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Abstract:

Test incorporation is a program transformation in which a generate-and-test
problem solver is improved by moving information out of the test and into the
generator. This paper sketches a theory of problem solving based on test incor-
poration. Two views of test incorporation are presented: (a) as a compile-time
algorithm optimization and (b) as a run-time problem-solving method. The
paper focuses on the latter, which is termed the “algebraic view,” because it is
often the case that test incorporations can be applied to “solve” for the desired
answer thus eliminating any need to generate and test possible answers. The
theory introduces an infinite tower of meta-level problem solvers, each of which
has the task of improving the performance (via test incorporation) of all of
the problem solvers “below” it. This infinite tower can neither be constructed
in principle nor in practice, but it provides a kind of infinite-series expansion
of any given problem solver. Several familiar Al methods are reconstructed
as “residual” problem solvers—the remnants of the infinite tower of problem
solvers after the meta-level problem solvers have done their tasks and been
“compiled away.” The test incorporation process is a means by which knowl-
edge is effectively exploited to yield efficient performance. This observation
leads naturally to a definition of “intelligence” as the ability to perform test
incorporations. It is asserted that any intelligent system must have some ability
to perform test incorporations, and test incorporation methods will be critical
to the development of generally intelligent systems.



1 Introduction

Test incorporation is a program transformation that can be applied to generate-and-test problem
solvers to improve their performance. The basic notion is familiar to all programmers. Rather than
generating a set of candidates and then filtering them to eliminate non-solutions, it is often possible
to modify the generator of candidates so that some of the conditions in the “test” are automatically
satisfied. Ideally, all of the test information can be “incorporated” into the generator. The result
is an algorithm that directly computes the solutions.

Test incorporation is a very attractive program transformation for several reasons. First, it is
incremental. Hence, it allows us to gradually improve algorithms, and it can be applied to discover
new algorithms (see Tappel, 1980). Second, it is performance-aligned—that is, it always improves
(or at least does not degrade) the performance of the algorithm, and this performance improvement
is easy to compute. Third, it affects program modifiability. As long as the test is a separate part
of the problem solver, it is easy to modify the problem solver to solve a different problem. If the
generator is generating a sufliciently large set of candidates, we can simply change the test to select
different solutions. However, after test incorporation, the separation between generator and test is
lost, and the problem solver is harder to modify (see Newell, 1969). Finally, test incorporation is
knowledge-aligned. Test incorporation can be viewed as the transfer of knowledge out of the “test”
and into the “generator.” Hence, test incorporation is a fundamental way in which knowledge
comes to be effectively applied in problem solving.

The purpose of this paper is to sketch a theory of Al problem solving methods based on the
idea of test incorporation. We begin by presenting a simple example of the application of test
incorporations to develop an efficient algorithm. This can be viewed as a kind of knowledge com-
piling process in which domain knowledge in the “test” is compiled into the “generator.” Several
issues arise here including the need to factor the generator and the test and the need to exploit
additional domain knowledge during algorithm design. We will show that not all algorithms can
be constructed via a sequence of test incorporations.

In order to extend test incorporation theory, we must shift our view of incorporation as a kind
of compile-time program transformation and instead view it as a form of problem solving activity
itself. This leads us to consider test incorporation as a kind of algebraic simplification of the
problem solver. It permits us to derive a wider class of Al methods including means-ends analysis,
data-driven algorithms, and goal-driven algorithms. However, it also raises the issue of how test
incorporations are performed.

In the third section of the paper, we resolve this question by describing a meta-level Incor-
poration Problem Solver (IPS) whose task is to improve a base-level problem solver. The IPS
searches a space of possible improved base-level problem solvers, looking for the most efficient one.
Test incorporations provide a set of operators for moving around in this space. A straight-forward
implementation of the IPS simply pursues a greedy (hill-climbing) strategy.

One concern about the IPS is that, although it is improving the base level problem solver, it
may consume so much time itself that the overall problem solving process is slowed rather than
accelerated. This concern leads us to consider a meta-IPS whose task is to improve the combined
efficiency of the IPS and the base-level problem solver. The meta-IPS modifies the IPS so that it
does not perform incorporations unless the cost of carrying out those incorporations is offset by the
improved performance of the base-level problem solver.

In general, our analysis proposes an infinite tower of meta-level problem solvers, each of which
has the task of improving all of the levels below it. In practice, this infinite tower is never con-
structed, but it provides us with a kind of “series expansion” of an ideal Al problem solving system.
Particular systems can be viewed as “truncated” approximations to this infinite series.
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Figure 1: Naive generate-and-test algorithm for full brothers

Finally, this paper concludes with a discussion of the role of test incorporation theory in de-
veloping a theory of intelligence. Briefly, intelligent behavior has two fundamental requirements:
knowledge and the means to effectively apply that knowledge. A generate-and-test problem solver
contains in its test all of the knowledge needed to solve the problem. Intelligence consists of the
process by which this knowledge is converted into effective action. In short, intelligence is the
process of test incorporation.

2 An example of test incorporation

Consider the following problem. A problem solver contains a family tree database in which facts of
the form Parent(z,y) (z is a parent of y) and Sex(z,s) (the sex of z is s) are stored. The task of
the problem solver is to find all pairs of full brothers. In formal terms, the task is to find all pairs
(z,y) such that

dm, f Sex(x,male) A Sex(y, male) A Parent(m,z) A Parent(m,y)A
Parent(f,z) A Parent(f,y) \m # fAz #y

In other words, the program must find two distinct individuals (the mother m and father f) such
that each is a parent of both = and .

We can imagine a wide variety of algorithms for solving this problem. The most elementary
algorithm (shown in Figure 1) would generate four-tuples of the form (z,y, m, f) and then verify
that the indicated relationships hold. The simplicity (and inefficiency) of this algorithm leads us
to call it the naive generate-and-test algorithm.

The naive generate-and-test algorithm uses virtually all of its knowledge about the problem as
its “test.” The generator simply enumerates all known four-tuples of objects. Test incorporation is
the process of incorporating some of the test knowledge into the generator.

For example, suppose that our database representation is capable of generating the set of all z
such that Sex(x, male). In that case, we can incorporate this test into the generator and produce
four-tuples (x,y, m, f) where each z is guaranteed to be a male (see Figure 2). We no longer need
to test the sex of z in the test part. More importantly, there is a combinatorial time savings because
we do not bother to construct four-tuples containing x values that are not males. Hence, we don’t
waste time testing any of the other properties (such as Parent(f,y)) on any of these tuples.

A more powerful kind of test incorporation can be performed by cascading generators. For ex-
ample, suppose that the database is also capable of generating the set of all f such that Parent(f,z)
given a specific value for #. Then we can incorporate the Parent(f,z) test into the generator by
first generating all @ such that Sexz(z,male) and then using these x values to generate all of the



Sex(z, male) Sex(y, male)

ParentEm, x

Yy

Parent(m,y
ParentEf, xg —
v Parent(f,y (z,y)
/ m f
Ym TFy

Figure 2: Incorporating Sex(xz, male) into the generator

Sex(y, male)

Parent(m, x
=) Parent(f, ) & f) ParentEm,yg

Sex(z, male) (v fom) Paren;(}f, y) W
b b b m b
ym v #y
vy

Figure 3: Cascading two generators

parents f of z (see Figure 3). This is a tremendous improvement because we are using parts of
the “test” to incrementally construct the desired solution. This strategy of problem solving is
sometimes called “seed growth,” because we start with a seed (2) and use it to directly compute
additional parts of the solution, gradually growing it into a complete four-tuple.!

If we can incorporate Parent(f, ), we can certainly incorporate Parent(m,z) in the same way
to generate all tuples of the form (z, f, m) that automatically satisfy the properties Sex(z, male) A
Parent(f,z) A Parent(m,z). This produces the algorithm of Figure 4.

The next incorporation is very interesting. Whenever we want to generate pairs of distinct
objects (i.e., f and m such that m # f) from a set, we can employ what might be called a triangle

!The island-driving technique developed in HEARSAY-II is another example of a seed growth algorithm.
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Sex(x,male)T Parent(p, x) Parent(f,y)
C @)

Sex(y, male)
Parent(m,y) ——

(z,y, f,m) TFY (z,9)

Figure 5: Final generator for finding all brothers

generator. We can incorporate the constraint m # f by using only one generator of parents,
Parent(p,z), and remembering all of the parents that have been generated thus far. When each
new parent p is generated, we consider all of the previously generated parents p’ and produce pairs
of the form (p,p’). Here is the code for this triangle generator:

memory := nil

for p such that parent(p,x) do
for p’ in memory do generate(<p,p’>)
add p to memory

Because we only consider the parents generated thus far, we never generate pairs where p = p/.
The name triangle generator is taken from the idea of generating only the lower-triangular region
of a two-dimensional array.

There is only one remaining incorporation that we can perform to improve this algorithm—
namely, to use the Parent(f,y) generator to generate the remaining children of f. Once we have
generated these children, the remaining three conjuncts, Sex(y, male) A Parent(m,y) Az # y must
be tested. There is no way to incorporate any of these into the generator at this point. Figure 5
shows the final algorithm that we have developed.

The kind of reasoning that we have been describing is familiar to most computer scientists.
Several important Al systems have been designed around the notion of constraining a generator of
possibilities. For example, the heart of the DENDRAL system (Lindsay, Buchanan, Feigenbaum
& Lederberg, 1980) is CONGEN-—a generator of all possible molecular structures consistent with
a given set of constraints. If only the chemical formula of the molecule is given to CONGEN,
it typically generates millions of possible structures. The secret to DENDRAL’s success was to
analyze the mass spectrum and extract constraints that could be incorporated into CONGEN.

In addition to using the idea of test incorporation to guide the development of particular Al
systems, some researchers have attempted to formalize and implement general-purpose systems for
performing test incorporation. The simplest example of this is the work on Prolog compilers, espe-
cially for parallel logic programs (Shapiro, 1986). A Prolog program can be viewed as a particular
cascade of generators and tests. Some compilers consider re-arranging the order of generation and
testing in order to improve performance. Related theoretical analyses of this problem include Simon
& Kadane (1975) and Smith & Genesereth (1985). Cohen (1986) presents a system for compiling
a more general class of logical queries. Mostow (1983a,b) describes a system for automatically



improving a heuristic search procedure via test incorporation. Tappel (1980) demonstrated how
test incorporation can be employed to design new algorithms.
What is involved in the test incorporation process? There are three basic steps:

1. Identify some subpart of the test that is a candidate for incorporation.
2. Identify some subpart of the generator to which the necessary code can be added.
3. Perform the incorporation.

There are several things to note about this process. First, it requires access to the internal
structure of the generator and the test. The traditional illustration of this is the example of
the combination safe. Without knowledge of the combination, the only way to unlock a perfect
combination safe is to generate all possible combinations and test each one. We say in this situation
that the “test” is not factorable. The converse case, in which the generator is unfactorable, arises
as well. Consider an inflexible program for displaying bulletin-board messages (i.e., the generator).
The reader of these messages can recognize which ones are relevant (i.e., the reader is the test).
However, the reader can’t communicate this information to the bulletin-board program, because
its internal structure isn’t available for modification. The reader must step through the messages
one-by-one until the relevant message appears.

When we say that the generator is factorable, we mean that it can be broken into subgenerators
that can then be “rewired” to incorporate additional tests. Similarly, the test is factorable if it
can be broken into subtests. Consider again Figure 4. At this point, the generator can be factored
to isolate the subgenerator of all f such that Parent(f,z). Similarly, the test includes the subtest
m # f. The availability of this subgenerator and subtest permit the addition of a triangle generator
that incorporates the subtest into the generator.

Mere factoring of the generator and the test is not sufficient, however, to guarantee that test
incorporations will be correct. The second important point concerning test incorporation is that the
correctness of incorporation steps often depends on knowledge about the generator. For example,
the introduction of the triangle generator will only succeed if the basic generator for Parent(p,z)
does not produce duplicates. If it does produce a duplicate, then the triangle generator will produce
a pair of the form (p,p’) where p = p/, and hence will commit an error.

Finally, the most important point to note about test incorporation is that not all algorithms
can be derived simply by a sequence of test incorporations. Test incorporations may fail to produce
an algorithm either because the test does not contain all relevant knowledge or because the test
must be reformulated before it can be incorporated.

As an example of the first problem, consider what algorithm would result if we were able to
incorporate all knowledge in the brothers test into the generator. No matter what sequence of
incorporations we perform, we cannot produce the algorithm that simply generates the first two
parents of z and uses only them. This is because the test does not contain all knowledge about
the world, but only knowledge relevant to recognizing a solution. In particular, the test does not
contain the knowledge that all people have exactly two parents. Instead, the test defines z and y
to be full brothers if they share at least two parents. The knowledge that each person has only
two parents can be incorporated into the algorithm to remove the triangle generator altogether and
replace it with a generator that quits as soon as it has found two distinct parents.

As an example of the second problem, suppose that the database were represented in a different
format in which there are entities called matings with the relations Father(f, mat) ( f is the father of
mating mat), Mother(m,mat) (m is the mother of mating mat), Son(s, mat) (s is a son resulting
from the mating mat) and Daughter(d, mat) (d is a daughter resulting from the mating mat).



Suppose there are generators available for generating all matings and for generating all fathers,
mothers, sons, or daughters in a given mating. If we are given only the original definition of full
brothers in terms of Parent and Sex, it will be impossible to perform any test incorporations
without reformulating the test so that it corresponds to the available generators (see Amarel, 1968,
1983). If we had sufficient knowledge, we could reformulate the test to define # and y to be full
brothers if there exists a mating mat such that @ # y A Son(z, mat) A Son(y, mat). It is easy
to incorporate this test into the generators so that all matings are generated and then, for each
mating, all sons are generated and distinct pairs of sons are produced using a triangle generator.

To conclude this section, let us summarize our results thus far. First, we have shown that
test incorporation is a powerful program transformation, and that it can be applied incrementally
to develop efficient algorithms. In addition to our example problem of computing full brothers,
test incorporation has been applied to derive such algorithms as the Seive of Eratosthenes (Tappel,
1980), an efficient shortest-path algorithm (Tappel, 1980), the greedy algorithm for minimum span-
ning trees (Bennett & Dietterich, Forthcoming), quicksort (Smith, In Press), and the DENDRAL
system (Bennett & Dietterich, Forthcoming).

Second, we have noted three important aspects of test incorporation: (a) test incorporation
requires the ability to factor the generator and the test, (b) correctness of incorporations may rely
on knowledge about the generator (such as order of generation or presence of duplicates) beyond
simply knowing what set it generates, and (c) test incorporation is not capable of deriving all
possible algorithms (without additional world knowledge and the ability to perform reformulations).

3 Run-time Test Incorporation

In the previous section, we considered test incorporation as a kind of compile-time optimization
step. However, it is not always possible, at compile-time, to perform all of the beneficial test
incorporations. This is because in many Al problem solvers, the complete “test” is not provided
all at once, but instead parts of it are gradually revealed to the system.

One of the best examples of this is the candidate-elimination algorithm for concept learning
(Mitchell, 1978). The naive generator in this task generates concept definitions from some space
of possible concepts. The test checks to see if each candidate concept is consistent with all of
the possible training instances (i.e., it classifies the positive instances as positive and the negative
instances as negative). The main difficulty is that not all of the possible training instances are
known to the program. Instead, training instances are presented to the program one at a time.
Mitchell’s version space algorithm is able to incorporate each of these “pieces” of the test into the
generator by representing the space of possible concepts as an interval in a partially-ordered set
and by moving the boundaries of this interval. At any point, the generator can be run, and it will
generate only the concept definitions that are in the interval-—that is, all of the concept definitions
that would classify the observed training instances correctly.?

A closely related example is the game of “guess-the-number.” In this game, the player must
guess a number between 1 and 100. Whenever the player makes a guess, an oracle indicates whether
the guess is correct, too low, or too high. A naive generate-and-test algorithm simply generates all
possible numbers and depends on the oracle to test each one. However, a more clever algorithm
guesses a number and then incorporates the oracle’s answer into the generator by employing what
Doug Smith (In press) calls a subspace generator. An example of a subspace generator is one that
can generate all elements within an interval where the endpoints of the interval are inputs to the

i

?In practice, this generator is never run, and hence, it is never even implemented. However, it would not be
difficult to write.



generator. The initial generator of all numbers between 1 and 100 can be implemented by giving
the subspace generator the interval [1, 100]. Suppose the first generated guess is 20 and the oracle
answers “too low.” Then this answer is incorporated, at run time, into the generator by changing
the interval to [21, 100]. This process continues until the interval is a single point.>

In both the version space algorithm and the guess-the-number algorithm, pieces of test infor-
mation are made available over time. FEfficient algorithms incorporate this test information into
the generator immediately in the hope that eventually the generator will be eliminated altogether
and the answer will be determined. We call this view of run-time test incorporation the algebraic
view, by analogy with the process of solving a set of algebraic equations.

