), we now
consider V to be represented both by α-vectors and β-points
in ∆ = {(b, V (b)), b ∈ B∆}, whereB∆ a finite subset ofB,
while Ṽ remains represented by α-vectors only. According
to the new representation of V , Problem 8 can be approxi-
mated by Problem 11, with the new possibility of adding as
many β-points to ∆ as necessary to get a better representa-
tion of V and a better approximation g∗(∆) of the optimal
gap g∗:

g∗(∆) = min
Γ̃⊆Γ,|Γ̃|≤N

max
β∈∆

min
α̃∈Γ̃

s′(α̃, β) (11)

where N ≥ 1 and s′(α, β(b, V (b))) = α · b− V (b).

Figure 2 gives an example where V is represented with 7
α-vectors (in black) and 5 β-points (in gray).

For any given set of β-points ∆, it is easy to adapt Algo-
rithm 1 to solve Problem 11. One just needs to replace Γ by
Γ×∆, pairs (α, α′) ∈ Γ2 by pairs (α, β) ∈ Γ×∆, and s by
s′. Let us call the corresponding procedure FASTβ . In Al-
gorithm 2, the construction of ∆ is the same as in α-min: the
while loop aims to iteratively adding β-points corresponding
to the current biggest gap gr(V, Ṽ ) between V and Ṽ , until
gr(V, Ṽ ) and g∗(∆) are close enough.



Figure 2: Fig. a and Fig. b show an example of a mixed rep-
resentation of V , using α-vectors (Γ) and β-points (∆). α-
vectors are in dark and β-points are in grey. Fig. a shows
s′(α4, β2) = 5 and s′(α3, β4) = 4.8. On Fig. b one can see
the ’real gap’ gr(V, Ṽ ) between Γ and Γ̃ = {α2, α5}, and
the gap g∗(∆) between ∆ and Γ̃.

Algorithm 2 α-min-2-p
1: procedure PRECISE(Γ, p,N )
2: Let ∆ be the set of the β-points corresponding to extreme

beliefs of B: (1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, · · · , 0, 1)
3: δ ← inf , gub ← inf
4: while δ > p

2
do

5: (Γ̃, g∆)← FASTβ(Γ×∆, p
2
, N)

6: b∗ ← arg maxb∈B(V (b)− Ṽ (b))

7: gub ← min(gub, V (b∗)− Ṽ (b∗))
8: δ ← gub − g∆

9: ∆← ∆ ∪ {b∗}
return Γ̃, gub

Proposition 3. Algorithm 2 solves Problem 8 within preci-
sion p in a finite number of iterations.

Proof. Given that FASTβ(Γ × ∆, p2 , N) provides an opti-
mal solution to Problem 11 within p

2 , upon termination we
have Γ̃, ∆ and g∆ such as g∆ ≤ g∗(∆) + p

2 . Additionally
we have g∗(∆) ≤ g∗ because ∆ ⊆ {(b, V (b)), b ∈ B}.
This leads to g∆ ≤ g∗ + p

2 . gub is always set to a real gap
gr(V, Ṽ ) = V (b∗) − Ṽ ∗(b) or its value does not change
(line 7). Therefore, we always have g∗ ≤ gub (because g∗ ≤
gr(V, Ṽ ),∀Ṽ ). Finally, at the end of the algorithm we have
gub − g∆ ≤ p

2 , so gub ≤ g∆ + p
2 ≤ (g∗ + p

2 ) + p
2 ≤ g

∗ + p.
Overall we have g∗ ≤ gub ≤ g∗ + p.

Algorithm 2 terminates after a finite number of iterations.
At each iteration, if the Γ̃ provided by FASTβ (line 5) is
the same as a previously-generated Γ̃, we obtain δ = 0
by construction. So, in the worst case, Γ̃ will be succes-
sively equal to every possible combination of N α-vectors
before exiting the while loop. The number of iterations is
therefore bounded by |Γ|N . FASTβ has time complexity
O(log( εub

p )P (|Γ|, log(N))2|Γ|), where εub is defined in the
proof of Proposition 2 and P is a polynomial. Finally, the
computation in line 6 can be performed in polynomial time
(|Γ| is considered as part of the instance): maxb∈B(V (b) −
Ṽ (b)) = maxα∈Γ maxb∈B(α · b − Ṽ | Ṽ ≥ α̃ · b, α̃ ∈ Γ̃)
can be solved using |Γ| linear programs.

