
A Reinforcement Learning Approach to Job�shop Scheduling

Wei Zhang
Department of Computer Science

Oregon State University

Corvallis� Oregon ��������	�

U
 S
 A

Thomas G� Dietterich
Department of Computer Science

Oregon State University

Corvallis� Oregon ��������	�

U
 S
 A

Abstract

We apply reinforcement learning methods to
learn domain�speci�c heuristics for job shop
scheduling� A repair�based scheduler starts
with a critical�path schedule and incrementally
repairs constraint violations with the goal of
�nding a short con�ict�free schedule� The tem�
poral di�erence algorithm TD��� is applied
to train a neural network to learn a heuris�
tic evaluation function over states� This eval�
uation function is used by a one�step looka�
head search procedure to �nd good solutions to
new scheduling problems� We evaluate this ap�
proach on synthetic problems and on problems
from a NASA space shuttle payload process�
ing task� The evaluation function is trained on
problems involving a small number of jobs and
then tested on larger problems� The TD sched�
uler performs better than the best known exist�
ing algorithm for this task	Zweben
s iterative
repair method based on simulated annealing�
The results suggest that reinforcement learn�
ing can provide a new method for constructing
high�performance scheduling systems�

� Introduction

Many problems of commercial interest	including job
shop scheduling	are instances of NP�Complete prob�
lems� Hence� there is little hope of �nding general�
purpose solutions to these problems� However� in any
particular application setting� there are usually domain�
speci�c constraints and regularities that can be exploited
to construct fast� domain�speci�c heuristic algorithms�
While such domain�speci�c heuristics can be engineered
by hand� the process is expensive and time�consuming�
The goal of the research described in this paper is to ex�
plore the possibility of applying reinforcement learning
algorithms to discover good domain�speci�c heuristics
automatically�
Reinforcement learning algorithms learn policies for

state�space problem�solving tasks� For each state� the
policy speci�es what action should be performed� Dur�
ing learning� the learning system receives a reinforce�
ment signal �called a �reward
� after each action� The

goal of the learning system is to �nd a policy that maxi�
mizes the expected reinforcement over future actions� In
the context of job shop scheduling� the policy tells what
scheduling action to make next in order to maximize
some measure of the quality of the �nal schedule�
In this paper� we focus on the application domain of

space shuttle payload processing for NASA� The goal is
to schedule a set of tasks to satisfy a set of temporal and
resource constraints while also seeking to minimize the
total duration �makespan� of the schedule� Of particular
interest to NASA are scheduling methods that can also
be used to repair a schedule when some unforeseen di��
culty arises� In previous work on this task� Zweben and
colleagues �Zweben et al�� ����� developed an iterative
repair�based scheduling procedure that combines a set of
heuristics with a simulated annealing search procedure�
The resulting scheduling system provides an e�cient and
�exible facility for scheduling space shuttle ground op�
erations� It is in regular use at the Kennedy Space Cen�
ter �Deale et al�� ������ The challenge for a learning
approach is to discover scheduling heuristics that can
match or exceed the quality and e�ciency of this itera�
tive repair method�
In the remainder of the paper� we describe the

scheduling task in greater detail� We then brie�y de�
scribe Zweben
s iterative repair�based scheduler� Follow�
ing this� we review the reinforcement learning method
known as TD��� and describe how the scheduling task
can be formulated so that TD��� can be applied� We
then describe our experiments on simulated problem sets
and discuss the results� These results indicate that re�
inforcement learning can outperform the iterative repair
scheduler on realistic scheduling tasks� Furthermore� the
knowledge learned through reinforcement learning can
be applied to scheduling problems that are larger and
more complex than the ones that were studied during
training� These initial results suggest that reinforce�
ment learning has an important role to play in devel�
oping high�performance AI scheduling systems�

� The NASA Domain and the Iterative
Repair Method

The NASA space shuttle payload processing �SSPP� do�
main requires scheduling the various tasks that must
be performed to install and test the payloads that are

placed in the cargo bay of the space shuttle� In job�
shop scheduling terminology� each shuttle mission is a
job� Each job consists of a partially�ordered set of tasks
that must be performed� Each task has a duration and
a list of resource requirements� For example� the task
MISSION�SEQUENCE�TEST has a duration of ���� and re�
quires two quality�control o�cers� two technicians� one
ATE� one SPCDS� and one HITS� There are �� di�erent
types of resources� There may be many units of a re�
source available� For example� there are � quality con�
trol o�cers available and �� technicians� However� these
available resources may be split into resource pools� so
that� for example� the � quality control o�cers might be
subdivided into three pools of size �� �� and �� If a task
requires two quality control o�cers� they must both be
drawn from the same pool� Resource pools model multi�
ple work shifts and multiple physical locations� A com�
plete schedule must specify the start time of each task
and the resource pool by which each resource require�
ment of each task is satis�ed�

A typical SSPP problem involves the simultaneous
scheduling of between two and six shuttle missions� each
mission involves between �� and ��� tasks� Hence� the
SSPP domain requires solving scheduling problems con�
taining several hundred tasks� Most of these tasks must
be performed prior to launch� but some also take place
after the shuttle has landed� Each shuttle mission has a
�xed launch date� but no starting date or ending date�
Hence� tasks prior to launch have deadlines but no ready
times� tasks after landing have ready times but no dead�
lines� A key goal of the scheduling system is to minimize
the total duration of the schedule� This is much more
challenging than simply �nding a feasible schedule�

Zweben et al� ���� developed the following iterative re�
pair method for solving this scheduling problem� First�
a critical path schedule is constructed by working back�
ward and forward from the launch and landing dates�
Each task prior to launch is scheduled as late as the tem�
poral partial order will permit� each task after landing is
scheduled as early as the temporal partial order will per�
mit� Resource constraints are ignored� resource requests
are randomly assigned to resource pools� This critical
path schedule can be constructed very e�ciently� and it
provides the starting state for the scheduling problem
space� In each state of this problem space� there are two
possible operators that can be applied� The Reassign�
Pool operator changes the pool assignment for one of
the resource requirements of a task� It is only applied
when the pool reassignment would allow the resource re�
quirement to be successfully satis�ed� TheMove opera�
tor moves a task to a di�erent time and then reschedules
all of the temporal dependents of the task using the crit�
ical path method �leaving the resource pool assignments
of the dependents unchanged�� The Move operator is
only applied to move a task to the �rst earlier or the �rst
later time at which the violated resource requirement can
be satis�ed�

These two operators are applied by the iterative repair
method as follows� At each step� the earliest constraint
violation �i�e�� where a resource pool is over�allocated� is
identi�ed� If a Reassign�Pool operator can be applied

to reduce this over�allocation� then it is applied� If not�
then the Move operator is applied to move one of the
o�ending tasks to an earlier or later time� If several dif�
ferent pool reassignments are possible� one is chosen at
random� If both an earlier and a later move are possi�
ble� then one is chosen at random� Of the several tasks
involved in the resource violation� one is chosen at ran�
dom based on a heuristic that prefers to move the task
that �a� requires an amount of resource nearly equal to
the amount that is over allocated� �b� has few tempo�
ral dependents� and �c� needs to be moved only a short
distance to satisfy the resource request�
The overall control structure of the algorithm applies

simulated annealing to minimize the number of resource
pool violations� After each operator is applied� the num�
ber of violations in the resulting schedule is computed� If
this has decreased� the resulting schedule is accepted as
the �current
 schedule� If it has increased� the resulting
schedule is accepted only with probability exp���V�T ��
where �V is the change in the number of violations and
T is the current temperature� The temperature is gradu�
ally decreased� Search proceeds until no constraints are
violated� To obtain a short schedule� the algorithm is
run several times� and the shortest resulting schedule is
selected�

� Reinforcement Learning� Temporal

Di�erence Learning� and Scheduling

Reinforcement learning methods learn a policy for select�
ing actions in a problem space� The policy tells for each
state which action is to be performed in that state� After
an action a is chosen and applied in state s� the problem
space shifts to state s� and the learning system receives
reinforcement R�s� a� s���
To view the scheduling problem as a reinforcement

learning problem� we must describe the problem space
and the reinforcement function R� We employ the same
problem space as Zweben et al� The starting state s�
is the critical path schedule as discussed above� We
de�ne the reinforcement function R�s� a� s�� to give a
reinforcement of ������ for each schedule s� that still
contains constraint violations� This assesses a small
penalty for each scheduling action �Reassign�Pool or
Move�� and it is intended to encourage reinforcement
learning to prefer actions that quickly �nd a good sched�
ule� For any schedule s� that is free of violations� the rein�
forcement is the negative of the resource dilation factor�
�RDF �s�� s��� The RDF attempts to provide a scale�
independent measure of the length of the schedule� and
this �nal reinforcement is intended to encourage rein�
forcement learning to �nd short �nal schedules� Because
the reinforcement function depends only on the resulting
state� we will write it as R�s���
The RDF is de�ned as follows� Let capacity�i� be the

��xed� capacity of resource type i	that is� the combined
capacity of all resource pools of resource type i� At each
time t in the schedule� let u�i� t� be the current utilization
of resources of type i� If u�i� t� � capacity�i�� then the
resource of type i is overallocated at time t �no matter
how we assign resource requests to resource pools of this
type�� We de�ne the resource utilization index RUI�i� t�

for resource type i at time t to be

RUI�i� t� � max

�
��

u�i� t�

capacity�i�

�
�

If the resource is not over�allocated� RUI�i� t� is �� oth�
erwise it is the fraction of overallocation�
The total resource utilitization index �TRUI� for a

schedule of length l is the sum of the resource utiliza�
tion index taken over all n resources and all l times�

TRUI �
nX

i��

lX
t��

RUI�i� t��

Given these de�nitions� the resource dilation factor is
de�ned as

RDF �s� s�� �
TRUI�s�

TRUI�s��
�

To understand the rationale behind this formula� �rst
note that in the �nal schedule s� TRUI�s� is just n times
the length of the schedule� This is because in the �nal
schedule� no resource is overallocated� so RUI�i� t� � ��
Hence� TRUI�s� � l � n� We could have used the neg�
ative of this value as the reinforcement function� but re�
inforcement learning is easier if the reinforcement func�
tion is independent of the di�culty of the scheduling
problem� A very di�cult problem �e�g�� with many jobs
that have simultaneous deadlines� would require a very
long schedule� whereas a simple problem would require
a much shorter schedule� The total resource utilization
index of the initial schedule� TRUI�s��� measures the
amount of overallocation of resources in the initial state�
and hence� provides a crude measure of the di�culty of
the scheduling problem� Hence� we use this to normalize
the �nal schedule length to produce the resource dilation
factor�
Now that we have speci�ed how to view repair�based

scheduling as a reinforcement learning problem� we turn
our attention to the learning algorithm� Suppose at a
given point in the learning process we have developed
policy �� which says that in state s the best action to
select is a � ��s�� We can de�ne an associated function
f� � called the value function� such that f��s� tells the cu�
mulative reward that we will receive if we follow policy �

from state s onward� Formally� f��s� �
PN

j��R�sj����
where N is the number of steps until a con�ict�free sched�
ule is found�
As in most reinforcement learning work� we will at�

tempt to learn the value function of the optimal policy
��� denoted f� � f�� � rather than directly learning �

��
Once we have learned this optimal value function� we
can transform it into the optimal policy via a simple
one�step lookahead search� To choose the best action
in state s� we compute the state a�s� that would result
from applying each possible action a to state s� For each
such action� we compute the value of the resulting state�
f��a�s��� and choose the action a that maximizes this
value� Note that this approach requires that we know
the e�ects of our operators	which is certainly true for
repair�based scheduling operators�
To learn the value function� we can apply the method

of temporal di�erence learning known as TD��� devel�
oped by Sutton ����� In TD���� the value function is

represented by a feed�forward neural network� �f �s�W��
where W is the vector of weights in the network� If the
policy � were �xed� TD��� could be applied to learn
the value function fpi as follows� Let s�� s�� � � � � sN be a
sequence of states visited by following policy � with as�
sociated reinforcements R�s��� � � � � R�sN �� At step j ��
we can compute the temporal di�erence error at step j
as