Consider, for example, the following pair of equations:

r4+2y=7
z—y=1

A naive generate-and-test problem solver might generate pairs of integers (z,y), substitute them
into the equations, and check whether they are solutions. However, by performing test incorpora-
tions, we can completely solve the problem. From the second equation, we know z = 1 4 y, which
we can substitute into the first equation to obtain 1 + 3y = 7. This changes the problem solver so
that it (a) generates possible values for y, (b) tests them to see if 1 +3y = 7, and then (c) computes
z from 14y, and produces the solution (z,y). Hence, the original two equations been incorporated
into the generator, but there is now a generate-and-test algorithm within the generator that can be
improved. By solving the equation 1 + 3y = 7 for y, we obtain y = 2. Hence, the final algorithm
performs no search whatsoever, it simply produces y = 2 and then computes z = 3.

From the algebraic perspective, every problem solver is analogous to a system of equations. Test
incorporation is a kind of algebraic operator that allows us to simplify this system of equations and
solve for the answer. The system of equations can’t be solved, of course, unless all of the equations
are known. At compile time, in cases like guess-the-number, not all of the “equations” (i.e., pieces of
test information) are known. The run-time inputs to the problem solver can be viewed as additional
equations that are being made available. When enough equations are known, the solution can be
determined. From this perspective, we see that the distinction between run-time and compile-time
is simply based on when the “equations” are made available.

Sometimes this algebraic view requires us to stretch our intuition. Consider the MYCIN system,
for example. According to the algebraic view, the naive generate-and-test algorithm for MY CIN
would operate by generating pairs of the form (patientdescription, disease) and testing them to see
if the patient description matched the patient data supplied as input to the program at run time. A
much better approach, of course, is to wait until the patient data is given to the program and then
compute the associated disease. This way the patient data can be incorporated into the generator
of plausible diseases.

The algebraic view also provides an explanation of the effectiveness of methods such as means-
ends analysis. Consider the naive generate-and-test algorithm for planning a trip from Palo Alto,
California to Cambridge, Massachusetts. It generates possible sequences of actions and then tests
them to see if they get us from Palo Alto to Cambridge efficiently. Means-ends analysis operates
by examining the goal and incorporating into the generator a step such as Fly(SFO,BOS). The
remaining tasks are to generate sequences of actions that get us from Palo Alto to San Francisco
Airport (SFO) and sequences of actions that get us from Boston Airport (BOS) to Cambridge. The

?Notice that these incorporations are only possible because the oracle gives more information than simply whether
the guess is correct. The answers “too high” and “too low” provide some insight into the test, and thus provide
material for incorporation. The test is partially factored.
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Figure 6: A naive generate-and-test IPS

incorporation of these goals into the generator takes into account not only the correctness of the
plan (i.e., it gets us to the proper destination) but also the efficiency of the plan (i.e., it chooses
flying rather than walking).

From these examples, we can see that the algebraic view of test incorporation—in which it
is a form of run-time problem solving rather than simply a compile-time optimization—provides
derivations for data-driven methods, goal-driven methods, and programs that accept input from the
environment. Data and goals are both treated as pieces of test information that are incorporated at
run-time. One question we have not dealt with, however, is who is selecting and performing these
incorporations? The next section explores this question.

4 The Incorporation Problem Solver

In many of the examples we have discussed thus far (especially the full brothers example), test
incorporations were identified and applied by the programmer as he or she designed an efficient
algorithm. This section describes how a meta-level Incorporation Problem Solver (or IPS) could
automate this process.

The task of the IPS is to improve the performance of the base-level problem solver by applying
test incorporations (and possibly other transformations as well). This improvement in problem-
solving efliciency must preserve the correctness of the algorithm. To have some notion of correctness,
the TIPS must have some kind of specification of the desired behavior. One simple form of specifica-
tion is to provide the IPS with a naive generate-and-test algorithm as its initial base-level problem
solver. Any improvement that produces the same outputs as this generate-and-test procedure will
be considered to be correct. However, the IPS may also find it useful to maintain more abstract,
partial descriptions of the program that it is modifying. Indeed, it is reasonable for the IPS to be
given a formal specification of the desired algorithm as well as a particular implementation.

There are many different ways that we might try to implement an IPS. Perhaps the most
general would be to use a generate-and-test algorithm (see Figure 6). The naive generator for the
IPS generates all possible algorithms and tests each of them to see if (a) it is equivalent to the
original (or desired) algorithm and (b) it is the most efficient such algorithm. Unfortunately, this
test cannot be performed, because part (a) involves solving the halting problem. Hence, a truly
general IPS cannot be implemented.

Fortunately, many reasonable approximations of the IPS can be constructed. One obvious can-
didate is an incremental, greedy IPS based on test incorporation. This IPS would operate iteratively
as follows. First, it would identify a generator and a test within the current base-level problem
solver. Then it would analyze the generator and the test to identify possible incorporations that
could be performed. It would apply the best of these incorporations and repeat until no more
incorporations could be performed. This greedy IPS takes advantage of the attractive properties of
test incorporations—namely, that they are incremental and always lead to improved performance.
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Figure 7: Naive generate-and-test version of the meta-IPS

Programs similar to this IPS have already been developed. Elaine Kant’s (1979) LIBRA system
generates alternative algorithm refinements within the PSI automatic programming system, ana-
lyzes and compares their efficiencies, and selects the best refinement. David Smith’s (1985) greedy
algorithm for ordering of conjunctive queries performs a similar analysis. At each step, it considers
which conjunct of the query should be processed (i.e., incorporated) next. It chooses the conjunct
with the fewest estimated number of solutions. Since (in Smith’s architecture) each conjunct serves
simultaneously as a generator (of values for unbound variables) and as a test (of the values of bound
variables), the effect is to apply the most informative tests as soon as possible and delay running
generators until they are highly constrained by bound input variables.

Each of these IPS implementations is quite general, in that each performs significant deliberation
at run-time. However, in order to understand the specific kinds of run-time incorporation involved
in algorithms like the guess-the-number game or means-ends analysis, we must consider very special
purpose IPS implementations.

In the guess-the-number algorithm, the IPS performs no deliberation at all. It simply waits for
the next answer from the oracle and incorporates it into the subspace generator’s current interval.
If any other information were made available about the answer—such as “the number is even”—it
could not be exploited by this specialized IPS. Similarly, in means-ends analysis, the procedure
followed by the IPS is also fixed. It maintains a stack of goals and consults the operator-difference
table to determine which incorporation to make at each step.

In general, we can view all of these various IPS implementations as improvements upon the
(unimplementable) generate-and-test IPS implementation. This leads us to ask whether some form
of IPS could be applied to improve itself. What kinds of knowledge are being incorporated into the
1PS?

5 The Meta-Incorporation Problem Solver

The task of a meta-IPS is to improve the combined performance of the IPS and the base-level prob-
lem solver by modifying the IPS. It can be viewed as searching a space of possible IPSes looking
for one that, when executed with the base-level problem solver, solves the problem most efficiently.
Hence, a naive generate-and-test version of the meta-IPS generates all possible incorporation prob-
lem solvers and tests each one to see if (a) it produces base-level problem solvers that are correct
and (b) the combined cost of running it and then running the base-level problem solver that it
produces is minimized. Figure 7 shows a diagram of this naive generate-and-test meta-IPS.

Of course, this naive algorithm is unimplementable. In practice, the meta-IPS can employ test
incorporations to improve the IPS. These test incorporations will move test information out of the
IPS’s test and incorporate it into the IPS’s generator of possible base-level problem solvers. Recall
from Figure 6 that the test of the IPS contains knowledge about the problem specification so that
the IPS can verify that its improved base-level problem solvers are correct. Hence, the meta-IPS



can incorporate knowledge about the specific problem (or class of problems) into the IPS. The
result is an IPS that can only incorporate test knowledge relevant to particular classes of problems.

Consider the guess-the-number example again. The initial problem specification consists of a
generator of the numbers from 1 to 100 and a test (the oracle) that can give the outputs “yes,”
“too high,” and “too low.” An incremental IPS of the kind we have been discussing would allow
the base-level problem solver to make a guess (e.g., 20), accept the answer from the oracle (“too
low”), generate all possible (base level) test incorporations, and check them to see if they could
incorporate this specific answer. The meta-IPS can improve this incremental IPS by incorporating
the knowledge (from the IPS’s test) that only certain kinds of test information will be available
to the IPS—namely, the three possible answers from the oracle. Hence, it will change the IPS so
that it is only capable of incorporating these three answers. A good meta-IPS could figure out
that a sub-space generator for integer intervals could be used to incorporate each of the possible
oracle answers. Hence, it would modify the IPS so that it will incorporate this kind of generator
into the base-level problem solver. The result is the algorithm that we described earlier for playing
guess-the-number.

Hence, we see that the meta-IPS operates by moving test knowledge out of the IPS’s test and
into its generator of possible incorporations. This results in a version of the IPS customized to
incorporating particular kinds of tests into particular kinds of generators. Similar kinds of meta-
IPS reasoning could produce the specialized IPS that constitutes the version space algorithm and
the specialized IPS that constitutes means-ends analysis.

Although we have yet to find an example that requires it, there is no reason to stop with only
two meta-levels. We can imagine an infinite tower of meta-level problem solvers, each of which
has the task of improving the combined performance of all of the problem solvers below it. The
familiar algorithms that we use from day to day can be viewed as the “residue” that remains after
the IPS, the meta-IPS, and even the meta-meta-IPS (ad infinitum) have performed their reasoning
and been “compiled away.” The infinite tower of meta-level problem solvers would be fully general
and fully flexible. Any aspect of the problem specification could be changed, and the infinite
tower would incorporate those changes into its strategy for incorporating changes...into the base
level problem solver. The tower is unimplementable, of course, both because of its infinite regress
and also because each level (except the lowest) must solve the halting problem. The value of this
infinite tower is that it provides a kind of infinite series expansion that describes the implementation
decisions that resulted in the final algorithm. Any real tower of IPSes will need to be truncated at
some level—thus becoming a finite approximation to the infinite series.

An interesting consequence of this view of the meta-IPS is that it resolves the problem of
the tradeoff between meta-level and base-level problem solving. The naive IPS is a compulsive
optimizer. It will continue to search for the most efficient base-level problem solver, even if that
search ends up taking more time than it would have taken to simply execute the unimproved base-
level program. This problem is common in all meta-level architectures. The costs of doing the
meta-level reasoning may overwhelm the benefits (see Smith, 1985; Rosenschein & Singh, 1983).

The meta-IPS solves this problem by restraining the IPS. Because the meta-IPS seeks to min-
imize the combined cost of the IPS and the base-level problem solver, it will always ensure that
the cost of running the IPS is offset by the improvements to the base-level problem solver. When
this is not the case, the meta-IPS will “compile-away” the TIPS and simply run the base-level
problem-solver.

To see how this works, consider the familiar algorithm for conducting a binary search of a
sorted array of integers. The problem to be solved is “Does the array A contain integer ¢7” This
is a case where the complete “test” (i.e., the array of integers) is known. The naive generate-and-
test algorithm simply generates possible indexes j and checks whether A[j] = i. When the naive
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IPS begins to analyze this problem, one thing that it might do is to completely inspect the test
(i.e., the array A) and determine the right answer. It can then incorporate that answer into the
generator producing a trivial base-level problem solver. However, the meta-IPS will not permit
this to happen. After all, the IPS cannot search the array A any faster than the base-level problem
solver can, so the combined base-level plus IPS problem solver has not been improved.

Instead, the meta-IPS will consider the costs and benefits each time the IPS inspects a cell of A.
Each inspection of a cell yields the information “correct,” “too high,” or “too low.” This means that
the meta-IPS can modify the IPS so that it treats the array A as if it were the oracle in guess-the-
number. It will adopt the subspace generator for intervals and incorporate the information that is
learned from each inspected cell. Because the meta-IPS wants to minimize the total problem-solving
time, it will consider ways to minimize the number of required incorporation steps. The number of
incorporation steps is proportional to the size of the remaining interval of possible integers. Hence,
the number of incorporation steps can be minimized by minimizing the size of this interval. The
meta-IPS will therefore constrain the IPS to consider only the cell from A that is in the middle of
the interval. This produces the binary search algorithm. When the IPS is run, it will completely
solve the problem by analyzing carefully selected parts of the test and incorporating them into the
base-level subspace generator until only one integer remains. This specialized IPS produces the
same result (i.e., the trivial generator that only produces the answer) as the naive IPS, but it does
so much more efficiently.

6 Summary

We began this paper by describing a general kind of optimizing transformation: test incorporation.
We showed that test incorporation is very general, and that it can be used to derived a wide variety
of algorithms. Furthermore, test incorporation provides a knowledge-level account of the derivation
of these algorithms, showing at each stage what knowledge was exploited in order to justify the
derivation.

We then shifted our perspective and considered test incorporation as a kind of algebraic op-
eration, in which the base-level problem solver is progressively simplified until only the answer
remains. This perspective allowed us to derive a broader class of algorithms including means-ends
analysis and the candidate-elimination algorithm.

Next, we considered the requirements for a problem solver that would automate the test in-
corporation process. We showed that a fully general incorporation problem solver (IPS) could not
be implemented, but that several interesting specialized IPSes could be developed. Our definition
of the IPS as a meta-level problem solver that improves the base-level problem solver had the
consequence that the IPS does not worry about its own efficiency.

To address this shortcoming, we introduced the meta-IPS (and by extension, an infinite tower of
meta-level improvement problem solvers). The meta-IPS is concerned with improving the combined
performance of the IPS and the base-level problem solver. We showed that the meta-IPS could
accomplish this by developing specialized IPSes that only pursue specific incorporations and that
perform incremental cost/benefit analyses.

7 Concluding Remarks

This paper has been concerned primarily with a theory of problem solving and algorithm con-
struction. We would now like to consider the implications of test incorporation theory for artificial
intelligence.
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One of the long standing goals of artificial intelligence is to develop very general, yet powerful
(i.e., efficient) problem solvers. Intelligent systems—for example people—are remarkable not only
because they possess a large store of knowledge about the world but also because they are able to
apply this knowledge so effectively in such a diverse set of circumstances. Furthermore, people are
able to acquire new knowledge and integrate it into their existing problem solving routines.

In his (1969) article on ill-structured problems, Allen Newell discussed the widely perceived
tradeoff between generality and power. He characterized the weak methods, such as generate-
and-test, as being very inefficient but broadly applicable and the strong methods, such as linear
programming, as being very efficient but highly specialized. The DENDRAL system (Buchanan and
Feigenbaum, 1978) and the vast array of expert systems that have followed it have demonstrated
that it is possible to engineer these highly efficient and specialized methods for a wide variety of
domains.

Let us consider the theories of intelligence that are implicit in the methodology of expert
systems and in Newell’s (1969) paper. The work on expert systems describes intelligent systems
as possessing a large collection of highly specialized methods, each applicable to a different task.
This “big switch” theory of intelligence says that a system is more intelligent if it has more of these
specialized methods.

Newell’s paper takes a slightly more general perspective. He says that intelligent systems possess
a range of methods of varying generality and power. In addition to the many specialized “expert”
methods, people also possess the weak methods and many intermediate methods as well. Systems
are more intelligent to the extent that they have a broader range of methods—strong methods as
well as weak methods.

The fundamental shortcoming of both of these theories of intelligence is that they do not explain
learning and adaptation. Where do all of these expert methods come from? Surely physicians are
not born with MYCIN’s knowledge of blood diseases or DENDRAL’s knowledge of organic chem-
istry! Test incorporation shows promise of providing a better theory of intelligence that explains
how these strong methods are developed. According to this theory, intelligence is not the ability
to perform a task effectively. It is instead the ability to exploit knowledge effectively by integrating
it into the problem solver—in short, it is the ability to perform test incorporation. Specialized,
strong methods are developed by incorporating knowledge into weak methods—particularly into the
weakest method of all: generate-and-test. A system is more intelligent to the extent that it is able
to incorporate a broader range of knowledge into its problem solving apparatus more efficiently.?

This theory of intelligent behavior draws a distinction between knowledge and intelligence.
‘Knowledge’ is defined (as in Newell’s (1981) Knowledge Level paper) to be the ability to compute
the right answer without regard to how that computation occurs (i.e., how much space or time is
consumed). According to this definition, even a naive generate-and-test algorithm is knowledgeable.
However, it is not intelligent, because it is unable to exploit its knowledge to solve problems
efficiently.

In summary, the fundamental implication of test incorporation theory for Al is that intelligent
systems must possess the ability to perform test incorporations. It is the ability to accept new
knowledge and exploit it to improve problem-solving efficiency that is the mark of an intelligent
system. An immediate corollary is that, because it is impossible to develop a fully general IPS, no
fully intelligent system can be constructed. All systems will have some kinds of input knowledge
that they will be unable to exploit. Finally, according to test incorporation theory, an important
area in which to focus our research efforts is to identify and analyze new test incorporation methods.

*Even this definition of intelligence may be too restricted, because it ignores the question of where the “input”
knowledge comes from that the system is trying to exploit. We are talking here only of “symbol level learning,” not
“knowledge level learning.” See Dietterich, 1986.

12



This requires us to develop a better understanding of the properties of digital computers and other
kinds of computing devices, since test incorporation methods succeed by exploiting the properties
of these devices. It may be the case that digital computers do not provide a good target for test
incorporations and that other computing devices must be developed. In any case, test incorporation
theory shows promise of providing us with guidance in our attempts to understand and reproduce
the mechanisms of intelligence.
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