Overall, the complexity of Algorithm 2 is
O(|Γ|N log( εub

p )P (|Γ|, log(N))2|Γ|) where P is a polyno-

mial.

The α-min-2-solve algorithm
Solving Problem 5 directly without any initial policy at hand
is harder to perform. In the finite-horizon case, one has to
solve Problem 6 instead of Problem 8, andBL(Vt+1) is gen-
erally very hard to compute. In particular, line 6 of α-min-
2-p would be very hard to compute if V were replaced by
BL(Vt+1). However, a simple heuristic based on α-min-2-
p can be used, where instead of computing the best belief
b∗ at each iteration (line 6), one generates a random belief.
With this change, a new Γ̃ is not yet guaranteed to be found
at each iteration, so the new stopping criterion is to stop
when the number of sampled beliefs has reached a speci-
fied limit. This is α-min-2-solve. Algorithm α-min-2-solve
has the advantage that it can be directly compared to the
solver α-min, while the two previous algorithms cannot be-
cause they are not solvers. α-min-2-solve has the same time
complexity as the previous algorithms since the main com-
plexity term comes from the integer linear program FASTβ .
α-min-2-solve should be faster than α-min because it does
not require to solve Problem 6. Moreover, the performances
of α-min-2-solve should be competitive because it looks for
best combinations of α-vectors, while α-min greedily adds
the ”best” α-vectors one by one. The infinite-horizon case
is harder because one cannot be sure of the convergence of
the process. That is why α-min-2-solve only deals with the
finite-horizon case.

Experiments
We compare α-min-2-fast to α-min-2-p, and α-min-2-solve
to α-min. α-min-2-fast and α-min-2-p are not POMDP
solvers because they require an initial policy calculated by
an external POMDP solver. Therefore, they cannot be di-
rectly compared to α-min and α-min-2-solve.

α-min-2-fast and α-min-2-p
To compare α-min-2-fast and α-min-2-p, we conducted
experiments on three benchmark problems1 given an ini-
tial policy Γ provided by SARSOP and the correspond-
ing lower bound V (b0), where b0 the initial belief (at
t = 0). We denote by (|S|, |A|, |O|, |Γ|, V (b0))) the
characteristics of the problems. We have milos-aaai997
≡ (20,6,8,184,574.8), hallway2 ≡ (92,5,17,139,0.25) and
learning.c4 ≡ (48,16,3,332,3.3).

Figures 3a, 3b and 4a show the encouraging profile of
the calculated gaps and bounds as a function of N . For α-
min-2-fast, only an upper bound for g∗ is provided, called
‘gap fast’. For α-min-2-p the upper bound gub and the lower
bound g(∆)− p

2 of g∗ are provided, respectively called ‘gap
precise ub’ and ‘gap precise lb’.

1http://www.pomdp.org/examples/



(a) Gaps milos-aaai97 (b) Gaps hallway2 (gapub and
gaplb overlap almost perfectly)

Figure 3

Figures 4b provides the computation times for the α-min-
2-p approach on each benchmark. The computation times of
α-min-2-fast are negligible (always less than 1 second) and
are not shown.

(a) Gaps learning.c4 (b) Computation times (α-min-2-
p)

Figure 4

Figure 5a and Figure 5b show respectively the computa-
tion time ofα-min-2-p as a function of the required precision
p (N fixed), and Ṽ (b0) as a function of N , for milos-aaai97.

(a) Time function of precision
- milos-aaai97, N = 5.

(b) Ṽ (b0) function of N -
milos-aaai97

Figure 5

α-min-2-fast and α-min-2-p are able to solve larger
problems. Both algorithms were tested on the benchmark
TagAvoid ≡ (870, 5, 30, 615,−6.76) (Kurniawati, Hsu, and
Lee 2008). Forα-min-2-fast, the computing time was always
less than 3 seconds and good performance was obtained,
with Ṽ (b0) ≥ 0.98V (b0), but with large gaps (greater than
10 even for N=50). α-min-2-p provided much smaller gaps,
with performance guarantees: for N=10, gap=5.98 within
precision 0.7. This comes with a high cost in computation
time (3389 seconds for N=10).

Table 1: Comparison of α-min-2-solve and α-min. LB is
the provided lower bound of V0(b0). SARSOP and α-min
results are from (Dujardin, Dietterich, and Chadès 2015).

Problem Algo. N LB Time(s)
(|S|, |A|, |O|)

aloha.10 sarsop 190 64.87 1000
(30,9,3) α-min 30 62.66 ≤1000

α-min-2 30 63.51 < 1
learning.c3 sarsop 11433 1.36 1000
(24,12,3) α-min 24 1.96 ≤1000

α-min-2 24 2.09 < 1
cheng.D4-5 sarsop 15 77.29 1000

(4,4,4) α-min 4 77.85 ≤1000
α-min-2 4 77.90 < 1

milos-aaai97 sarsop 122 41.48 1000
(20,6,8) α-min 20 50.31 ≤1000

α-min-2 20 54.76 < 1
dujardin-ijcai15 α-min 7 207.23 37.8

(16,13,16) α-min-2 7 208.45 < 1

α-min-2-solve
In order to compare α-min-2-solve to α-min, we ran α-min-
2-solve on several benchmark problems from (Dujardin, Di-
etterich, and Chadès 2015). The time-horizon chosen for the
experiments was T = 10. The number of β-points for α-
min-2-solve was 100. Table 1 shows that α-min-2-solve is
always faster while providing a better Ṽ0(b0) (LB). Com-
putation times (Time) are the average computation times per
time step, in seconds. Note that SARSOP is not a N-POMDP
solver. Therefore, results are presented for information only.
α-min-2-solve has also been tested on the same computa-

tional sustainability problem as in (Dujardin, Dietterich, and
Chadès 2015): the four populations Sumatran tigers non-
stationary problem 2: α-min-2-solve is clearly faster while
providing a better LB.

Discussion
The three α-min-2 algorithms presented in this paper ap-
proximately solve N-POMDPs with different levels of ap-
proximation or different assumptions. α-min-2-fast mini-
mizes an upper bound of the gap between an initial pol-
icy, provided by an external solver, and a policy using only
N α-vectors. α-min-2-p uses both an upper and a lower
bound, which enables it to provide solutions within any cho-
sen precision. However, it is clearly slower than α-min-2-
fast. Finally, because poor initial POMDP policies can pro-
duce poor final solutions, α-min-2-solve was written in or-
der to solve N-POMDPs without any initial POMDP pol-
icy. However, α-min-2-solve can only solve finite-horizon
N-POMDPs. For all three algorithms, the computation time
is not very sensitive to the parameter N, although the worst-
case time complexity is exponential in N. In practice, the
size of the initial set Γ of α-vectors seems to play a key role

2available at https://sites.google.com/site/ijcaialphamin/home



for α-min-2-p’s computation time. This is because α-min-2-
p has to solve |Γ| linear programs at each iteration to update
the upper bound of the gap. The number of states also plays
a role for α-min-2-p, because the number of β-points needed
to obtain sufficient precision can be very large. Future work
will be conducted to reduce the worst-case time complexity
of the α-min-2 algorithms.

Interpreting policies for planning problems arising in
ecology is very important (Tulloch et al. 2015). While exist-
ing POMDP solvers generally provide policies of unlimited
size, making interpretation difficult, the α-min-2 algorithms
provide policies of a desired size N which are as close as
possible to optimal policies. In doing so, we hope that α-
min-2 will contribute to bridging the gap between POMDP
solutions and their applications.
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