Jj � � �f�sj���W� R�sj����� �f �sj �W��

TD��� then computes the smoothed gradient

ej � rW
�f �sj �W� �ej��

and updates the weights of the network according to

�W � �Jtej �

Here� � is a smoothing parameter that combines previous
gradients with the current gradient in ej � and � is the
learning rate�
The TD��� algorithm was designed to learn the value

function for a stationary Markov random process such as
would result from following a �xed policy� In reinforce�
ment learning� however� we want to apply it to learn
the value function of the optimal policy starting with an
initial� random policy� To do this� we employ a form of
value iteration� TD��� is applied online to the sequences
of states and reinforcements that result from choosing ac�
tions according to the current estimated value function�
�f � At each state s during learning� we conduct a one�
step lookahead search using the current estimated value
function �f to evaluate the states resulting from apply�
ing each possible operator� We then select the action
that maximizes the predicted value of the resulting state
s�� After applying this action and receiving the reward�
we update our estimate of �f to re�ect the di�erence be�
tween the value of �f �s� and the more informed value

R�s�� �f �s��� �We actually employ a slightly more com�
plex procedure described below�� This means that the
policy is continually changing during the learning pro�
cess� Fortunately� TD��� will still converge under these
conditions �Sutton� ������
There are �ve further modi�cations that we made to

this algorithm based on preliminary experiments� First�
for any reinforcement learning algorithm it is critical to
perform some kind of exploration to discover new and
better ways of getting from the start state to the goal�
We employed the following simple exploration strategy�
At each state� with probability 	 we choose a random
action instead of the action recommended by the current
value function and policy� Initially� 	 is set to �� After
each action� 	 is decreased by an amount �	 until it
reaches a �nal value of ����� �The values used for �	
are given below��
Second� we do not perform weight updates in the neu�

ral network after each action� Instead� we remember the
sequence of states visited along the path from the start�
ing state to the �nal con�ict�free schedule� Then we up�
date the network starting with the �nal action and work�
ing backward to the start of the action sequence� Exper�
imentally� this works better than simple online training�
because the values being backed up are more up�to�date�

Third� we employ Lin
s experience replay method�
During learning� the best sequence of moves from start
to goal is remembered� and after every four training se�
quences� we update the network using this best training
sequence� This improved learning and performance sig�
ni�cantly�
Fourth� we do not employ a full one�step lookahead

search to select actions� because the branching factor in
this problem space is typically ��� and it is costly to
compute the value of each of these �� successor states�
Instead� we employ random sample greedy search� which
generates a random subset of the possible operators and
evaluates their resulting states� The best of these oper�
ators is then chosen� The size of the random sample is
determined incrementally� An initial sample of four ac�
tions is chosen� Based on the resulting computed values
and a permitted amount of error
 and desired con�dence
�� �� we can compute the probability that the value of
the best sampled action is within
 of the best possible
action� We continue sampling possible actions until this
probability exceeds � � � �we set
 � ��� and � � �����
Random�sample greedy search is employed during both
training and execution�
The �nal change in the learning algorithm is that we

do not use the actual states of the scheduling process as
input to the neural network� The neural network can
accept only a �xed vector of feature values describing
each state �i�e�� each current schedule�� Schedules� on the
other hand� are variable�length objects� Hence� it was
necessary to de�ne a set of useful features that extract
important aspects of the current schedule that the neural
network can use to predict the value of the state� We
de�ned the following features �based on a very modest
amount of experimentation��
Mean and standard deviation of the free pool

capacity for bottleneck pools� Simple experiments
showed that only the technician� logistics� electrical en�
gineer� mechanical engineer� and quality control o�cer
resource types became major bottleneck resources� For
each bottleneck pool� the number of unallocated units
�the free capacity� is measured over the whole sched�
ule period and the mean and standard deviation of this
quantity provide two features for each pool�
Mean and standard deviation of slacks� The

slack time between a task and one of its temporal prereq�
uisites is the di�erence between the end time of the pre�
requisite task and the scheduled start time of the task�
We measure the minimum slack for each task �and all
of its temporal prerequisites� and the average slack for
each task� The mean and standard deviation of these
two quantities taken over all tasks provide four features�
Modi�ed RDF� We used a slightly modi�ed version

of the resource dilation factor of the current schedule�
The numerator of the modi�ed RDF is computed using
the capacity and allocation of individual resource�pools
rather than of resource types�
Over�allocation index� This is the total number of

