
The Test Incorporation Theory of Problem Solving
�Preliminary Report�

Thomas G� Dietterich

Department of Computer Science

Oregon State University

Corvallis� Oregon �����

James S� Bennett

Teknowledge� Inc�

��	
 Embarcadero Road

Palo Alto� California ���
�

Abstract�

Test incorporation is a program transformation in which a generate�and�test
problem solver is improved by moving information out of the test and into the
generator� This paper sketches a theory of problem solving based on test incor�
poration� Two views of test incorporation are presented� �a� as a compile�time
algorithm optimization and �b� as a run�time problem�solving method� The
paper focuses on the latter� which is termed the �algebraic view�	 because it is
often the case that test incorporations can be applied to �solve	 for the desired
answer thus eliminating any need to generate and test possible answers� The
theory introduces an in
nite tower of meta�level problem solvers� each of which
has the task of improving the performance �via test incorporation� of all of
the problem solvers �below	 it� This in
nite tower can neither be constructed
in principle nor in practice� but it provides a kind of in
nite�series expansion
of any given problem solver� Several familiar AI methods are reconstructed
as �residual	 problem solvers�the remnants of the in
nite tower of problem
solvers after the meta�level problem solvers have done their tasks and been
�compiled away�	 The test incorporation process is a means by which knowl�
edge is e�ectively exploited to yield e
cient performance� This observation
leads naturally to a de
nition of �intelligence	 as the ability to perform test
incorporations� It is asserted that any intelligent system must have some ability
to perform test incorporations� and test incorporation methods will be critical
to the development of generally intelligent systems�



� Introduction

Test incorporation is a program transformation that can be applied to generate�and�test problem
solvers to improve their performance� The basic notion is familiar to all programmers� Rather than
generating a set of candidates and then 
ltering them to eliminate non�solutions� it is often possible
to modify the generator of candidates so that some of the conditions in the �test	 are automatically
satis
ed� Ideally� all of the test information can be �incorporated	 into the generator� The result
is an algorithm that directly computes the solutions�

Test incorporation is a very attractive program transformation for several reasons� First� it is
incremental� Hence� it allows us to gradually improve algorithms� and it can be applied to discover
new algorithms �see Tappel� ������ Second� it is performance�aligned�that is� it always improves
�or at least does not degrade� the performance of the algorithm� and this performance improvement
is easy to compute� Third� it a�ects program modi�ability� As long as the test is a separate part
of the problem solver� it is easy to modify the problem solver to solve a di�erent problem� If the
generator is generating a su
ciently large set of candidates� we can simply change the test to select
di�erent solutions� However� after test incorporation� the separation between generator and test is
lost� and the problem solver is harder to modify �see Newell� ������ Finally� test incorporation is

knowledge�aligned� Test incorporation can be viewed as the transfer of knowledge out of the �test	
and into the �generator�	 Hence� test incorporation is a fundamental way in which knowledge
comes to be e�ectively applied in problem solving�

The purpose of this paper is to sketch a theory of AI problem solving methods based on the
idea of test incorporation� We begin by presenting a simple example of the application of test
incorporations to develop an e
cient algorithm� This can be viewed as a kind of knowledge com�
piling process in which domain knowledge in the �test	 is compiled into the �generator�	 Several
issues arise here including the need to factor the generator and the test and the need to exploit
additional domain knowledge during algorithm design� We will show that not all algorithms can
be constructed via a sequence of test incorporations�

In order to extend test incorporation theory� we must shift our view of incorporation as a kind
of compile�time program transformation and instead view it as a form of problem solving activity
itself� This leads us to consider test incorporation as a kind of algebraic simpli
cation of the
problem solver� It permits us to derive a wider class of AI methods including means�ends analysis�
data�driven algorithms� and goal�driven algorithms� However� it also raises the issue of how test
incorporations are performed�

In the third section of the paper� we resolve this question by describing a meta�level Incor�
poration Problem Solver �IPS� whose task is to improve a base�level problem solver� The IPS
searches a space of possible improved base�level problem solvers� looking for the most e
cient one�
Test incorporations provide a set of operators for moving around in this space� A straight�forward
implementation of the IPS simply pursues a greedy �hill�climbing� strategy�

One concern about the IPS is that� although it is improving the base level problem solver� it
may consume so much time itself that the overall problem solving process is slowed rather than
accelerated� This concern leads us to consider a meta�IPS whose task is to improve the combined
e
ciency of the IPS and the base�level problem solver� The meta�IPS modi
es the IPS so that it
does not perform incorporations unless the cost of carrying out those incorporations is o�set by the
improved performance of the base�level problem solver�

In general� our analysis proposes an in
nite tower of meta�level problem solvers� each of which
has the task of improving all of the levels below it� In practice� this in
nite tower is never con�
structed� but it provides us with a kind of �series expansion	 of an ideal AI problem solving system�
Particular systems can be viewed as �truncated	 approximations to this in
nite series�

�



Sex�x�male�
Sex�y�male�
Parent�m� x�
Parent�m�y�
Parent�f� x�
Parent�f� y�

m �� f
x �� y

�
hx� yi

�
hx� y� f�mi

�
�
���
�

HHH

�
�
�

�m

�f

�y

�x

Figure �� Naive generate�and�test algorithm for full brothers

Finally� this paper concludes with a discussion of the role of test incorporation theory in de�
veloping a theory of intelligence� Brie�y� intelligent behavior has two fundamental requirements�
knowledge and the means to e�ectively apply that knowledge� A generate�and�test problem solver
contains in its test all of the knowledge needed to solve the problem� Intelligence consists of the
process by which this knowledge is converted into e�ective action� In short� intelligence is the
process of test incorporation�

� An example of test incorporation

Consider the following problem� A problem solver contains a family tree database in which facts of
the form Parent�x� y� �x is a parent of y� and Sex�x� s� �the sex of x is s� are stored� The task of
the problem solver is to 
nd all pairs of full brothers� In formal terms� the task is to 
nd all pairs
hx� yi such that

�m� f Sex�x�male�� Sex�y�male�� Parent�m� x�� Parent�m� y��
Parent�f� x� � Parent�f� y� �m �� f � x �� y

In other words� the program must 
nd two distinct individuals �the mother m and father f� such
that each is a parent of both x and y�

We can imagine a wide variety of algorithms for solving this problem� The most elementary
algorithm �shown in Figure �� would generate four�tuples of the form hx� y�m� fi and then verify
that the indicated relationships hold� The simplicity �and ine
ciency� of this algorithm leads us
to call it the naive generate�and�test algorithm�

The naive generate�and�test algorithm uses virtually all of its knowledge about the problem as
its �test�	 The generator simply enumerates all known four�tuples of objects� Test incorporation is
the process of incorporating some of the test knowledge into the generator�

For example� suppose that our database representation is capable of generating the set of all x
such that Sex�x�male�� In that case� we can incorporate this test into the generator and produce
four�tuples hx� y�m� fi where each x is guaranteed to be a male �see Figure ��� We no longer need
to test the sex of x in the test part� More importantly� there is a combinatorial time savings because
we do not bother to construct four�tuples containing x values that are not males� Hence� we don�t
waste time testing any of the other properties �such as Parent�f� y�� on any of these tuples�

A more powerful kind of test incorporation can be performed by cascading generators� For ex�
ample� suppose that the database is also capable of generating the set of all f such that Parent�f� x�
given a speci
c value for x� Then we can incorporate the Parent�f� x� test into the generator by

rst generating all x such that Sex�x�male� and then using these x values to generate all of the

�



Sex�y�male�
Parent�m�x�
Parent�m�y�
Parent�f� x�
Parent�f� y�

m �� f
x �� y

��
hx� yihx� y� f�mi

�
�
���
�

HHH

�
�
�

�m

�f

�y

Sex�x�male�

Figure �� Incorporating Sex�x�male� into the generator

Sex�y�male�
Parent�m�x�
Parent�m�y�
Parent�f� y�

m �� f
x �� y

� �

�
�

�
�
��

hx� fi

hx� y� f�mi hx� yi
�m

� Parent�f� x�Sex�x�male�
hxi

�y

Figure �� Cascading two generators

parents f of x �see Figure ��� This is a tremendous improvement because we are using parts of
the �test	 to incrementally construct the desired solution� This strategy of problem solving is
sometimes called �seed growth�	 because we start with a seed �x� and use it to directly compute
additional parts of the solution� gradually growing it into a complete four�tuple��

If we can incorporate Parent�f� x�� we can certainly incorporate Parent�m� x� in the same way
to generate all tuples of the form hx� f�mi that automatically satisfy the properties Sex�x�male��
Parent�f� x� � Parent�m� x�� This produces the algorithm of Figure ��

The next incorporation is very interesting� Whenever we want to generate pairs of distinct
objects �i�e�� f and m such that m �� f� from a set� we can employ what might be called a triangle

�The island�driving technique developed in HEARSAY�II is another example of a seed growth algorithm�

Sex�y�male�
Parent�m�y�
Parent�f� y�

m �� f
x �� y

��
hx�yi

hx�y� f�miJ
J

�
�

�
�
�
�
��

� � Parent�m�x�

�
�

� Parent�f� x�

hxi

hxi

Sex�x�male�

�y

Figure �� Algorithm that incorporates the ability to generate parents of x�

�



�

�

Parent�f� y��hx� f�mi

hp�i

�
��

Sex�y�male�
Parent�m�y�

x �� y

M

�
�
�
�

hx�pi

hx�y� f�mi hx�yi

�

A
AA�

hxi
Sex�x�male� � Parent�p� x�

Figure �� Final generator for 
nding all brothers

generator� We can incorporate the constraint m �� f by using only one generator of parents�
Parent�p� x�� and remembering all of the parents that have been generated thus far� When each
new parent p is generated� we consider all of the previously generated parents p� and produce pairs
of the form hp� p�i� Here is the code for this triangle generator�

memory �� nil

for p such that parent�p�x� do

for p� in memory do generate��p�p�	�

add p to memory

Because we only consider the parents generated thus far� we never generate pairs where p � p��
The name triangle generator is taken from the idea of generating only the lower�triangular region
of a two�dimensional array�

There is only one remaining incorporation that we can perform to improve this algorithm�
namely� to use the Parent�f� y� generator to generate the remaining children of f � Once we have
generated these children� the remaining three conjuncts� Sex�y�male��Parent�m� y��x �� y must
be tested� There is no way to incorporate any of these into the generator at this point� Figure �
shows the 
nal algorithm that we have developed�

The kind of reasoning that we have been describing is familiar to most computer scientists�
Several important AI systems have been designed around the notion of constraining a generator of
possibilities� For example� the heart of the DENDRAL system �Lindsay� Buchanan� Feigenbaum
� Lederberg� ����� is CONGEN�a generator of all possible molecular structures consistent with
a given set of constraints� If only the chemical formula of the molecule is given to CONGEN�
it typically generates millions of possible structures� The secret to DENDRAL�s success was to
analyze the mass spectrum and extract constraints that could be incorporated into CONGEN�

In addition to using the idea of test incorporation to guide the development of particular AI
systems� some researchers have attempted to formalize and implement general�purpose systems for
performing test incorporation� The simplest example of this is the work on Prolog compilers� espe�
cially for parallel logic programs �Shapiro� ������ A Prolog program can be viewed as a particular
cascade of generators and tests� Some compilers consider re�arranging the order of generation and
testing in order to improve performance� Related theoretical analyses of this problem include Simon
� Kadane ������ and Smith � Genesereth ������� Cohen ������ presents a system for compiling
a more general class of logical queries� Mostow �����a�b� describes a system for automatically

�



improving a heuristic search procedure via test incorporation� Tappel ������ demonstrated how
test incorporation can be employed to design new algorithms�

What is involved in the test incorporation process� There are three basic steps�

�� Identify some subpart of the test that is a candidate for incorporation�

�� Identify some subpart of the generator to which the necessary code can be added�

�� Perform the incorporation�

There are several things to note about this process� First� it requires access to the internal
structure of the generator and the test� The traditional illustration of this is the example of
the combination safe� Without knowledge of the combination� the only way to unlock a perfect
combination safe is to generate all possible combinations and test each one� We say in this situation
that the �test	 is not factorable� The converse case� in which the generator is unfactorable� arises
as well� Consider an in�exible program for displaying bulletin�board messages �i�e�� the generator��
The reader of these messages can recognize which ones are relevant �i�e�� the reader is the test��
However� the reader can�t communicate this information to the bulletin�board program� because
its internal structure isn�t available for modi
cation� The reader must step through the messages
one�by�one until the relevant message appears�

When we say that the generator is factorable� we mean that it can be broken into subgenerators
that can then be �rewired	 to incorporate additional tests� Similarly� the test is factorable if it
can be broken into subtests� Consider again Figure �� At this point� the generator can be factored
to isolate the subgenerator of all f such that Parent�f� x�� Similarly� the test includes the subtest
m �� f� The availability of this subgenerator and subtest permit the addition of a triangle generator
that incorporates the subtest into the generator�

Mere factoring of the generator and the test is not su
cient� however� to guarantee that test
incorporations will be correct� The second important point concerning test incorporation is that the
correctness of incorporation steps often depends on knowledge about the generator� For example�
the introduction of the triangle generator will only succeed if the basic generator for Parent�p� x�
does not produce duplicates� If it does produce a duplicate� then the triangle generator will produce
a pair of the form hp� p�i where p � p�� and hence will commit an error�

Finally� the most important point to note about test incorporation is that not all algorithms
can be derived simply by a sequence of test incorporations� Test incorporations may fail to produce
an algorithm either because the test does not contain all relevant knowledge or because the test
must be reformulated before it can be incorporated�

As an example of the 
rst problem� consider what algorithm would result if we were able to
incorporate all knowledge in the brothers test into the generator� No matter what sequence of
incorporations we perform� we cannot produce the algorithm that simply generates the 
rst two
parents of x and uses only them� This is because the test does not contain all knowledge about
the world� but only knowledge relevant to recognizing a solution� In particular� the test does not
contain the knowledge that all people have exactly two parents� Instead� the test de
nes x and y

to be full brothers if they share at least two parents� The knowledge that each person has only
two parents can be incorporated into the algorithm to remove the triangle generator altogether and
replace it with a generator that quits as soon as it has found two distinct parents�

As an example of the second problem� suppose that the database were represented in a di�erent
format in which there are entities called matings with the relations Father�f�mat� �f is the father of
mating mat�� Mother�m�mat� �m is the mother of mating mat�� Son�s�mat� �s is a son resulting
from the mating mat� and Daughter�d�mat� �d is a daughter resulting from the mating mat��

�



Suppose there are generators available for generating all matings and for generating all fathers�
mothers� sons� or daughters in a given mating� If we are given only the original de
nition of full
brothers in terms of Parent and Sex� it will be impossible to perform any test incorporations
without reformulating the test so that it corresponds to the available generators �see Amarel� �����
������ If we had su
cient knowledge� we could reformulate the test to de
ne x and y to be full
brothers if there exists a mating mat such that x �� y � Son�x�mat� � Son�y�mat�� It is easy
to incorporate this test into the generators so that all matings are generated and then� for each
mating� all sons are generated and distinct pairs of sons are produced using a triangle generator�

To conclude this section� let us summarize our results thus far� First� we have shown that
test incorporation is a powerful program transformation� and that it can be applied incrementally
to develop e
cient algorithms� In addition to our example problem of computing full brothers�
test incorporation has been applied to derive such algorithms as the Seive of Eratosthenes �Tappel�
������ an e
cient shortest�path algorithm �Tappel� ������ the greedy algorithm for minimum span�
ning trees �Bennett � Dietterich� Forthcoming�� quicksort �Smith� In Press�� and the DENDRAL
system �Bennett � Dietterich� Forthcoming��

Second� we have noted three important aspects of test incorporation� �a� test incorporation
requires the ability to factor the generator and the test� �b� correctness of incorporations may rely
on knowledge about the generator �such as order of generation or presence of duplicates� beyond
simply knowing what set it generates� and �c� test incorporation is not capable of deriving all
possible algorithms �without additional world knowledge and the ability to perform reformulations��

� Run�time Test Incorporation

In the previous section� we considered test incorporation as a kind of compile�time optimization
step� However� it is not always possible� at compile�time� to perform all of the bene
cial test
incorporations� This is because in many AI problem solvers� the complete �test	 is not provided
all at once� but instead parts of it are gradually revealed to the system�

One of the best examples of this is the candidate�elimination algorithm for concept learning
�Mitchell� ������ The naive generator in this task generates concept de
nitions from some space
of possible concepts� The test checks to see if each candidate concept is consistent with all of
the possible training instances �i�e�� it classi
es the positive instances as positive and the negative
instances as negative�� The main di
culty is that not all of the possible training instances are
known to the program� Instead� training instances are presented to the program one at a time�
Mitchell�s version space algorithm is able to incorporate each of these �pieces	 of the test into the
generator by representing the space of possible concepts as an interval in a partially�ordered set
and by moving the boundaries of this interval� At any point� the generator can be run� and it will
generate only the concept de
nitions that are in the interval�that is� all of the concept de
nitions
that would classify the observed training instances correctly��

A closely related example is the game of �guess�the�number�	 In this game� the player must
guess a number between � and ���� Whenever the player makes a guess� an oracle indicates whether
the guess is correct� too low� or too high� A naive generate�and�test algorithm simply generates all
possible numbers and depends on the oracle to test each one� However� a more clever algorithm
guesses a number and then incorporates the oracle�s answer into the generator by employing what
Doug Smith �In press� calls a subspace generator� An example of a subspace generator is one that
can generate all elements within an interval where the endpoints of the interval are inputs to the

�In practice� this generator is never run� and hence� it is never even implemented� However� it would not be
di�cult to write�

�



generator� The initial generator of all numbers between � and ��� can be implemented by giving
the subspace generator the interval ��� ����� Suppose the 
rst generated guess is �� and the oracle
answers �too low�	 Then this answer is incorporated� at run time� into the generator by changing
the interval to ���� ����� This process continues until the interval is a single point��

In both the version space algorithm and the guess�the�number algorithm� pieces of test infor�
mation are made available over time� E
cient algorithms incorporate this test information into
the generator immediately in the hope that eventually the generator will be eliminated altogether
and the answer will be determined� We call this view of run�time test incorporation the algebraic

view� by analogy with the process of solving a set of algebraic equations�
Consider� for example� the following pair of equations�

x � �y � �

x� y � �

A naive generate�and�test problem solver might generate pairs of integers hx� yi� substitute them
into the equations� and check whether they are solutions� However� by performing test incorpora�
tions� we can completely solve the problem� From the second equation� we know x � � � y� which
we can substitute into the 
rst equation to obtain � � �y � �� This changes the problem solver so
that it �a� generates possible values for y� �b� tests them to see if ���y � �� and then �c� computes
x from ��y� and produces the solution hx� yi� Hence� the original two equations been incorporated
into the generator� but there is now a generate�and�test algorithm within the generator that can be
improved� By solving the equation � � �y � � for y� we obtain y � �� Hence� the 
nal algorithm
performs no search whatsoever� it simply produces y � � and then computes x � ��

From the algebraic perspective� every problem solver is analogous to a system of equations� Test
incorporation is a kind of algebraic operator that allows us to simplify this system of equations and
solve for the answer� The system of equations can�t be solved� of course� unless all of the equations
are known� At compile time� in cases like guess�the�number� not all of the �equations	 �i�e�� pieces of
test information� are known� The run�time inputs to the problem solver can be viewed as additional
equations that are being made available� When enough equations are known� the solution can be
determined� From this perspective� we see that the distinction between run�time and compile�time
is simply based on when the �equations	 are made available�

Sometimes this algebraic view requires us to stretch our intuition� Consider the MYCIN system�
for example� According to the algebraic view� the naive generate�and�test algorithm for MYCIN
would operate by generating pairs of the form hpatientdescription� diseasei and testing them to see
if the patient description matched the patient data supplied as input to the program at run time� A
much better approach� of course� is to wait until the patient data is given to the program and then
compute the associated disease� This way the patient data can be incorporated into the generator
of plausible diseases�

The algebraic view also provides an explanation of the e�ectiveness of methods such as means�
ends analysis� Consider the naive generate�and�test algorithm for planning a trip from Palo Alto�
California to Cambridge� Massachusetts� It generates possible sequences of actions and then tests
them to see if they get us from Palo Alto to Cambridge e
ciently� Means�ends analysis operates
by examining the goal and incorporating into the generator a step such as Fly�SFO�BOS�� The
remaining tasks are to generate sequences of actions that get us from Palo Alto to San Francisco
Airport �SFO� and sequences of actions that get us from Boston Airport �BOS� to Cambridge� The

�Notice that these incorporations are only possible because the oracle gives more information than simply whether
the guess is correct� The answers �too high	 and �too low	 provide some insight into the test� and thus provide
material for incorporation� The test is partially factored�

�



Correct�ps�
Most�e�cient�ps�

hpsi ��hpsi
�ps

Figure �� A naive generate�and�test IPS

incorporation of these goals into the generator takes into account not only the correctness of the
plan �i�e�� it gets us to the proper destination� but also the e
ciency of the plan �i�e�� it chooses
�ying rather than walking��

From these examples� we can see that the algebraic view of test incorporation�in which it
is a form of run�time problem solving rather than simply a compile�time optimization�provides
derivations for data�driven methods� goal�driven methods� and programs that accept input from the
environment� Data and goals are both treated as pieces of test information that are incorporated at
run�time� One question we have not dealt with� however� is who is selecting and performing these

incorporations� The next section explores this question�

� The Incorporation Problem Solver

In many of the examples we have discussed thus far �especially the full brothers example�� test
incorporations were identi
ed and applied by the programmer as he or she designed an e
cient
algorithm� This section describes how a meta�level Incorporation Problem Solver �or IPS� could
automate this process�

The task of the IPS is to improve the performance of the base�level problem solver by applying
test incorporations �and possibly other transformations as well�� This improvement in problem�
solving e
ciency must preserve the correctness of the algorithm� To have some notion of correctness�
the IPS must have some kind of speci
cation of the desired behavior� One simple form of speci
ca�
tion is to provide the IPS with a naive generate�and�test algorithm as its initial base�level problem
solver� Any improvement that produces the same outputs as this generate�and�test procedure will
be considered to be correct� However� the IPS may also 
nd it useful to maintain more abstract�
partial descriptions of the program that it is modifying� Indeed� it is reasonable for the IPS to be
given a formal speci
cation of the desired algorithm as well as a particular implementation�

There are many di�erent ways that we might try to implement an IPS� Perhaps the most
general would be to use a generate�and�test algorithm �see Figure ��� The naive generator for the
IPS generates all possible algorithms and tests each of them to see if �a� it is equivalent to the
original �or desired� algorithm and �b� it is the most e
cient such algorithm� Unfortunately� this
test cannot be performed� because part �a� involves solving the halting problem� Hence� a truly

general IPS cannot be implemented�

Fortunately� many reasonable approximations of the IPS can be constructed� One obvious can�
didate is an incremental� greedy IPS based on test incorporation� This IPS would operate iteratively
as follows� First� it would identify a generator and a test within the current base�level problem
solver� Then it would analyze the generator and the test to identify possible incorporations that
could be performed� It would apply the best of these incorporations and repeat until no more
incorporations could be performed� This greedy IPS takes advantage of the attractive properties of
test incorporations�namely� that they are incremental and always lead to improved performance�

�



Correct�ips�ps�
Most�e�cient�ips�ps�

hipsi ��hipsi
�ips

Figure �� Naive generate�and�test version of the meta�IPS

Programs similar to this IPS have already been developed� Elaine Kant�s ������ LIBRA system
generates alternative algorithm re
nements within the PSI automatic programming system� ana�
lyzes and compares their e
ciencies� and selects the best re
nement� David Smith�s ������ greedy
algorithm for ordering of conjunctive queries performs a similar analysis� At each step� it considers
which conjunct of the query should be processed �i�e�� incorporated� next� It chooses the conjunct
with the fewest estimated number of solutions� Since �in Smith�s architecture� each conjunct serves
simultaneously as a generator �of values for unbound variables� and as a test �of the values of bound
variables�� the e�ect is to apply the most informative tests as soon as possible and delay running
generators until they are highly constrained by bound input variables�

Each of these IPS implementations is quite general� in that each performs signi
cant deliberation
at run�time� However� in order to understand the speci
c kinds of run�time incorporation involved
in algorithms like the guess�the�number game or means�ends analysis� we must consider very special
purpose IPS implementations�

In the guess�the�number algorithm� the IPS performs no deliberation at all� It simply waits for
the next answer from the oracle and incorporates it into the subspace generator�s current interval�
If any other information were made available about the answer�such as �the number is even	�it
could not be exploited by this specialized IPS� Similarly� in means�ends analysis� the procedure
followed by the IPS is also 
xed� It maintains a stack of goals and consults the operator�di�erence
table to determine which incorporation to make at each step�

In general� we can view all of these various IPS implementations as improvements upon the
�unimplementable� generate�and�test IPS implementation� This leads us to ask whether some form
of IPS could be applied to improve itself� What kinds of knowledge are being incorporated into the
IPS�

� The Meta�Incorporation Problem Solver

The task of a meta�IPS is to improve the combined performance of the IPS and the base�level prob�
lem solver by modifying the IPS� It can be viewed as searching a space of possible IPSes looking
for one that� when executed with the base�level problem solver� solves the problem most e
ciently�
Hence� a naive generate�and�test version of the meta�IPS generates all possible incorporation prob�
lem solvers and tests each one to see if �a� it produces base�level problem solvers that are correct
and �b� the combined cost of running it and then running the base�level problem solver that it
produces is minimized� Figure � shows a diagram of this naive generate�and�test meta�IPS�

Of course� this naive algorithm is unimplementable� In practice� the meta�IPS can employ test
incorporations to improve the IPS� These test incorporations will move test information out of the
IPS�s test and incorporate it into the IPS�s generator of possible base�level problem solvers� Recall
from Figure � that the test of the IPS contains knowledge about the problem speci
cation so that
the IPS can verify that its improved base�level problem solvers are correct� Hence� the meta�IPS

�



can incorporate knowledge about the speci
c problem �or class of problems� into the IPS� The
result is an IPS that can only incorporate test knowledge relevant to particular classes of problems�

Consider the guess�the�number example again� The initial problem speci
cation consists of a
generator of the numbers from � to ��� and a test �the oracle� that can give the outputs �yes�	
�too high�	 and �too low�	 An incremental IPS of the kind we have been discussing would allow
the base�level problem solver to make a guess �e�g�� ���� accept the answer from the oracle ��too
low	�� generate all possible �base level� test incorporations� and check them to see if they could
incorporate this speci
c answer� The meta�IPS can improve this incremental IPS by incorporating
the knowledge �from the IPS�s test� that only certain kinds of test information will be available
to the IPS�namely� the three possible answers from the oracle� Hence� it will change the IPS so
that it is only capable of incorporating these three answers� A good meta�IPS could 
gure out
that a sub�space generator for integer intervals could be used to incorporate each of the possible
oracle answers� Hence� it would modify the IPS so that it will incorporate this kind of generator
into the base�level problem solver� The result is the algorithm that we described earlier for playing
guess�the�number�

Hence� we see that the meta�IPS operates by moving test knowledge out of the IPS�s test and
into its generator of possible incorporations� This results in a version of the IPS customized to
incorporating particular kinds of tests into particular kinds of generators� Similar kinds of meta�
IPS reasoning could produce the specialized IPS that constitutes the version space algorithm and
the specialized IPS that constitutes means�ends analysis�

Although we have yet to 
nd an example that requires it� there is no reason to stop with only
two meta�levels� We can imagine an in
nite tower of meta�level problem solvers� each of which
has the task of improving the combined performance of all of the problem solvers below it� The
familiar algorithms that we use from day to day can be viewed as the �residue	 that remains after
the IPS� the meta�IPS� and even the meta�meta�IPS �ad in
nitum� have performed their reasoning
and been �compiled away�	 The in
nite tower of meta�level problem solvers would be fully general
and fully �exible� Any aspect of the problem speci
cation could be changed� and the in
nite
tower would incorporate those changes into its strategy for incorporating changes� � � into the base
level problem solver� The tower is unimplementable� of course� both because of its in
nite regress
and also because each level �except the lowest� must solve the halting problem� The value of this
in
nite tower is that it provides a kind of in
nite series expansion that describes the implementation
decisions that resulted in the 
nal algorithm� Any real tower of IPSes will need to be truncated at
some level�thus becoming a 
nite approximation to the in
nite series�

An interesting consequence of this view of the meta�IPS is that it resolves the problem of
the tradeo� between meta�level and base�level problem solving� The naive IPS is a compulsive
optimizer� It will continue to search for the most e
cient base�level problem solver� even if that
search ends up taking more time than it would have taken to simply execute the unimproved base�
level program� This problem is common in all meta�level architectures� The costs of doing the
meta�level reasoning may overwhelm the bene
ts �see Smith� ���� Rosenschein � Singh� ������

The meta�IPS solves this problem by restraining the IPS� Because the meta�IPS seeks to min�
imize the combined cost of the IPS and the base�level problem solver� it will always ensure that
the cost of running the IPS is o�set by the improvements to the base�level problem solver� When
this is not the case� the meta�IPS will �compile�away	 the IPS and simply run the base�level
problem�solver�

To see how this works� consider the familiar algorithm for conducting a binary search of a
sorted array of integers� The problem to be solved is �Does the array A contain integer i�	 This
is a case where the complete �test	 �i�e�� the array of integers� is known� The naive generate�and�
test algorithm simply generates possible indexes j and checks whether A�j� � i� When the naive

��



IPS begins to analyze this problem� one thing that it might do is to completely inspect the test
�i�e�� the array A� and determine the right answer� It can then incorporate that answer into the
generator producing a trivial base�level problem solver� However� the meta�IPS will not permit
this to happen� After all� the IPS cannot search the array A any faster than the base�level problem
solver can� so the combined base�level plus IPS problem solver has not been improved�

Instead� the meta�IPS will consider the costs and bene
ts each time the IPS inspects a cell of A�
Each inspection of a cell yields the information �correct�	 �too high�	 or �too low�	 This means that
the meta�IPS can modify the IPS so that it treats the array A as if it were the oracle in guess�the�
number� It will adopt the subspace generator for intervals and incorporate the information that is
learned from each inspected cell� Because the meta�IPS wants to minimize the total problem�solving
time� it will consider ways to minimize the number of required incorporation steps� The number of
incorporation steps is proportional to the size of the remaining interval of possible integers� Hence�
the number of incorporation steps can be minimized by minimizing the size of this interval� The
meta�IPS will therefore constrain the IPS to consider only the cell from A that is in the middle of
the interval� This produces the binary search algorithm� When the IPS is run� it will completely
solve the problem by analyzing carefully selected parts of the test and incorporating them into the
base�level subspace generator until only one integer remains� This specialized IPS produces the
same result �i�e�� the trivial generator that only produces the answer� as the naive IPS� but it does
so much more e
ciently�

	 Summary

We began this paper by describing a general kind of optimizing transformation� test incorporation�
We showed that test incorporation is very general� and that it can be used to derived a wide variety
of algorithms� Furthermore� test incorporation provides a knowledge�level account of the derivation
of these algorithms� showing at each stage what knowledge was exploited in order to justify the
derivation�

We then shifted our perspective and considered test incorporation as a kind of algebraic op�
eration� in which the base�level problem solver is progressively simpli
ed until only the answer
remains� This perspective allowed us to derive a broader class of algorithms including means�ends
analysis and the candidate�elimination algorithm�

Next� we considered the requirements for a problem solver that would automate the test in�
corporation process� We showed that a fully general incorporation problem solver �IPS� could not
be implemented� but that several interesting specialized IPSes could be developed� Our de
nition
of the IPS as a meta�level problem solver that improves the base�level problem solver had the
consequence that the IPS does not worry about its own e
ciency�

To address this shortcoming� we introduced the meta�IPS �and by extension� an in
nite tower of
meta�level improvement problem solvers�� The meta�IPS is concerned with improving the combined
performance of the IPS and the base�level problem solver� We showed that the meta�IPS could
accomplish this by developing specialized IPSes that only pursue speci
c incorporations and that
perform incremental cost!bene
t analyses�


 Concluding Remarks

This paper has been concerned primarily with a theory of problem solving and algorithm con�
struction� We would now like to consider the implications of test incorporation theory for arti
cial
intelligence�

��



One of the long standing goals of arti
cial intelligence is to develop very general� yet powerful
�i�e�� e
cient� problem solvers� Intelligent systems�for example people�are remarkable not only
because they possess a large store of knowledge about the world but also because they are able to
apply this knowledge so e�ectively in such a diverse set of circumstances� Furthermore� people are
able to acquire new knowledge and integrate it into their existing problem solving routines�

In his ������ article on ill�structured problems� Allen Newell discussed the widely perceived
tradeo� between generality and power� He characterized the weak methods� such as generate�
and�test� as being very ine
cient but broadly applicable and the strong methods� such as linear
programming� as being very e
cient but highly specialized� The DENDRAL system �Buchanan and
Feigenbaum� ����� and the vast array of expert systems that have followed it have demonstrated
that it is possible to engineer these highly e
cient and specialized methods for a wide variety of
domains�

Let us consider the theories of intelligence that are implicit in the methodology of expert
systems and in Newell�s ������ paper� The work on expert systems describes intelligent systems
as possessing a large collection of highly specialized methods� each applicable to a di�erent task�
This �big switch	 theory of intelligence says that a system is more intelligent if it has more of these
specialized methods�

Newell�s paper takes a slightly more general perspective� He says that intelligent systems possess
a range of methods of varying generality and power� In addition to the many specialized �expert	
methods� people also possess the weak methods and many intermediate methods as well� Systems
are more intelligent to the extent that they have a broader range of methods�strong methods as
well as weak methods�

The fundamental shortcoming of both of these theories of intelligence is that they do not explain
learning and adaptation� Where do all of these expert methods come from� Surely physicians are
not born with MYCIN�s knowledge of blood diseases or DENDRAL�s knowledge of organic chem�
istry" Test incorporation shows promise of providing a better theory of intelligence that explains
how these strong methods are developed� According to this theory� intelligence is not the ability
to perform a task e�ectively� It is instead the ability to exploit knowledge e�ectively by integrating
it into the problem solver�in short� it is the ability to perform test incorporation� Specialized�
strong methods are developed by incorporating knowledge into weak methods�particularly into the
weakest method of all� generate�and�test� A system is more intelligent to the extent that it is able
to incorporate a broader range of knowledge into its problem solving apparatus more e
ciently��

This theory of intelligent behavior draws a distinction between knowledge and intelligence�
#Knowledge� is de
ned �as in Newell�s ������ Knowledge Level paper� to be the ability to compute
the right answer without regard to how that computation occurs �i�e�� how much space or time is
consumed�� According to this de
nition� even a naive generate�and�test algorithm is knowledgeable�
However� it is not intelligent� because it is unable to exploit its knowledge to solve problems
e
ciently�

In summary� the fundamental implication of test incorporation theory for AI is that intelligent
systems must possess the ability to perform test incorporations� It is the ability to accept new
knowledge and exploit it to improve problem�solving e
ciency that is the mark of an intelligent
system� An immediate corollary is that� because it is impossible to develop a fully general IPS� no
fully intelligent system can be constructed� All systems will have some kinds of input knowledge
that they will be unable to exploit� Finally� according to test incorporation theory� an important
area in which to focus our research e�orts is to identify and analyze new test incorporation methods�

�Even this de
nition of intelligence may be too restricted� because it ignores the question of where the �input	
knowledge comes from that the system is trying to exploit� We are talking here only of �symbol level learning�	 not
�knowledge level learning�	 See Dietterich� ��
��

��



This requires us to develop a better understanding of the properties of digital computers and other
kinds of computing devices� since test incorporation methods succeed by exploiting the properties
of these devices� It may be the case that digital computers do not provide a good target for test
incorporations and that other computing devices must be developed� In any case� test incorporation
theory shows promise of providing us with guidance in our attempts to understand and reproduce
the mechanisms of intelligence�

� Acknowledgments

This research was supported in part by the National Science Foundation under grant numbers
IST�������� and DMC��������� The authors thank Nicholas Flann for a critical reading of earlier
drafts of this paper�

� References

Amarel� S� ����� On the representation of problems of reasoning about actions� In Michie �ed���
Machine Intelligence �� U� of Edinburgh Press�

Amarel� S� ����� Program synthesis as a theory formation task�problem representations and
solution methods� Rep� No� CBM�TR����� Department of Computer Science� Rutgers
University�

Bennett� J� and Dietterich� T� Forthcoming� Applying test incorporation to derive e
cient algo�
rithms�

Buchanan� B� G� and Feigenbaum� E� A� ����� Dendral and Meta�Dendral� Their applications
dimension� Arti�cial Intelligence� ��� �$���

Cohen� D� ����� Automatic compilation of logical speci
cations into e
cient programs� In Pro�

ceedings of AAAI�	
� Los Altos� Morgan�Kaufmann� ��$���

Dietterich� T� G�� ����� Learning at the Knowledge Level� Machine Learning� � ����

Kahn� K� M� ����� A partial evaluator of Lisp written in Prolog� UPMAIL memo� Department of
Computing Science� Uppsala University�

Kant� E� ����� E
ciency considerations in program synthesis� A knowledge�based approach� Doc�
toral dissertation� Rep� No� STAN�CS�������� Department of Computer Science� Stanford
University�

Lindsay� R�� Buchanan� B�� Feigenbaum� E�� and Lederberg� J� ����� Applications of Arti�cial

Intelligence to Organic Chemistry� The Dendral Project� New York� McGraw�Hill�

Mostow� D� J� ����a� Machine transformation of advice into a heuristic search procedure� In
Machine Learning� Michalski� R� S�� Carbonell� J� G�� and Mitchell� T� M�� �eds��� Palo Alto�
Tioga� ���$����

Mostow� D� J� ����b� A problem�solver for making advice operational� In Proceedings of AAAI�	��
Los Altos� Morgan�Kaufmann� ���$���

��



Newell� A� ����� Heuristic programming� ill�structured problems� in Progress in Operations Re�

search� Arnofsky� J�� �ed��� New York� Wiley� ���$����

Newell� A� ����� The Knowledge Level� AI Magazine � ��� �$���

Rosenschein� J�� and Singh� V�� ����� The utility of meta�level e�ort� Rep� No� HPP�������
Department of Computer Science� Stanford University�

Shapiro� E� ����� �ed�� Third International Conference on Logic Programming� Lecture Notes In
Computer Science No� ���� Berlin� Springer Verlag� ��$���

Simon� H� A�� and Kadane� J� B� ����� Optimal problem�solving search� all�or�none solutions�
Arti�cial Intelligence� � ��� ���$����

Smith� David E�� and Genesereth� M� R� ����� Ordering conjunctive queries� Arti�cial Intelligence�
�� ��� ���$����

Smith� David E� ����� Controlling Inference� Doctoral Dissertation� Department of Computer
Science� Stanford University�

Smith� Douglas R� In press� On the design of generate�and�test algorithms� subspace generators�

Tappel� S� ����� Some algorithm design methods� In Proceedings of AAAI�	�� Stanford� California�
��$���

Tarjan� R� E� ����� E
ciency of a good but not linear set union algorithm� J� Association for

Computing Machinery� ��� ���$����

��


