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Abstract

Conditional random fields (CRFs) provide a flexible and powerful model for sequence labeling
problems. However, existing learning algorithms are slow, particularly in problems with large
numbers of potential input features and feature combinations. This paper describes a new algo-
rithm for training CRFs via gradient tree boosting. In tree boosting, the CRF potential functions
are represented as weighted sums of regression trees, which provide compact representations of
feature interactions. So the algorithm does not explicitly consider the potentially large parameter
space. As a result, gradient tree boosting scales linearly in the order of the Markov model and in
the order of the feature interactions, rather than exponentially as in previous algorithms based on
iterative scaling and gradient descent. Gradient tree boosting also makes it possible to use instance
weighting (as in C4.5) and surrogate splitting (as in CART) to handle missing values. Experimental
studies of the effectiveness of these two methods (as well as standard imputation and indicator fea-
ture methods) show that instance weighting is the best method in most cases when feature values
are missing at random.

Keywords: sequential supervised learning, conditional random fields, functional gradient, gradi-
ent tree boosting, missing values

1. Introduction

Many applications of machine learning involve assigning labels collectively to sequences of objects.
For example, in natural language processing, the task of part-of-speech (POS) tagging is to label
each word in a sentence with a part of speech tag (“noun”, “verb” etc.) (Ratnaparkhi, 1996). In
computational biology, the task of protein secondary structure prediction is to assign a secondary
structure class to each amino acid residue in the protein sequence (Qian and Sejnowski, 1988).

We call this class of problems sequential supervised learning (SSL), and it can be formulated
as follows:

Given: A set of training examples of the form (Xi,Yi), where each Xi = (xi,1, . . . ,xi,Ti) is a sequence
of Ti feature vectors and each Yi = (yi,1, . . . ,yi,Ti) is a corresponding sequence of class labels,
where yi,t ∈ {1, . . . ,K}.
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Find: A classifier H that, given a new sequence X of feature vectors, predicts the corresponding
sequence of class labels Y = H(X) accurately.

Perhaps the most famous SSL problem is the NETtalk task of pronouncing English words by
assigning a phoneme and stress to each letter of the word (Sejnowski and Rosenberg, 1987). Other
applications of SSL arise in information extraction (McCallum et al., 2000) and handwritten word
recognition (Taskar et al., 2004).

Early attempts to apply machine learning to SSL problems were based on sliding windows.
To predict label yt , a sliding window method uses features drawn from some “window” of the X
sequence. For example, a 5-element window wt(X) would use the features xt−2,xt−1,xt ,xt+1,xt+2.
Sliding windows convert the SSL problem into a standard supervised learning problem to which
any ordinary machine learning algorithm can be applied. However, in most SSL problems, there
are correlations among successive class labels yt . For example, in part-of-speech tagging, adjectives
tend to be followed by nouns. In protein sequences, alpha helixes and beta structures always involve
multiple adjacent residues. These correlations can be exploited to increase classification accuracy.

The best-known method for capturing the yt−1 ↔ yt correlation is the hidden Markov model
(HMM) (Rabiner, 1989), which is a generative model of P(X ,Y ), the joint distribution of the ob-
servation sequence and label sequence. In this model, the joint distribution is factored as P(X ,Y ) =

∏t P(yt |yt−1)P(xt |yt), and the observation distribution is further factored as P(xt |yt) = ∏ j P(xt, j|yt).
This assumption of independence of each input feature xt, j conditioned on yt makes HMMs unable
to model arbitrary, non-independent input features, and this limits the accuracy and “engineerabil-
ity” of HMMs.

Recent research has instead focused on discriminative models, in which arbitrary and non-
independent observation features can be easily incorporated. Much machine learning research has
shown that discriminative models tend to be more accurate and more robust to incorrect modeling
assumptions (Ng and Jordan, 2002). McCallum and his collaborators introduced maximum entropy
Markov models (MEMMs) (McCallum et al., 2000) and conditional random fields (CRFs) (Lafferty
et al., 2001). MEMMs are directed graphical models of the form P(Y |X) = ∏t P(yt |yt−1,wt(X)),
where wt(X) is a sliding window over the X sequence. They are easy to train, but they suffer from
the label bias problem that results from the local normalization at each time step t. Conditional
random fields are undirected models of the form P(Y |X) = 1/Z(X)exp ∑t Ψ(yt ,yt−1,wt(X)), where
Z(X) is a global normalizing term and Ψ(yt ,yt−1,wt(X)) is a potential function that scores the com-
patibility of yt , yt−1, and wt(X). The global normalization avoids the label bias problem but makes
training much more computationally expensive. CRFs have been applied to many problems with
excellent results including POS tagging (Lafferty et al., 2001) and noun-phrase chunking (Sha and
Pereira, 2003).

Kernel-based methods have also been extended to the SSL case. The hidden Markov SVM (Al-
tun et al., 2003; Tsochantaridis et al., 2004) and max-margin Markov networks (Taskar et al., 2004)
learn a discriminant function F(X ,Y ′) that assigns a real valued score to each possible label se-
quence Y ′ to maximize the margin between the correct label sequence Y and all competing incorrect
label sequences.

Training CRFs is difficult for several reasons. First, as with all collective classification problems,
training requires performing inference. In particular, all algorithms must compute the conditional
log likelihood logP(Yi|Xi) for each training example (Xi,Yi) in each iteration. This is expensive, and
it dictates that training algorithms should try to minimize the number of iterations and maximize the
amount of progress made in each iteration. Second, in many SSL applications, the space of potential
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features for describing the arguments of ψ (i.e., yt , yt−1, and wt(X)) is immense. Even in the simple
case where ψ is represented as a simple linear function W ·F(yt ,yt−1,wt(X)), there can be millions
of weights to learn in W . In POS tagging and semantic role labeling, for example, it is common
to have one feature (and hence, one weight) for every combination of a word and a pair of class
labels. Furthermore, in most applications, performance is improved if the algorithm can consider
combinations of these basic features (e.g., word n-grams, feature conjunctions and disjunctions,
etc.). If feature interactions are permitted, the number of parameters to be learned explodes. Finally,
in some problems, feature values can be missing, and this is difficult for discriminative training
algorithms to handle.

There has been steady progress in algorithms for training CRFs. The initial paper (Lafferty
et al., 2001) introduced an iterative scaling algorithm, which was reported to be exceedingly slow.
Several groups have implemented gradient ascent methods (such as Sha and Pereira, 2003), but
naive implementations are also very slow. McCallum’s Mallet system (McCallum, 2002) employs
the BFGS algorithm, which is an approximate second order method, to speed up the training of
CRFs and improve the prediction accuracy. More recently, Vishwanathan et al. (2006) proposed to
use stochastic gradient method to train CRFs, and accelerate this process via the Stochastic Meta-
Descent (SMD), which is a gain adaptation method. The resulting algorithm is much faster than the
BFGS algorithm and scales well on large data sets.

In this paper, we introduce a different approach for training the potential functions based on
Friedman’s gradient tree boosting algorithm (Friedman, 2001). In this method, the potential func-
tions are represented by sums of regression trees, which are grown stage-wise in the manner of
Adaboost (Freund and Schapire, 1996). Because each iteration adds an entire regression tree to
the potential function, each iteration can take a big step in parameter space, and hence, reduce the
number of iterations needed. Tree boosting also addresses the problem of dealing with feature in-
teractions. Each regression tree can be viewed as defining several new feature combinations—one
corresponding to each path in the tree from the root to a leaf. The resulting potential functions still
have the form of a linear combination of features, but the features can be quite complex. Another
advantage of tree boosting is that it is able to handle missing values in the inputs using clever meth-
ods specific to regression trees, such as the instance weighting method of C4.5 (Quinlan, 1993) and
the surrogate splitting method of CART (Breiman et al., 1984). Finally, the algorithm is fast and
straightforward to implement. In addition, there may be some tendency to avoid overfitting because
of the “ensemble effect” of combining multiple regression trees.

This paper describes the gradient tree boosting algorithm including methods for incorporating
weight penalties into the procedure. It then compares training time and generalization performance
against McCallum’s Mallet system. The results show that our implementation of tree boosting
is competitive with Mallet in both speed and accuracy and that additional improvements in our
implementation of the forward-backward algorithm would likely produce a system that is faster
than both systems. We also perform experiments to evaluate the effectiveness of four methods for
handling missing values (instance weighting, surrogate splits, indicator features, and imputation).
The results show that instance weighting works best, but that imputation also works surprisingly
well.

This leads to two conclusions. First, for CRF models, instance weighting combined with gradi-
ent tree boosting can be recommended as a good algorithm for learning in the presence of missing
values. Second, for all SSL methods, imputation can be employed to provide a reasonable missing
values method.
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2. Conditional Random Fields

Let (X ,Y ) be a sequential labeled training example, where X = (x1, . . . ,xT ) is the observation se-
quence and Y = (y1, . . . ,yT ) is the sequence of labels, where yt ∈ {1, . . . ,K) for all t. A conditional
random field is a linear chain Markov random field (Geman and Geman, 1984) over the label se-
quence Y globally conditioned on the observation sequence X . The probability distribution can be
written as

P(Y |X) =
1

Z(X)
exp

[

∑
t

Ψt(yt ,X)+Ψt−1,t(yt−1,yt ,X)

]

,

where Ψt(yt ,X) and Ψt−1,t(yt−1,yt ,X) are potential functions that capture (respectively) the de-
gree to which yt is compatible with X and the degree to which yt is compatible with a tran-
sition from yt−1 and with X . These potential functions can be arbitrary real-valued functions.
The exponential function ensures that P(Y |X) is positive, and the normalizing constant Z(X) =

∑Y ′ exp[∑t Ψt(y′t ,X)+ Ψt−1,t(y′t−1,y
′
t ,X)] ensures that P(Y |X) sums to 1. If given sufficiently rich

potential functions, this model can represent any first-order Markov distribution P(Y |X) subject to
the assumption that P(Y |X) > 0 for all X and Y (Besag, 1974; Hammersley and Clifford, 1971).
Normally, it is assumed that the potential functions do not depend on t, and we will adopt this
assumption in this paper.

To apply a CRF to an SSL problem, we must choose a representation for the potential functions.
Lafferty et al. (2001) studied potential functions that are weighted combinations of binary features:

Ψt(yt ,X) = ∑
a

βaga(yt ,X) ,

Ψt−1,t(yt−1,yt ,X) = ∑
b

λb fb(yt−1,yt ,X) ,

where the βa’s and λb’s are trainable weights, and the features ga and fb are boolean functions. In
part-of-speech tagging, for example, g234(yt ,X) might be 1 when xt is the word “bank” and yt is the
class “noun” (and 0 otherwise). As with sliding window methods, it is natural to define features that
depend only on a sliding window wt(X) of X values. This linear parameterization can be seen as an
extension of logistic regression to the sequential case.

CRFs can be trained by maximizing the log likelihood of the training data, possibly with a
regularization penalty to prevent overfitting. Let Θ = {β1, . . . ,λ1, . . .} denote all of the tunable
parameters in the model. Then we seek to maximize the objective function

J(Θ) = log∏
i

P(Yi | Xi)

= ∑
i

log
1

Z(Xi)
exp

[

∑
t

Ψt(yi,t ,Xi)+Ψt−1,t(yi,t−1,yi,t ,Xi)

]

= ∑
i

∑
t

Ψt(yi,t ,Xi)+Ψt−1,t(yi,t−1,yi,t ,Xi)− logZ(Xi)

= ∑
i

∑
t

∑
a

βaga(yi,t ,Xi)+∑
b

λb fb(yi,t−1,yi,t ,Xi)− logZ(Xi) .

A drawback of this linear parameterization is that it assumes that each feature makes an inde-
pendent contribution to the potential functions. Of course it is possible to define more features to
capture combinations of the basic features, but this leads to a combinatorial explosion in the number
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of features, and hence, in the dimensionality of the optimization problem. For example, in protein
secondary structure prediction, Qian and Sejnowski (1988) found that a 13-residue sliding window
gave best results for neural network methods. There are 32 ×13×20 = 2340 basic fb features that
can be defined over this window. If we consider fourth-order conjunctions of such features, we
obtain more than 1012 features. This is obviously infeasible.

McCallum’s Mallet system (McCallum, 2002) implements standard CRFs and CRFs with fea-
ture induction (McCallum, 2003). When feature induction is turned on, the learner starts with
a single constant feature and (every 8 iterations) introduces new feature conjunctions by taking
conjunctions of the basic features with features already in the model. Candidate conjunctions are
evaluated according to their incremental impact on the objective function. He demonstrates signif-
icant improvements in speed and classification accuracy compared to a CRF that only includes the
basic features. In this paper, we employ the gradient tree boosting method (Friedman, 2001) to con-
struct complex features from the basic features as part of a stage-wise construction of the potential
functions. The regression trees grown at each step are compact representations of complex features.

3. Gradient Tree Boosting

Suppose we wish to solve a standard supervised learning problem where the training examples have
the form (xi,yi), i = 1, . . . ,N and yi ∈ {1, . . . ,K}. We wish to fit a model of the form

P(y | x) =
expΨ(y,x)

∑y′ expΨ(y′,x)
.

Gradient tree boosting is based on the idea of functional gradient ascent. In ordinary gradient
ascent, we would parameterize Ψ in some way, for example, as a linear function,

Ψ(y,x) = ∑
a

βaga(y,x) .

Let Θ = {β1, . . .} represent all of the tunable parameters in this function. In gradient ascent, the
fitted parameter vector after iteration m, Θm, is a sum of an initial parameter vector Θ0 and a series
of gradient ascent steps δm:

Θm = Θ0 +δ1 + · · ·+δm ,

where each δm is computed as a step in the direction of the gradient of the log likelihood function:

δm = ηm ∇Θ ∑
i

logP(yi | xi;Θ)

∣

∣

∣

∣

∣

Θm−1

,

and ηm is a parameter that controls the step size.
Functional gradient ascent is a more general approach. Instead of assuming a linear parameter-

ization for Ψ, it just assumes that Ψ will be represented by a weighted sum of functions:

Ψm = Ψ0 +∆1 + · · ·+∆m .

Each ∆m is computed as a functional gradient:

∆m = ηm Ex,y

[

∇Ψ logP(y | x;Ψ)|Ψm−1

]

.
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The functional gradient indicates how we would like the function Ψm−1 to change in order to in-
crease the true log likelihood (i.e., on all possible points (x,y)). Unfortunately, we do not know the
joint distribution P(x,y), so we cannot evaluate the expectation Ex,y[·]. We do have a set of train-
ing examples sampled from this joint distribution, so we can compute the value of the functional
gradient at each of our training data points:

∆m(yi,xi) = ∇Ψ ∑
i

logP(yi | xi;Ψ)

∣

∣

∣

∣

∣

Ψm−1

.

We can then use these point-wise functional gradients to define a set of functional gradient training
examples, ((xi,yi),∆m(yi,xi)), and then train a function hm(y,x) so that it approximates ∆m(yi,xi).
Specifically, we can fit a regression tree hm to minimize

∑
i

[hm(yi,xi)−∆m(yi,xi)]
2 .

We can then take a step in the direction of this fitted function:

Ψm = Ψm−1 +ηhm .

Although the fitted function hm is not exactly the same as the desired ∆m, it will point in the same
general direction (assuming there are enough training examples). So ascent in the direction of hm

will approximate true functional gradient ascent.
A key thing to note about this approach is that it replaces the difficult problem of maximizing

the log likelihood of the data by the much simpler problem of minimizing squared error on a set of
training examples. Friedman (2001) suggests growing hm via a best-first version of the CART algo-
rithm (Breiman et al., 1984; Friedman et al., 2000) and stopping when the regression tree reaches a
pre-set number of leaves L. The pseudo-code of this algorithm is shown in Table 1. Overfitting is
controlled by tuning L (e.g., by internal cross-validation).

In our experience, using L to control overfitting is a blunt tool that is hard to calibrate. In this
paper, we instead introduce shrinkage into the algorithm for growing regression trees by adding a
quadratic weight penalty. For each leaf in the regression tree hm, the quantity that we minimize is
the squared error of the examples ((xi,yi),∆m(yi,xi)) falling into this leaf plus a quadratic penalty:

∑
i

(∆m(yi,xi)− δ̂)2 +λδ̂2 ,

where δ̂ is the output of this leaf and λ > 0 controls the strength of the penalty. Differentiating the
above objective function with respect to δ̂ shows that the minimum is achieved at

δ̂ =
∑i ∆m(yi,xi)

λ+N
, (1)

where N is the total number of examples falling into this leaf. This has the nice interpretation that λ
is an equivalent number of training examples with target values of 0. So this shrinks the leaf values
(learned weights) toward zero. With this method, we can select a large number for L (the maximum
number of leaves in the regression tree), and use λ to give fine control of overfitting. The algorithm
shown in Table 1 can be adapted by using Equation 1 in the computation of function OUTPUT and
function SQUAREDERROR. Experimental results show that this new algorithm works better and is
more efficient than the original best-first version of the CART algorithm.
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FITREGRESSIONTREE(Data,L)
// Data = {(xi,yi) : i = 1, . . . ,N, xi = (xi1, . . . ,xip)}
// NodeQueue is a priority queue of tree nodes where the first node has the minimum SplitScore
Root := FINDBESTSPLITATTRIBUTE(Data,NodeQueue)
NumLeaves := 1
while ((NumLeaves < L) AND NOTEMPTY(NodeQueue))

Node := REMOVEFRONT(NodeQueue)
TrueData := examples in Node whose values of SplitFeature are true
FalseData := examples in Node whose values of SplitFeature are false
TrueChild := FINDBESTSPLITATTRIBUTE(TrueData,NodeQueue)
FalseChild := FINDBESTSPLITATTRIBUTE(FalseData,NodeQueue)
SETCHILDNODES (Node,TrueChild,FalseChild)
NumLeaves := NumLeaves+1

end
return Root
end FITREGRESSIONTREE

FINDBESTSPLITATTRIBUTE(Data,NodeQueue)
SplitScore := 0, SplitFeature := 0
for j from 1 to p

TrueData := {(xi,yi) ∈ Data : xi j = 1}
FalseData := {(xi,yi) ∈ Data : xi j = 0}
Gain := SQUAREDERROR(TrueData)+ SQUAREDERROR(FalseData)−SQUAREDERROR(Data)
if Gain < SplitScore

SplitScore := Gain, SplitFeature := j
end

end
Node := MAKELEAF(OUTPUT(Data),Data,SplitFeature,SplitScore)
if SplitFeature ≥ 1

INSERT(Node,NodeQueue)
end
return Node
end FINDBESTSPLITATTRIBUTE

Table 1: Best-first version of the CART algorithm.

4. Training CRFs with Gradient Tree Boosting

In principle, it is straightforward to apply functional gradient ascent to train CRFs. All we need to
do is to represent and train Ψ(yt ,X) and Ψ(yt−1,yt ,X) as weighted sums of regression trees. Let

Fyt (yt−1,X) = Ψ(yt ,X)+Ψ(yt−1,yt ,X)

be a function that computes the “desirability” of label yt given values for label yt−1 and the input
features X . There are K such functions F k, one for each class label k. With this definition, the CRF
has the form

P(Y |X) =
1

Z(X)
exp∑

t
Fyt (yt−1,X) .
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We now compute the functional gradient of logP(Y |X) with respect to F yt (yt−1,X). To simplify
the computation, we replace X by wt(X), which is a window into the sequence X centered at xt .
We will further assume, without loss of generality, that each window is unique, so there is only one
occurrence of wt(X) in each sequence X .

Proposition 1 The functional gradient of logP(Y |X) with respect to F v(u,wd(X)) is

∂ logP(Y |X)

∂Fv(u,wd(X))
= I(yd−1 = u,yd = v)−P(yd−1 = u,yd = v | wd(X)) ,

where I(yd−1 = u,yd = v) is 1 if the transition u → v is observed from position d−1 to position d in
the sequence Y and 0 otherwise, and where P(yd−1 = u,yd = v | wd(X)) is the predicted probability
of this transition according to the current potential functions.

To demonstrate this proposition, we must first introduce the forward-backward algorithm for
computing the normalizing constant Z(X). We will assume that yt takes the value ⊥ for t < 1.
Define the forward recursion by

α(k,1) = expFk(⊥,w1(X))

α(k, t) = ∑
k′

expFk(k′,wt(X)) ·α(k′, t −1) ,

and the backward recursion by

β(k,T ) = 1

β(k, t) = ∑
k′

expFk′(k,wt+1(X)) ·β(k′, t +1) .

The variables k and k′ iterate over the possible class labels. The normalizer Z(X) can be computed
at any position t as

Z(X) = ∑
k

α(k, t)β(k, t) .

If we unroll the α recursion one step, we can also write this as

Z(X) = ∑
k

[

∑
k′

α(k′, t −1) ·
[

expFk(k′,wt(X))
]

]

β(k, t) .

Table 2 shows the derivation of the functional gradient. In Equation 2, exactly one of the
Fyt (yt−1,wt(X)) terms will match Fv(u,wd(X)), because wd(X) is unique. This term will have
a derivative of 1, so we represent this by the indicator function I(yd−1 = u,yd = v). In Equation 3,
we expand Z(X) at position d using the forward-backward algorithm. Again because wd(X) is
unique, only the product where k′ = u and k = v will give a non-zero derivative, so this gives us
Equation 4. The right-hand expression in Equation 4 is precisely the joint probability that yd−1 = u
and yd = v given X . Q.E.D.

If wd(X) occurs more than once in X , each match contributes separately to the functional gradi-
ent.

This functional gradient has a very satisfying interpretation: It is our error on a probability scale.
If the transition u → v is observed in the training example, then the predicted probability P(u,v | X)
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∂ logP(Y |X)

∂Fv(u,wd(X))

=
∂

∂Fv(u,wd(X)) ∑
t

Fyt (yt−1,wt(X))− logZ(X)

= I(yd−1 = u,yd = v)−
∂ logZ(X)

∂Fv(u,wd(X))
(2)

= I(yd−1 = u,yd = v)−
1

Z(X)

∂Z(X)

∂Fv(u,wd(X))

= I(yd−1 = u,yd = v)−
1

Z(X)

∂
∂Fv(u,wd(X)) ∑

k

[

∑
k′

[

expFk(k′,wd(X))
]

·α(k′,d −1)

]

β(k,d) (3)

= I(yd−1 = u,yd = v)−
1

Z(X)
[expFv(u,wd(X))]α(u,d −1)β(v,d) (4)

= I(yd−1 = u,yd = v)−P(yd−1 = u,yd = v | X)

Table 2: Derivation of the functional gradient.

should be 1 in order to maximize the likelihood. If the transition is not observed, then the predicted
probability should be 0. Functional gradient ascent simply involves fitting regression trees to these
residuals.

The pseudo code for our gradient tree boosting algorithm is shown in Table 3. The potential
function for each class k is initialized to zero. Then M iterations of boosting are executed. In each
iteration, for each class k, a set S(k) of functional gradient training examples is generated. Each
example consists of a window wt(Xi) on the input sequence, a possible class label k′ at time t − 1,
and the target ∆ value. A regression tree having at most L leaves is fit to these training examples
to produce the function hm(k). This function is then added to the previous potential function to
produce the next function. In other words, we are setting the step size ηm = 1. We experimented
with performing a line search at this point to optimize ηm, but this is very expensive. So we rely on
the “self-correcting” property of tree boosting to correct any overshoot or undershoot on the next
iteration.

The sets of generated examples S(k) can become very large. For example, if we have 3 classes
and 100 training sequences of length 200, then the number of training examples for each class k is
3×100×200 = 60,000. Although regression tree algorithms are very fast, they still must consider
all of the training examples! Friedman (2001) suggests two tricks for speeding up the computation:
sampling and influence trimming. In sampling, a random sample of the training data is used for
training. In influence trimming, data points with ∆ values close to zero are ignored. We did not
apply either of these techniques in our experiments.

The most related work to ours is the virtual evidence boosting (VEB) algorithm developed by
Liao et al. (2007) for training CRFs. Both VEB and our approach use boosting for feature induction.
However, VEB is a “soft” version of maximum pseudo-likelihood training, where the observed
values of neighborhood labels are not used, but the probability distribution over neighborhood labels
is used as virtual evidence. Our approach is a true maximum log likelihood method that does not
depend on the pseudo-likelihood approximation. Another difference is that VEB only uses decision
stumps to induce simple features, while our approach uses regression trees to induce more complex
feature combinations.
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TREEBOOST(Data,L)
// Data = {(Xi,Yi) : i = 1, . . . ,N}
for each class k, initialize F k

0 (·, ·) = 0
for m = 1, . . . ,M

for class k from 1 to K
S(k) := GENERATEEXAMPLES(k,Data,Potm−1)

// where Potm−1 = {Fu
m−1 : u = 1, . . .K})

hm(k) := FITREGRESSIONTREE(S(k),L)
Fk

m := Fk
m−1 +hm(k)

end
end
return Fk

M for all k
end TREEBOOST

GENERATEEXAMPLES(k,Data,Potm)
S := {}
for example i from 1 to N

execute the forward-backward algorithm on (Xi,Yi)
to get α(k, t) and β(k, t) for all k and t

for t from 1 to Ti

for k′ from 1 to K
P(yi,t−1 = k′,yi,t = k | Xi) :=

α(k′, t −1)exp[Fk
m(k′,wt(Xi))]β(k, t)

Z(Xi)

∆(k,k′, i, t) := I(yi,t−1 = k′,yi,t = k)−
P(yi,t−1 = k′,yi,t = k | Xi)

insert ((wt(Xi),k′),∆(k,k′, i, t)) into S
end

end
end
return S
end GENERATEEXAMPLES

Table 3: Gradient tree boosting algorithm for CRFs.

5. Inference in CRFs

Once a CRF model has been trained, there are (at least) two possible ways to define a classifier
Y = H(X) for making predictions. First, we can predict the entire sequence Y that has the highest
probability:

H(X) = argmax
Y

P(Y |X) .
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This makes sense in applications, such as part-of-speech tagging, where the goal is to make a co-
herent sequential prediction. This can be computed by the Viterbi algorithm (Rabiner, 1989), which
has the advantage that it does not need to compute the normalizer Z(X).

The second way to make predictions is to individually predict each yt according to

Ht(X) = argmax
v

P(yt = v|X) ,

and then concatenate these individual predictions to obtain H(X). This makes sense in applications
where the goal is to maximize the number of individual yt’s correctly predicted, even if the resulting
predicted sequence Y is incoherent. For example, a predicted sequence of parts of speech might
not be grammatically legal, and yet it might maximize the number of individual words correctly
classified. P(yt |X) can be computed by executing the forward-backward algorithm as

P(yt |X) =
α(yt , t)β(yt , t)

Z(X)
.

6. Handling Missing Values in CRFs with Gradient Tree Boosting

In some problem settings (e.g., activity recognition, sensor networks), the problem of missing values
in the inputs can arise. The values of input features can be missing for a wide variety of reasons.
Sensors may break or the sensor data feed may be lost or corrupted. Alternatively, input observations
may not have been measured in all cases because, for example, they are expensive to obtain. Many
methods for handling missing values have been developed for standard supervised learning, but
many of them have not been tested on SSL problems. Recently, Sutton et al. (2006) used feature
bagging method to deal with SSL problems where highly indicative features may be missing in
the test data. A single CRF trained on all the features will be less robust, because the weights of
weaker features will be undertrained. Feature bagging method divides all the original features into
a collection of complementary and possibly overlapped feature subsets. Separate CRFs are trained
on each subset and then combined.

With gradient tree boosting, a CRF is represented as a forest of regression trees. There exist very
good methods for handing missing values when growing regression trees, which include instance
weighting method of C4.5 (Quinlan, 1993) and surrogate splitting of CART (Breiman et al., 1984).
An advantage of training CRFs with gradient tree boosting is that these missing values methods can
be used directly in the process of generating regression trees over the functional gradient training
examples.

6.1 Instance Weighting

The instance weighting method (Quinlan, 1993), also known as “proportional distribution”, assigns
a weight to each training example, and all splitting decisions are based on weighted statistics. Ini-
tially, each example has a weight of 1.0. When selecting a feature to split on, each boolean feature
x j is evaluated based on the expected weighted squared error of the split using only the training
examples for which x j is not missing. The best feature x j∗ is chosen, and the training examples for
which x j∗ is not missing are sent to the appropriate child node. Suppose that nle f t examples are sent
to the left child and nright examples are sent to the right child. The remaining training examples
(i.e., those for which x j∗ is missing) are sent to both children, but with reduced weight. The weight
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of each example sent to the left child is multiplied by nle f t/(nle f t +nright). Similarly, the weight of
each example sent to the right child is multiplied by nright/(nle f t +nright).

At test time, when the test example reaches the test on feature x j∗, if the feature value is present,
then the example is routed left or right in the usual way. But if x j∗ is missing, then the example is
sent to both children (recursively). Let ŷle f t be the predicted value computed by the left subtree and
ŷright be the predicted value computed by the right subtree. Then the value predicted by node j∗ is
the weighted average of these predictions:

ŷ =
nle f t ŷle f t +nright ŷright

nle f t +nright
.

Instance weighting assumes that the training and test examples missing x j∗ will on average behave
exactly like the training examples for which x j∗ is not missing.

6.2 Surrogate Splitting

The surrogate splitting method (Breiman et al., 1984) involves separate procedures during training
and testing. During training, as the regression tree is being constructed (in the usual top-down,
greedy way), the key step in the learning algorithm is to choose which feature to split on. Each
boolean feature x j is evaluated based only on the training examples that have non-missing values
for that feature, and the best feature, x j∗ is chosen. Each of the remaining features j′ 6= j∗ is then
evaluated to determine how accurately it can predict the value of x j∗, and the features are sorted
according to their predictive power. This sorted list of features, called the surrogate splits, is stored
in the node.

At test time, when test example x is processed through the regression tree, if x j∗ is not missing,
then the example is processed as usual by sending it to the left child if x j∗ is false and to the right
child if x j∗ is true. However if x j∗ is missing, then surrogate split features are examined in order
until a feature j′ is found that is not missing. The value of this feature determines whether to branch
left or right.

7. Experimental Results

We implemented gradient tree boosting algorithm for CRFs and compared it to McCallum’s Mal-
let system (McCallum, 2002) on several data sets. We call our algorithm TREECRF. We use
TREECRF-FB for the TREECRF with forward-backward predictions and TREECRF-V for the
TREECRF with Viterbi predictions. MALLET denotes the Mallet package with McCallum’s feature
induction algorithm (McCallum, 2003) turned on. Similarly, we use MALLET-FB and MALLET-V
for the MALLET with forward-backward predictions and Viterbi predictions respectively. We also
used the Mallet package to train standard CRFs without feature induction. We call it BASELINE,
which serves as the baseline method. As before, BASELINE-FB donotes BASELINE with forward-
backward predictions and BASELINE-V denotes BASELINE with Viterbi predictions. Note that
MALLET-FB algorithm and BASELINE-FB algorithm are not implemented in the original Mallet
package. Instead we implemented them ourselves.

TREECRF, MALLET and BASELINE have parameters that must be set by the user. For all these
algorithms, the user must set (a) the window size, (b) the order of the Markov model, which is
set to be 1 in our experiments, and (c) the number of iterations to train. For TREECRF, the only
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additional parameter is either the maximum number of leaves L in the regression trees using the best-
first version of CART, or the regularization constant λ for the shrinkage alternative. For MALLET,
the parameters are (a) the regularization penalty for squared weights (called the variance), (b) the
number of iterations between feature inductions (kept constant at 8), (c) the number of features
to add per feature induction (kept constant at 500), (d) the true label probability threshold (kept
constant at 0.95), (e) the training proportions (kept constant at 0.2, 0.5, and 0.8). For BASELINE,
the only additional parameter is the variance as in MALLET. Except for the variance, we kept
all of MALLET’s parameters fixed at the values recommended by Andrew McCallum (personal
communication). We did not optimize the window size, but instead employed values that have been
used in previous studies. The chosen sizes are given in the following section. To set the remaining
parameters, we manually tried the following settings and chose the setting that gave the best internal
cross-validation performance:

• Number of leaves in regression trees: 30, 50, 75, 100,

• TreeCRF regularization constant: 0, 5, 10, 20, 40, 80,

• Weight variance prior in Mallet package: 1, 5, 10, 20.

Throughout the experiments, we measured the performance by computing the prediction accu-
racy of individual labels, rather than individual sequences. McNemar’s test is employed to assess
the statistical significance of these results.

7.1 Data Sets

Protein Secondary Structure Benchmark (Qian and Sejnowski, 1988). Each observation se-
quence is a string of amino acid residues, and the corresponding output sequence is a string over the
3-letter alphabet {α,β,γ}, where α indicates alpha helix, β indicates a beta sheet or beta turn, and
γ indicates all other secondary structure types. There are 20 possible amino acid residues, and we
represent each residue by a set of 20 indicator variables. There is a training set of 111 sequences
and a test set of 17 sequences. An 11-residue sliding window is used in our experiments.

NETtalk Data Set. The original NETtalk task (Sejnowski and Rosenberg, 1987) is to assign
a combination of phoneme and stress to each letter of the word so that the word is pronounced
correctly. However, there are 140 legal phone-stress combinations, which gives a very large label
space. Neither TREECRF nor MALLET is sufficient enough to work with such a large label space.
Hence, we chose to study only the problem of assigning one of five possible stress labels to each
letter. The labels are ‘2’ (strong stress), ‘1’ (medium stress), ‘0’ (light stress), ’<’ (unstressed
consonant, center of syllable to the left), and ‘>’ (unstressed consonant, center of syllable to the
right).

Each input sequence is an English word, a string of letters over the 26 letter alphabet. Each
input observation is represented by 26 boolean indicator variables. There are 1000 training words
and 1000 test words in our standard training and test sets. We employed a window size of 13
(window width of 6).

Hyphenation Data Set. The hyphenation task is to insert hyphens into words at points where
it is legal to break a word for a new line. This problem appears widely in many word processing
programs. The input sequences are English words, encoded as for the NETtalk task. The output
class label has only two values to indicate whether or not a hyphen may legally follow the current
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TREECRF-FB TREECRF-V
Shrinkage Original Shrinkage Original

Protein 64.52** 62.70 62.05*** 59.20
NETtalk 85.18*** 84.08 85.20*** 84.18
Hyphen 92.20 92.20 91.76 92.07

FAQ ai-general 95.65 95.69 95.72 96.02***
FAQ ai-neural 99.02 98.97 99.20*** 99.05

FAQ aix 94.00 94.02 95.26* 95.15

Table 4: Performance comparison of TREECRF with different regression tree fitting algorithms. En-
tries marked with one or more stars are statistically significantly better than the alternative method.
Specifically, * means p < 0.025, ** means p < 0.005 and *** means p < 0.001 according to Mc-
Nemar’s test.

letter. We manually constructed a training set of 1951 words and a test set of 908 words. The input
window size is set to be 6 (i.e., 3 letters on either side of the potential hyphen location).

Usenet FAQs Data Sets. Each of the FAQ data sets consists of Frequently Asked Questions
files for a Usenet newsgroup (McCallum et al., 2000). The FAQs for each newsgroup are divided in
separate files: ai-general has 7 files, ai-neural has 7 files, and aix has 5 files. Every line of an FAQ
file is labeled as either part of the header, a question, an answer, or part of the tail. Hence, each
xt consists of a line in the FAQ file, and the corresponding yt ∈ {header, question, answer, tail}.
The measure of accuracy is the number of individual lines correctly classified. McCallum provided
us with the definitions of 20 features for each line xt . We made a slight correction to one of the
features, so our results are not directly comparable to his. The size of the sliding window used here
is 1. For each newsgroup, performance was measured by leave-1-out cross-validation: the CRF was
trained on all-but-one of the files and tested on the remaining file. This was repeated with each file,
and the results averaged.

7.2 Performance of Shrinkage in Regression Tree Generation

To evaluate the effectiveness of shrinkage in the regression tree fitting algorithm, we fixed L, the
maximum number of leaves in regression trees, to be 100, and applied internal cross-validation to
choose the best regularization constant λ. For purposes of comparison, we also implemented the
original best-first regression tree generation algorithm. Internal cross-validation was employed to
select the best value for L.

We ran these two implementations of TREECRF on each data set. The best performance of
both forward-backward predictions and Viterbi predictions are reported as percentages, as shown
in Table 4. There are 12 pairs of comparisons (6 data sets with 2 prediction algorithms). In six of
them, TREECRF with shrinkage does statistically better than TreeCRF without shrinkage. In five of
them, the performance of these two versions of TREECRF is statistically indistinguishable. In only
one of them, TREECRF without shrinkage does statistically better than TREECRF with shrinkage.
Based on the results of these experiments, we decided to only employ TREECRF with shrinkage in
the remaining experiments.
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Protein NETtalk Hyphen FAQ ai-general FAQ ai-neural FAQ aix

TREECRF 64.52* 85.20** 92.20** 95.65 ** 99.20** 95.26**
Accuracy (%) MALLET 64.43* 85.94** 92.10** 92.70 99.31* 95.28**

BASELINE 62.44 82.81 88.86 92.70 99.41 94.04

Cumulative TREECRF 419.6 454.6 39.2 3921.9 2177.7 2636.1
CPU MALLET 786.9 941.4 66.4 484.1 237.2 125.5

Seconds BASELINE 32.8 13.7 8.8 63.0 40.3 34.1

TREECRF 142 169 58 214 84 158
Iterations MALLET 123 167 69 188 181 150

BASELINE 66 34 47 128–195 72–112 80–140

Table 5: Performance of TREECRF, MALLET, and BASELINE on each data set. Entries marked
with one or more stars are statistically significant than BASELINE. Specifically, * means p < 0.005,
** means p < 0.001 according to McNemar’s test. Bolded numbers indicate the statistically better
prediction accuracy between TREECRF and MALLET. The BASELINE method stops training if the
optimization of loss functions converges. So for each FAQ data set, different training set may have
different number of training iterations. Here we gave out the range of number of training iterations
for each FAQ data set.

7.3 Comparison between TREECRF and MALLET

TREECRF and MALLET are the two leading CRF training methods that have feature induction
capability. Here we compare the prediction accuracy and training speed of these two methods on
each available data set. We also compare TREECRF and MALLET with the BASELINE method.
For each method, internal cross-validation is applied to select the parameters that give the best
performance of both forward-backward predictions and Viterbi predictions. The results reported
here for each method are based on the prediction algorithm that gives higher prediction accuracy.
All experiments were run on machines with 2.4 GHz Intel Xeon processors, 512KB cache, and 4GB
memory.

Prediction Accuracy. Table 5 summarizes the prediction accuracy of TREECRF, MALLET,
and BASELINE on each data set. McNemar’s tests show that on four of the data sets, that is, protein,
hyphen, FAQ ai-neural and FAQ aix, the difference between the prediction accuracy of TREECRF
and MALLET is not statistically significant. On the FAQ ai-general data set, the prediction accuracy
of TREECRF is statistically better than that of MALLET(p < 0.001). Only on the NETtalk data set
is the prediction accuracy of MALLET statistically better than that of TREECRF (p < 0.05). In com-
parison with the baseline method, the prediction accuracy of TREECRF and MALLET is statistically
better than that of BASELINE in most cases. On the FAQ ai-general data set, the difference between
MALLET and BASELINE is not statistically significant. Only on the FAQ ai-neural data set is the
prediction accuracy of BASELINE statistically better than that of both TREECRF and MALLET.

Figure 1 plots the prediction accuracy of TREECRF, MALLET and BASELINE as a function of
the number of training iterations. One worrying aspect of MALLET is that the performance curve
exhibits a high degree of fluctuation, which is clearly shown on Figure 1a, 1d, 1e and 1f. This is
presumably due to the effect of introducing new features. But it also suggests that it will be difficult
to find the optimal stopping points for avoiding overfitting.

Training Speed. It is difficult to directly compare the CPU time of these two methods, because
TREECRF is written in C++ while MALLET is written in Java. However, comparing the CPU time
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Figure 1: Comparison of prediction accuracy on each data set.
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Figure 2: Comparison of cumulative CPU time on each data set.
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Data Average Number of Forward-Backward Seconds Feature Induction Seconds
Set Length Features TREECRF MALLET TREECRF MALLET

Protein 163 231 1.493 0.736 1.433 48.889
NETtalk 7 351 0.622 0.589 2.049 25.983
Hyphen 6 162 0.324 0.307 0.332 4.621

FAQ ai-general 1580 20 18.927 0.780 1.562 1.211
FAQ ai-neural 1832 20 26.998 0.526 1.894 1.656

FAQ aix 1806 20 16.658 0.352 1.199 1.123

Table 6: Comparison of average CPU seconds spent per iteration on forward-backward algorithm
and feature induction algorithm in TREECRF and MALLET for each data set.

on different data sets can still give us some insight into the properties of these two methods. Figure 2
shows the number of cumulative CPU seconds consumed by these two methods on each data set.
First, we can see that TREECRF scales linearly in the number of training iterations, because the
cumulative CPU time has a constant slope. This makes sense, because for each potential function,
only one regression tree is generated in each training iteration. Regression tree evaluations from
previous iterations are cached so that they do not need to be re-evaluated. Without caching, the
cumulative CPU curves for TREECRF would rise quadratically. Second, as shown in Figure 2a, 2b
and 2c, TREECRF runs faster than MALLET on protein, NETtalk and hyphen data sets. But it is
much slower than MALLET on FAQ data sets as shown in Figure 2d, 2e and 2f. The actual time
required for each method to reach its peak performance on each data set is given in Table 5. Again
we see that on the protein, NETtalk, and hyphen data sets, the time required for MALLET to reach
its peak performance is about twice that of TREECRF. However, on the FAQ data sets, the time
required for TREECRF to reach its peak performance is about 10-20 times more than for MALLET.
BASELINE is faster than both TREECRF and MALLET as shown in Figure 2 and Table 5.

Analysis and Discussion. We can explain the training speed difference between TREECRF and
MALLET by examining the details of these two methods. In both of them, most of the CPU time is
spent on two major computations: forward-backward inference and feature induction/tree growing.
The relative proportion of these two computations varies from problem to problem. To measure
this, we instrumented both TREECRF and MALLET to track the amount of CPU time spent on each
of these two computations. Table 6 shows that on domains with short sequences (Protein, NETtalk,
and Hyphen), the time spent by both algorithms on forward-backward inference is about the same.
But for domains with very long sequences, TREECRF consumes much more CPU time in forward-
backward inference. Conversely, in domains with a small number of basic features (the FAQ data
sets), the two methods consume roughly the same amount of CPU time in feature induction. But in
domains with a large number of basic features, TREECRF is much more efficient than MALLET.

Why would the forward-backward cost of TREECRF be larger than for MALLET? TREECRF
and MALLET use almost the same implementation of forward-backward algorithm except that in
TREECRF the values of the potential functions at each position of the sequences are computed by
evaluating the gradient regression trees generated in the current training iteration, while in MALLET

those values are obtained by computing dot products of vectors, which is faster than tree evaluation.
We hypothesize that the regression trees are more expensive to evaluate, not only because dot prod-

2130



GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

ucts are easier to compute than tree evaluations, but also possibly because of the reduced memory
locality of regression trees.

Why would feature induction be more expensive in MALLET? In each feature induction it-
eration, MALLET considers conjoining all of the basic features to each of the existing compound
features. Hence, if there are n basic features and C compound features, this costs nC. Furthermore,
C grows over time, so the cost of feature induction gradually increases. In the cumulative CPU time
plots of Figure 2, the “steps’ in the “staircase” correspond to the feature induction iterations. In
TREECRF, the cost of feature induction is the cost of growing a regression tree, which depends on
the number of basic features n and the number of internal nodes in the tree L. This cost is nL, which
remains constant across the iterations.

To verify our conjectures about the computational complexity of TREECRF and MALLET, we
generated synthetic training data sets using a hidden Markov model (HMM) with 3 labels {l1, l2, l3}
and 24 possible observations {o1, . . . ,o24}. To specify the observation distribution, for each label li,
we randomly draw an observation from the set {oi∗8−7, . . . ,oi∗8} with probability 0.6 and randomly
draw an observation from the complement of this set with probability 0.4. The transition distribution
is defined as P(yt = li | yt−1 = li) = 0.6 and P(yt = l j | yt−1 = li) = 0.2 if i 6= j.

In order to measure the complexity of the forward-backward algorithm, we tried sequence
lengths of 10, 20, 40, 80, 160 and 320. For each sequence length, we generated a training data
set with 100 sequences and employed a sliding window of size 3. TREECRF and MALLET are run
on each of these training data sets. Figure 3a shows the average CPU seconds spent per iteration
on the forward-backward algorithm by these two methods. We see that the forward-backward algo-
rithm in TREECRF implementation scales faster than that in MALLET implementation as the length
of sequence increases.

In order to measure the complexity of the feature induction algorithms, we generated a training
data set with 100 sequences. The length of each sequences is 100. We tried sliding window sizes of
3, 5, 7, 9 and 11, so that the number of input features at each sequence position takes the values of
75, 125, 175, 225 and 275 (because each input observation is represented by 25 boolean indicator
variables). TREECRF and MALLET are run for each sliding window size. Figure 3b shows the
average CPU seconds spent per iteration on the feature induction algorithm by these two methods.
It is clear that the feature induction algorithm in MALLET spends more and more CPU time than
that in TREECRF as the number of basic features increases. In all the experiments on synthetic data
sets, TREECRF uses regression trees of maximum 100 leaves and shrinkage constant 40. MALLET

uses weight variance prior 20.

This analysis suggests that the performance of TREECRF could be improved by “flattening” the
ensemble of regression trees to compute the corresponding vector of features and vector of weights.
Then the cost of potential function evaluations would be similar to that of MALLET, and we would
have a method that was faster than both the current TREECRF and MALLET implementations.

7.4 Experimental Studies of Missing Values in TREECRF

We performed a series of experiments to evaluate the effectiveness of methods for handling missing
values in TREECRF algorithm. In addition to the instance weighting and surrogate splitting methods
described above, we also studied two simpler methods: imputation and indicator features. Let
xt j, j = 1, . . . ,n be the input features describing a particular input observation xt . Imputation and
indicator features are defined as follows:
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Figure 3: Comparison of average CPU seconds spent per iteration on forward-backward algorithms
and feature induction algorithms by TREECRF and MALLET.

Imputation: when a feature value xt j is missing, it is replaced with the most common value for
x j in the training data among those feature values that are not missing. This strategy can be
viewed as substituting the most likely value of x j a priori or alternatively as substituting the
value of x j least likely to be informative.

Indicator Features: a boolean feature x̃t j is introduced for each feature xt j such that if xt j is
present, x̃t j is false. But if xt j is missing, then x̃t j is true and xt j is set to a fixed chosen
value, typically 0. Indicator features make sense when the fact that a value is missing is itself
informative. For example, if xt j represents a temperature reading, it may be that extremely
cold temperature values tend to be missing because of sensor failure.

We adopted a first-order Markov model in all the following experiments and employed an in-
ternal hold-out method to set the other parameters: Two-thirds of the original training set was used
as sub-training set and the other one third was used as development set to choose parameter values.
Final training was performed using the entire training set.

For each learning problem, we took the chosen training and test sets and inject missing values at
rates of 5%, 10%, 20% and 40%. For a given missing rate, we generate five versions of the training
set and five versions of the test set. A CRF is then trained on each of the training sets and evaluated
on each of the test sets (for a total of 5 CRFs and 25 evaluations per missing rate). The label
sequences are predicted by the forward-backward algorithm (i.e., we compute ŷt = argmaxyt

P(yt |X)
for each t separately). Prediction accuracy is based on the number of individual labels correctly
predicted in the label sequences. The final prediction accuracy is the average of all 25 cases.

To test the statistical significance of the differences among the four methods, we performed an
analysis of deviance based on the generalized linear model discussed by Agresti (1996). We fit a
logistic regression model

log
P(yt = ŷt)

1−P(yt = ŷt)
= δ1m1 +δ2m2 +δ3m3 +∑̀σ`S` ,
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Figure 4: Performance of missing values methods for different missing rates.

where m1, m2, and m3 are boolean indicator variables that specify which missing values method we
are using and the S`’s are indicator variables that specify which of the five training sets we are using.
If m1 = m2 = m3 = 0, then we are using instance weighting, which serves as our baseline method.
If m1 = 1, this indicates surrogate splitting, m2 = 1 indicates imputation, and m3 = 1 indicates the
indicator feature method. Consequently, the fitted coefficients δ1, δ2, and δ3 indicate the change in
log odds (relative to the baseline) resulting from using each of these missing values methods. We
can then test the hypothesis δi 6= 0 against the null hypothesis δi = 0 to determine whether missing
values method i is different from the baseline method.

This statistical approach controls for variability due to the choice of the training set (through the
σ`’s) and variability due to the size of the test set.

Protein Secondary Structure Prediction. Figure 4a shows that instance weighting achieves
the best prediction accuracy for each of the different missing rates. Table 7a shows that the base line
missing values method, instance weighting, is statistically better than the other three missing values
methods in most cases. In other cases, it is as good as other methods.
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Missing Surrogate Indicator
rate splitting Imputation feature
5% −0.018 −0.072* −0.028*
10% −0.013 −0.040* 0.001
20% −0.025* −0.074* −0.020*
40% −0.041* −0.072* −0.020*

(a) Protein

Missing Surrogate Indicator
rate splitting Imputation feature
5% −0.051* −0.066* −0.064*
10% −0.051* −0.067* −0.059*
20% −0.069* −0.057* −0.052*
40% −0.080* −0.116* −0.111*

(b) NETtalk

Missing Surrogate Indicator
rate splitting Imputation feature
5% 0.036* 0.007 0.023
10% −0.031* −0.022 −0.027*
20% −0.071* −0.049* −0.040*
40% −0.024* −0.054* −0.047*

(c) Hyphen

Missing Instance Surrogate Indicator
rate weighting splitting feature
5% −8.824E−16 −0.043 −1.499*

10% −2.161* −1.867* −1.961*
20% −0.874* 0.072 0.100
40% −1.243* −0.584* −0.359*

(d) FAQ ai-general

Table 7: Estimation of the coefficients corresponding to different missing values methods and statis-
tical test results. In FAQ ai-general problem, imputation was the baseline method, so the coefficient
values give the log odds of the change in accuracy relative to imputation. * means that the parameter
value is statistically significantly different from zero (p < 0.05).

NETtalk Stress Prediction. In Figure 4b, we see that instance weighting does better than the
other three missing values methods for all the different missing rates. The statistical tests reported
in Table 7b show that the baseline method, instance weighting, is statistically better than each of the
other missing value methods in all cases.

Hyphenation. Figure 4c shows that instance weighting is the best missing values method except
for a missing rate of 5%. Statistical tests shown in Table 7c tell us that for missing rate of 5%,
surrogate splitting is the best missing values method and the other three methods are not statistically
significantly different from each other. For a missing rate of 10%, instance weighting and imputation
are statistically better than the other two methods (and indistinguishable from each other). For
missing rates of 20% and 40%, instance weighting is statistically better than the other three methods.

FAQ Document Segmentation. This task is based on the ai-general Usenet FAQ data set as
we discussed before. We treat the first 6 files as the training set and the seventh file as the test set.
The input window contains only the features corresponding to a single line in the file (window half-
width of 0). Unlike in the previous data sets, instance weighting is no longer the best missing values
method, as shown in Figure 4d. Instead, imputation performs very well for various missing value
rates. Table 7d shows that imputation is statistically the best missing values method. For missing
rates of 10% and 40%, it is statistically better than the other three methods. For a missing rate of
5%, it does as well as instance weighting and surrogate splitting. For a missing rate of 20%, it does
as well as surrogate splitting and indicator features.

Analysis and Discussion. The four missing values methods are based on different assump-
tions about the input data. Imputation assumes that the most frequent value of a feature is the least
informative and therefore presents the lowest risk of introducing errors into the learning process.
Missing values are injected prior to converting the input features to binary. Hence, in the protein
data set, missing values are introduced by choosing an amino acid residue position in the observa-
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Figure 5: Fraction of the time that each FAQ feature is true (versus false). Features 1, 3, 4, 7, 8, 10,
11, 12, 16, 18, and 20 are rarely true.

tion sequence and setting all 20 boolean indicator features that represent that position to missing.
Similarly, in the NETtalk and hyphenation problems, a letter is made to be missing by setting all 26
indicator features for that letter to missing. Similarly, imputation is computed at the amino acid or
letter level, not at the level of boolean features. However, in the Usenet FAQ data set, since the bi-
nary features are not exclusive, imputation is computed at the level of boolean features. In the case
of protein sequences, imputation will replace missing values with the most frequently-occurring
amino acid, which is alanine, code ‘A’. Alanine tends to form alpha helices, so this may cause the
learning algorithms to over-predict the helix class, which may explain why imputation performed
worst on the protein data set. In the case of English words, the most common letter is ‘E’, and it does
not carry much information either about pronunciation or about hyphenation, so this may explain
why imputation worked well in the NETtalk and hyphenation problems. Finally, in the ai-general
FAQ data set, most of the features exhibit a highly skewed distribution, so that one feature value is
much more common than another, as shown in Figure 5. Hence, in most cases, imputation with the
most common feature value will supply the correct missing value. This may be why it worked best
on that data set.

The indicator feature approach is based on the assumption that the presence or absence of a
feature is meaningful (e.g., in medicine, a feature could be missing because a physician explicitly
chose not to measure it). Because features were marked as missing completely at random, this is not
true, so the indicator feature carries no positive information about the class label. However, in cases
where imputation causes problems, the indicator feature approach may help prevent those problems
by being more neutral. The learning algorithm can learn that if the indicator feature is set, then the
actual feature value should be ignored. This may explain why the indicator feature method works
slightly better in most cases than the imputation method.
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The surrogate splitting method assumes that the input features are correlated with one another,
so that if one feature is missing, its value can be computed from another feature. The protein,
NETtalk, and hyphenation data sets have a single input feature for each amino acid or letter. Hence,
if this input feature is missing, then there is no information about that position in the sequence. The
only exception to this would be if there were strong correlations between successive amino acids
or letters. However, such strong correlations do not exist much either in protein sequences or in
English, with the possible exception of the letter ‘q’, which is always followed by ‘u’. Note that the
converse is not true: ‘u’ is not always preceded by ‘q’. Based on these considerations, we would
not expect surrogate splitting to work well in these domains, and it does not.

In the FAQ data set, each line is described by 20 features computed from the words in that line.
In the experiment, each of these 20 features could be independently marked as missing, which is a
bit unrealistic, since presumably the real missing values would involve some loss or corruption of
the words making up the line, and this would affect multiple features. The 20 features do have some
redundancy, so we would expect that surrogate splitting should work well, and it does for 5% and
20% missing rates.

The instance weighting method assumes that the feature values are missing at random and that
the other features provide no redundant information, so the most sensible thing to do is to marginal-
ize away the uncertainty about the missing values. Our experiments show that this is a very good
strategy in all cases except for the FAQ data set, where the features are somewhat redundant.

8. Conclusions

In this paper, we presented TREECRF, a novel method for training conditional random fields based
on gradient tree boosting. TREECRF has the ability to construct very complex feature conjunctions
from basic features and scales much better than methods based on iterative scaling and simple
gradient descent. It appears to match the L-BFGS algorithm implemented in MALLET, which also
gives dramatic speedups when there are many potential features. In our experiments, TREECRF
is as accurate as MALLET on four data sets, more accurate on one data set and less accurate on
one data set. Its feature induction method is faster than that of MALLET for problems with a large
number of features. But its forward-backward implementation is slower than that of MALLET for
really long sequences. In addition, TREECRF is easier to implement and tune. It introduces only
one tunable parameter (either the maximum number of leaves permitted in each regression tree or
the regularization constant), whereas MALLET has many more parameters to consider. It is easier
for the TREECRF to find the optimal stopping point to avoid overfitting, since its performance
improves smoothly, while that of MALLET fluctuates wildly. Combining the benefit of these two
methods will be a promising direction to pursue.

TREECRF also provides us with extra ability to handle missing data with instance weighting
and surrogate splitting methods, which are not available in MALLET and other CRF training algo-
rithms. The experiments suggest that when the feature values are missing at random, the instance
weighting approach works very well. In the one domain where instance weighting did not work
well, imputation was the best method. The indicator feature method was also very robust. The
method of surrogate splitting was the most expensive method to run and the least accurate. Hence,
we do not recommend using surrogate splits with conditional random fields. The good perfor-
mance of the indicator features and imputation methods is encouraging, because these methods can
be applied with all known methods for sequential supervised learning, not only with gradient tree

2136



GRADIENT TREE BOOSTING FOR TRAINING CONDITIONAL RANDOM FIELDS

boosting. Since there is no one best method for handling missing values, as with many other aspects
of machine learning, preliminary experiments on subsets of the training data are required to select
the most appropriate method.
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