units of over�allocated resources in the current schedule
divided by the total number of units of over�allocated
resources in the starting schedule�
Percentage of windows in violation� A window

is de�ned to be a maximal period of time during which
the set of currently scheduled tasks does not change� A
schedule can be segmented into a sequence of windows�
We compute the percentage of windows that contain a
constraint violation� We also �nd the earliest window
that contains a constraint violation and compute the per�
centage of the following � windows that have violations�
Percentage of windows in violation that can be

resolved by pool reassignment� This is the fraction
of those windows having constraint violations where the
total amount of resources assigned is actually less than
the total capacity� so that	if the resources were not sub�
divided into pools	the resource requirements could be
met�
Percentage of time units in violation� This is

measured over the whole schedule period�
First violated window index �normalized�� Let

w� be the index of the earliest window that has a viola�
tion� Let W be the total number of windows� Then this
feature is �W � w���W � As violations are repaired� this
value decreases to zero� If no window has a violation� we
set w� � W �
Each of these features was developed by studying small

scheduling problems to �nd quantities that had some
ability to predict RDF� However� we believe that these
features can be improved substantially� and this is a goal
of our ongoing research�
A consequence of using these features instead of the

full state is that the learned policy may enter in�nite
loops� We have taken two steps to detect and prevent
these loops� First� the randomness introduced by the
random sample greedy procedure and by the random
exploration process tends to avoid loops� because even
when the same state is revisited� the same action may
not be chosen� Second� all states visited while solving
a particular problem are recorded and checked to detect
loops� When a loop is detected� we apply the learned
value function to compute the second best action and
choose it� If a loop is detected again at the same state�
we backtrack to the preceeding state and again take the
second best action� If this were to create a loop also� we
would continue backtracking to earlier states�

� Methods

We brie�y describe the methods applied to generate the
training and test problems� the network architecture�
and the parameters employed in the learning algorithm�

��� Problem Sets

We constructed two problem sets� an arti�cial prob�
lem set and a problem set based on speci�cations for
the NASA SSPP problem� The arti�cial problems were
generated as follows� First� we generated a pool of ��
jobs� From these� we constructed scheduling problems
by choosing random subsets of these jobs� This was in�
tended to model the NASA setting where there are only
a limited number of possible shuttle�cargo�bay con�gura�
tions �i�e�� jobs�� but where each scheduling problem is a
unique combination of such shuttle missions� More gen�
erally� this models a job shop where each new scheduling

interval requires scheduling a unique mix of more�or�less
standard jobs�
To generate a synthetic job� we choose the number

of tasks randomly in the range � to ��� A set of tem�
poral constraints among these tasks is then randomly
generated such that approximately ��! of all possible
pairwise precedence constraints are asserted�
Next� resource requirements are determined for each

task� There are two types of resources� Each resource
has two pools	one pool has a capacity of � units� and
the other has a capacity of � units� Resource require�
ments are randomly assigned to each task uniformly in
the range from � to � units for each resource type�
Once the pool of �� jobs is generated in this way� ��

training problems and �� test problems are constructed�
To generate a problem� we �rst choose the number of
jobs in the problem to be either � or � �with equal prob�
ability�� The desired number of jobs is selected ran�
domly with replacement from the ���job pool� Each job
is assigned a completion deadline with the deadlines ran�
domly separated by between � and �� time units�
Sixteen input features are computed to represent

schedules for these problems� � pool capacity features
for the � pools� � slack features� and features describ�
ing the modi�ed RDF� percentage of windows and time
units in violation� and percentage of violated windows
in which the violation can be resolved by pool reassign�
ment�
During training� �� of the �� training problems were

held out as a validation set to determine when to halt
training� The remaining �� problems were repeatedly
processed to train the value function networks�
In addition to the �� test problems� we generated a

second test set of �� larger problems to evaluate the abil�
ity of the learned value functions to scale up to larger
scheduling problems� Each of these larger problems was
generated in the same way as the smaller problems ex�
cept that the number of jobs was chosen uniformly be�
tween �� and ���
For the space shuttle payload processing task� a prob�

lem consists of a set of shuttle missions with launch dates
one to three months apart� Each mission can have one
or two payloads� We considered three kinds of payloads�
long module �LM�� mission peculiar equipment support
structure �MPESS�� and pallet and igloo �PALLET "
IGLOO�� These have ��� ��� and �� tasks� respectively�
There are �� types of resources of which only �ve are
major bottleneck resources�
We randomly generated a training set of �� problems

and a test set of �� problems� The training problems
each contained between two and four shuttle missions�
Of the �� training problems� � were held out for valida�
tion to determine when to stop training� The test prob�
lems each contained � to � shuttle missions� The test
problems thus assess the ability of the learned policy to
scale up to larger problems�
For the shuttle problems� �� input features are used�

�� features for pool capacity� � slack features� modi�ed
RDF� � features describing windows in violation� per�
centage of time units in violation� index of �rst violated
window� and the overallocation index�

��� Network Architecture and Training
Procedure

To represent the value function� we trained feed�forward
networks having �� sigmoidal hidden units and � sig�
moidal output units� The � output units encode the pre�
dicted RDF using the technique of overlapping gaussian
ranges �Pomerleau� ����� as follows� Each output unit
represents one assigned RDF value� vj �j � �� � � � � ���
For the arti�cial problems� these RDF values are v� �
���� v� � ���� � � � � v� � ���� For the SSPP problems� the
RDF values are v� � ���� v� � ���� � � � � v� � ���� During
training� the target output activation for each output
unit is set to be targetj � ��RDF � vj� ��������� �����
where ��
� �� is the standard normal probability den�
sity function with mean
 and standard deviation ��
During testing� the predicted RDF value is computed as
�
P

j actj � vj���
P

j actj�� where actj is the actual output
activation for output unit j�
For each problem� we trained eight di�erent net�

works using all combinations of the following parame�
ters� learning rate � � ��� or ����� exploration schedule
�	 � ����� or ������� and � � ��� or ���� �Prelimi�
nary experiments showed that � � � did not perform
as well�� The training set problems are processed in
round�robin fashion� Each problem is solved using one
of the networks to obtain a sequence of states and ac�
tions� That network is then updated �via backpropaga�
tion with TD���� by processing the state sequence work�
ing backward from the �nal state� After every �� passes
through the training set� a cross�validation test is con�
ducted to compute the average RDF of the �nal sched�
ules produced over all cross�validation problems� The
best network found during cross�validation �for each of
the eight parameter sets� is retained� For each network�
training continues until the cross�validated RDF of that
network is worse than the previous nine measured values
for cross�validated RDF�
Six networks are chosen for testing as follows� The

three best networks found during cross�validation are re�
tained along with their corresponding �nal networks� We
retain the �nal networks to compensate for variance in
the cross�validation measurements�
For the simulated annealing component of the iterative

repair method� we set the starting temperature to ��� for
the synthetic scheduling task and to ��� for the SSPP
task� After every �� accepted repairs to the schedule�
the temperature is reduced according to T �� ����T �

	 Results

Figure � shows the average cross�validation RDF for the
four value function networks trained with � � ���� The
horizontal axis gives the number of training sequences
processed� This �gure shows that the performance of
the trained networks is improving on the cross�validation
problems� Figure � plots the number of repair actions
for these same networks� This shows that there is some
reduction in the number of actions required to convert
the starting schedule into a con�ict�free �nal schedule�
Figures � compares the performance of temporal dif�

ference �TD� scheduling with the iterative repair �IR�

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

0 200 400 600 800 1000 1200 1400 1600 1800

A
ve

ra
ge

 R
D

F

Number of Sequences Trained

λ=.2, β=.0005
λ=.2, β=.001

λ=.7, β=.0005
λ=.7, β=.001

Figure �� Average RDF over �� CV Problems

26

28

30

32

34

36

38

40

42

44

0 200 400 600 800 1000 1200 1400 1600 1800

A
ve

ra
ge

 N
um

be
r

of
 R

ep
ai

rs

Number of Sequences Trained

λ=.2, β=.0005
λ=.2, β=.001

λ=.7, β=.0005
λ=.7, β=.001

Figure �� Average Number of Repairs over ��
CV Problems

method of Zweben� The vertical axis is the RDF of the
best con�ict�free schedule found so far� The horizontal
axis is a machine�independent proxy for the amount of
CPU time consumed by each method� For IR� the hori�
zontal axis gives the number of restarts of the simulated
annealing procedure� and the vertical axis records the
RDF of the best con�ict�free schedule found so far� The
longer IR is run� the better its performance�
For the TD scheduler� the horizontal axis represents

the number of neural network evaluation functions em�
ployed� When k networks are used to solve a schedul�
ing problem� the problem is solved k times� once with
each network� and the schedule having the best RDF is
returned as the answer� The best k networks� as deter�
mined by cross�validation� are used� The curves stop at
k � �� because only six networks were used �once each��
Some care must be taken in interpreting the horizontal

axis as a measure of CPU time� Each step of the TD
scheduler requires more CPU time than a step of the IR
scheduler� because the TD scheduler must perform the
random sample lookahead search and check for loops� On
the average� TD spends ��� times as much CPU time per
step as IR� On the other hand� TD requires fewer steps
to �nd a con�ict�free schedule� The average sequence
length for an iteration of TD is ��! as long as an average
IR sequence� The net e�ect is that one iteration of TD
is equivalent to approximately ��� iterations of IR�
Bearing this in mind� the key point to notice is that the

curve for the TD scheduler always lies below the curve for
iterative repair� This means that given the same amount
of CPU time� TD always �nds a better schedule �i�e��
with lower RDF�� For example� with � networks� TD ob�
tains an RDF of ����� compared to IR
s RDF of �����
�at ��� � � � �� iterations�� This is a ���! improvement�
which in a schedule lasting a year is a savings of �� days

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
D

F

Number of Iterations

TD
IR

Figure �� Performance Comparison of TD to IR
on �� Small�scale Problems

1.36

1.38

1.4

1.42

1.44

1.46

1.48

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
D

F

Number of Iterations

TD
IR

Figure 	� Performance Comparison of TD to IR
on �� Medium�scale Problems

�and thousands of dollars�� The curve also shows that
iterative repair always requires much more time ��� iter�
ations vs� ��� to �nd a schedule whose quality matches
the RDF found by TD�
Figure � shows a similar comparison for TD and IR on

the �� larger test problems� Here the di�erence between
the algorithms is even more pronounced� Temporal dif�
ference scheduling scales better to larger problems� even
though it has only been trained on smaller problems�
Figure � shows analogous results for temporal di�er�

ence and iterative repair on the �� test�set SSPP prob�
lems� Here the horizontal axis is log CPU time� We see
that TD maintains a constant factor advantage over iter�
ative repair� Temporal di�erence scheduling �nds better
schedules faster than iterative repair�
Note� however� that this �gure just gives the average

RDF over the whole test set� Because of the random
components of both algorithms� this hides considerable
variation� Figure � reveals this variation� Let us say
that TD �wins
 on a particular problem if the RDF of
its best schedule computed so far is better than the RDF
of the best IR schedule computed with the same amount
of CPU time� The two algorithms will be said to �tie
 if
they �nd schedules with identical RDF values� Figure �
plots the fraction of TD �wins
 and TD �wins ties

as a function of log CPU time� We see that at low CPU
costs� TD wins on almost every problem� Eventually� as
CPU time becomes larger� TD still wins or ties slightly
more than ��! of the time�

 Discussion and Concluding Remarks

These results show that temporal di�erence �TD� meth�
ods outperform the best previous algorithm for schedul�
ing space shuttle payload processing jobs� Furthermore�

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1024 2048 4096 8192 16384 32768 65536 131072

A
ve

ra
ge

 R
D

F

Running Time (seconds)

TD
IR

Figure �� Performance Comparison of TD to IR
on �� PPS Problems
RDF�

0.4

0.5

0.6

0.7

0.8

0.9

1

4096 8192 16384 32768 65536 131072

P
er

ce
nt

ag
e

of
 T

D
 w

in
s

Running Time (seconds)

TD Win+Tie
TD Win

Figure �� Performance Comparison of TD to IR
on �� PPS Problems

 Wins�

there are clearly many ways that the TD methods can be
improved� For example� the current set of features needs
to be improved so that the learning procedure can cap�
ture more domain�speci�c knowledge� There is also some
evidence to suggest that the training procedure could be
improved�

Several authors �Bradtke� ����� Thrun and Schwartz�
����� Boyan and Moore� ����� Schraudolph et al�� �����
have shown that there are pitfalls associated with us�
ing neural networks �and other function approximation
schemes� to represent value functions in reinforcement
learning� However� the results of this paper and the no�
table success of Tesauro
s ������ TD backgammon sys�
tem show that in some situations� these pitfalls are not
encountered� An important open question is to under�
stand why TD��� works in this and other applications�

We suspect that the success of TD methods in this
domain results from two factors� First� there are prob�
ably many good solutions to each scheduling problem�
Certainly there are many good solution paths� because
the search space is highly redundant� Second� TD is es�
sentially a technique for smoothing adjacent estimates of
the �nal RDF� This smoothing can remove local minima
even if it does a poor job of predicting the �nal RDF�
These two properties may permit a simple greedy algo�
rithm to �nd good schedules�

These same two properties may explain why the iter�
ative repair method with simulated annealing also suc�
ceeds in this domain� Simulated annealing is a stochastic
method for locally smoothing an objective function� As
applied in this domain� simulated annealing is not run
long enough to �nd a global optimum� but it may be able
to escape local minima and �nd an acceptable solution

in spite of this�
Industrial scheduling problems abound� and general�

purpose solutions to these problems probably do not ex�
ist� This research has shown that reinforcement learn�
ing methods have the potential for quickly �nding high�
quality solutions to these scheduling problems� The goal
of future research must be to improve these learning
methods so that they can be applied with a minimum
of domain�speci�c engineering to produce a new� cost�
e�ective scheduling technology�

Acknowledgements

The authors thank Rich Sutton and Monte Zweben for
several helpful discussions� The authors gratefully ac�
knowledge the support of NASA grant NAG ����� from
NASA Ames Research Center� Additional support was
provided by NSF grants CDA�������� and IRI���������

References
�Boyan and Moore� ����� J� A� Boyan and A�W� Moore�
Generalization in reinforcement learning� safely ap�
proximating the value function� In Advances in Neu�
ral Information Processing Systems �� San Mateo� CA�
����� Morgan Kaufmann�

�Bradtke� ����� S� J� Bradtke� Reinforcement learning
applied to linear quadratic regulation� In Advances in
Neural Information Processing Systems �� pages ���#
���� San Mateo� CA� ����� Morgan Kaufmann�

�Deale et al�� ����� M� Deale� M� Yvanovich� D� Schnitz�
ius� D� Kautz� M� Carpenter� M� Zweben� G� Davis�
and B� Daun� The space shuttle ground processing
scheduling system� In M� Zweben and M� S� Fox� ed�
itors� Intelligent Scheduling� chapter ��� pages ���#
���� Morgan Kaufmann� San Francisco� CA� �����

�Pomerleau� ����� D� A� Pomerleau� E�cient training of
arti�cial neural networks for autonomous navigation�
Neural Computation� �������#��� �����

�Schraudolph et al�� ����� N� Schraudolph� P� Dayan�
and T� Sejnowski� Using TD��� to learn an evalu�
ation function for the game of go� In Advances in
Neural Information Processing Systems �� San Mateo�
CA� ����� Morgan Kaufmann�

�Sutton� ����� R� S� Sutton� Learning to predict by the
methods of temporal di�erences� Machine Learning�
������#��� August �����

�Tesauro� ����� G� Tesauro� Practical issues in tempo�
ral di�erence learning� Machine Learning� �����#����
�����

�Thrun and Schwartz� ����� S� Thrun and A� Schwartz�
Issues in using approximation for reinforcement learn�
ing� In Proceedings of the Fourth Connectionist Mod�
els Summer School� Hillsdale� NJ� ����� Lawrence Erl�
baum Publisher�

�Zweben et al�� ����� M� Zweben� B� Daun�
and M� Deale� Scheduling and rescheduling with it�
erative repair� In M� Zweben and M� S� Fox� editors�
Intelligent Scheduling� chapter �� pages ���#���� Mor�
gan Kaufmann� San Francisco� CA� �����

