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Abstract:

This chapter develops a taxonomy of learning methods using techniques based
on Newell’s knowledge level. Two properties of each system are defined: knowl-
edge level predictability and knowledge level learning. A system is predictable
at the knowledge level if the principle of rationality can be applied to predict
its behavior. A system learns at the knowledge level if its knowledge level de-
scription changes over time. These two definitions can be used to generate the
three-class taxonomy. The taxonomy formalizes the intuition that there are two
kinds of learning systems: systems that simply improve their efficiency (symbol-
level learning; SLL) and systems that acquire new knowledge (knowledge-level
learning; KLL). The implications of the taxonomy for learning research are
explored. Automatic programming research can provide ideas for SLL. Devel-
opment of methods for KLL must rely either on the development of a principle
of plausible rationality or on the construction of learning methods that work
well only for certain kinds of environments. Explanation-based generalization
and chunking methods address only SLL and do not provide solutions to the
problems of KLL.



1 Introduction

In his AAAI President’s Address, Allen Newell (1981) introduced an interesting method for describ-
ing the “knowledge” contained in a program. The method is based on viewing computer programs
as rational agents at a “knowledge level.” An intriguing application of Newell’s method is to use it
to define “learning” to be any process that increases the knowledge contained in a program. The
purpose of this chapter is to investigate this definition and explore its consequences for machine
learning research.

The chapter is organized as follows. In section 2, we review Newell’s definition of the knowledge
level and describe a modification of that definition appropriate for analyzing learning programs.
Two important properties—knowledge level predictability and knowledge level learning—are de-
fined. In section 3, we perform a knowledge level analysis of three learning systems and determine
which systems possess these two properties. Based on this analysis, section 4 describes a three-class
taxonomy of learning systems and attempts to characterize each of the classes precisely. In section
5, three general issues raised by the taxonomy are discussed. Finally, section 6 summarizes the
main points of the chapter.

2 The Knowledge Level

2.1 Newell’s description of the knowledge level

The purpose of the knowledge level is to provide a tool for describing systems and predicting their
behavior. While many levels of description are adequate for predicting behavior—for example, the
subatomic level, the register-transfer level, or the symbol level—the goal of the knowledge level is
to predict behavior without examining the internal structure of the system. Our goal is to predict
the future behavior of the system by considering its past (externally observable) behavior and any
new information it has received from the environment.

Let us begin with some definitions. A system is defined to be everything contained within a
given boundary. Everything outside the boundary is called the environment. The behavior of the
system is the sequence of output actions (or information) that cross the boundary from the system
to the environment.

At the knowledge level, a system is simply described by a body of knowledge. Included in this
knowledge is a set of goals that the system is trying to achieve. Also included in this knowledge is
knowledge of the possible actions that are available to the system.

To predict the behavior of the system, we treat the system as if it were a rational agent. A
rational agent is any system that obeys the principle of rationality, which states that

If the agent has knowledge that one of its actions will lead to one of its goals, then the
agent will select that action as one of the possible actions to perform next.

Hence, given the knowledge, goals, and available actions of the agent, we can arrive at a prediction
of its future behavior.

For example, if we know that an agent named Garfield is hungry (i.e., has the goal of eating
food) and that Garfield knows there is a pan of lasagna in the refrigerator and that Garfield knows
that he is capable of opening the refrigerator, obtaining the lasagna, and eating it, then we can
predict that Garfield will do exactly that. Because we are assuming that Garfield is rational, we
assume that he will realize the connection between his goals and his knowledge and act accordingly.

Unfortunately, the rationality principle is not always able to predict uniquely the future behavior
of the system. Multiple goals, multiple action sequences, and inconsistent or incomplete knowledge
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can each prevent unique prediction. For example, suppose that Garfield, in addition to having the
goal of eating food, also has the goal of getting as much sleep as possible. These two goals conflict,
and the principle of rationality can not tell us which goal will take precedence at any given time.

Similarly, suppose that Garfield encounters several refrigerators rather than only one. In this
situation, several alternative actions are available, each of which will achieve his goal of eating food.
The principle of rationality cannot predict which refrigerator he will open first. All it can do is
predict that at least one of the refrigerators will be opened and its contents consumed.

Finally, suppose Garfield’s knowledge is contradictory or incomplete. As an example of con-
tradictory knowledge, consider the following situation. Assume, as above, that Garfield knows all
refrigerators contain food (unless he has eaten the food). But assume in this case that Garfield
notices that the refrigerator in question is unplugged and he has the knowledge that unplugged
refrigerators do not contain food. What will he do? Will he only consider the first rule (that all
refrigerators contain food) and open the refrigerator? Will he only consider the second rule (that
all unplugged refrigerators do not contain food) and ignore the refrigerator? Will he realize that his
own knowledge is contradictory and find some way to resolve the contradiction? The principle of
rationality cannot give us the answer. The rationality principle is also unable to provide predictions
in the case of incomplete knowledge. Suppose Garfield knows nothing about ice chests and that he
encounters one in his kitchen. How will he behave?

All of these three problems—multiple goals, multiple actions, and incomplete or contradictory
knowledge—arise frequently in AI systems. Hence, it would appear that the rationality principle
(and the knowledge level on which it is based) would not be very useful. As we shall see below,
however, there are many systems for which the rationality principle can be applied to derive useful
predictions. Let us therefore make the following definition.

Definition 1 A system is said to be predictable at the knowledge level if its behavior can be
predicted using the principle of rationality.

Suppose now that we wish to predict the behavior of a particular system, S. There are three
problems that we must solve before we can apply the principle of rationality.

1. We must determine what knowledge S contains. This is difficult because knowledge is not a
concrete substance, nor is it always localized in discrete data structures within the system.
Hence, we cannot determine the knowledge contained in S by simply inspecting its internal
structure.

2. We must have some way of making this knowledge concrete so that we can manipulate it
using the rationality principle. Otherwise we have no way of deciding ourselves which actions
of S will, according to the knowledge in S, achieve S’s goals.

3. We must decide what knowledge is acquired by S when new inputs are received from the
environment. This is difficult, because all perception (of environmental inputs) involves in-
terpretation; the problem of perception has resisted philosophical analysis for centuries.

Newell proposes solutions to each of these problems, but as we shall see, the solutions are only
approximate. First, to determine the knowledge contained in S, Newell applies the principle of
rationality in reverse. We begin by observing the behavior of S. Then we attribute to S a body of
knowledge (including goals) that suffices to make S’s behavior rational. We then use this attributed
knowledge to predict future behavior.

To clarify this solution, let us again consider the Garfield agent. Assume that we do not know
what knowledge is contained in Garfield, but we observe Garfield walk to the refrigerator, open it,
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remove all of the contents (a plate of lasagna, a meat loaf, and a carton of milk), and eat each item.
This behavior would be rational if we attribute to Garfield the knowledge that everything in the
refrigerator is food, that Garfield has the goal of eating (large quantities of) food, and that Garfield
knows how to walk to the refrigerator, open it, and eat the contents. In the future, we can predict
that Garfield will repeat this behavior when he is hungry. We can also make other predictions. For
example, if Garfield sees a plate of lasagna across the room, we can predict that he will walk over
to the plate and eat the lasagna because we know (a) that he has the goal of eating food, (b) that
he knows how to walk, (c) that he knows lasagna is food, and (d) that he knows the lasagna is
there because he saw it.

This approach to using the principle of rationality in reverse has three interesting consequences.
First, the knowledge ascribed to S will always be consistent.1 This is because if S internally has
two conflicting items of knowledge, only one of these items will contribute directly to the selected
action. The actions of S are always unambiguous even if the underlying knowledge is not. Second,
for similar reasons, the goals ascribed to S will not conflict. Any internal goal conflict will have
been effectively resolved when S finally acts. Third, if alternative actions were available, there is
no way that we, as observers, can know whether S knew about them. Hence, there is no need to
ascribe knowledge of alternative actions in order to view S’s behavior as rational. In short, because
we are using the principle of rationality to ascribe knowledge based on behavior, it is necessarily the
case that that behavior can be predicted (ex post facto) at the knowledge level using the principle
of rationality.

Newell solves the second problem—of making knowledge concrete—by using a second system,
S2 as a model of S. To construct a knowledge-level model of S, we attribute to S2 a set of symbol
structures (Newell & Simon, 1976) such that S2 would behave the same way that S was observed
to behave. We then use S2 as a model of the future performance of S. We will call S2 the modelling
system.

Consider Garfield once again. To predict Garfield’s future behavior, we could use the STRIPS
(Fikes, Hart & Nilsson, 1972) planning system. We could give STRIPS operators for walking,
opening the refrigerator, and eating, as well as the ability to visually recognize food containers. We
could then employ STRIPS to generate our predictions. STRIPS is able, at least in situations of
this kind, to determine what action sequence will achieve its goals. Hence, it provides a sufficiently
rational model of Garfield.

Newell solves the third problem—of assigning knowledge to environmental inputs—by using the
modelling system S2 again. The knowledge contained in an input from the environment is whatever
knowledge S2 can know by observing that same input (using the knowledge already ascribed to S

to aid in interpreting the input).
Consider the Garfield example one last time. When Garfield sees the plate of lasagna sitting

across the room, we ascribe to him the knowledge that there is a plate of lasagna sitting across the
room (or at the very least, that there is a quantity of food sitting across the room). The basis for
this ascription is twofold. First, we have seen previously that Garfield was able to recognize lasagna
when he opened the refrigerator door. Second, when we look across the room (using ourselves as
S2), it sure looks like a plate of lasagna to us!

Each of Newell’s solutions to these three problems introduces uncertainty into the knowledge
level description of the system S. Let us first consider the uncertainties arising from the use of
the principle of rationality (in reverse) to ascribe knowledge. The rationality principle does not
uniquely determine the knowledge contained in a system. Given a particular sequence of behavior by

1It is certainly possible to ascribe inconsistent knowledge to an agent, but such an ascription would then prevent
the rationality principle from predicting the observed behavior.
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S, there are many alternative bodies of knowledge that can be ascribed to S such that its behavior
is rational. In Garfield’s case, he might have the goal of maximizing his weight and therefore
consume large quantitites of food even when he is not hungry. Or perhaps even more fancifully,
he might believe that the refrigerator is going to explode and that the only way to prevent this is
to open it and consume the contents. Neither of these knowledge level descriptions is particularly
plausible however, because they conflict with our own knowledge (as observers playing the role of
the modelling system S2). In general, an observer who is performing a knowledge level analysis
must apply his or her own knowledge to construct the most plausible knowledge level description
of the system.2

In addition to the uncertainties introduced when we ascribe knowledge to S, further approxima-
tions arise when we employ a modelling system, S2 as a concrete model of S. There is no physical
system that behaves as a fully rational agent. This is because no (finite) physical system can ex-
plore all of the possible connections between its knowledge and its goals. As a result, knowledge
level predictions (based on the symbol level calculations of S2) must always be approximate, and
not exact. STRIPS, for example, is not entirely appropriate as a model of Garfield, because it has
many shortcomings: there are plans it cannot construct, it can get caught in infinite loops, and
so on. Garfield has shortcomings himself, of course, but these are unlikely to be the same as the
shortcomings of STRIPS.

Finally, Newell’s solution to the problem of environmental input is the third point at which
our knowledge-level description of S may only be approximate. Every act of perception involves
interpretation, and consequently, different modelling systems (different S2’s) receiving identical
inputs may interpret them in wildly different ways.

When we combine the uncertainties introduced by our choice of S2 for interpreting inputs and
computing predictions with the uncertainties introduced by the use of the principle of rationality
to ascribe knowledge, we see that the knowledge level is inherently approximate—indeed, Newell
calls it “radically approximate.” Nevertheless, it can provide a very useful level of description of
complex systems.

2.2 The computational-closure knowledge level

In this chapter, we are interested in determining the limits of what a given learning system knows.
Consequently, it is useful for us to adopt a slightly modified definition of the knowledge level.

Normally, we attribute knowledge to a system S based on S’s behavior over some rather short
period of time. In such cases, there is a tendency to underestimate the knowledge contained in S

for two reasons. First, we have observed only a small sample of the total behavior of which S is
capable. Second, the behavior that we have observed was probably selected based on an incomplete
consideration by S of its knowledge. Any finite agent must make decisions without considering all
of the consequences and ramifications of those decisions. Hence, S may have missed an opportunity
that, given an indefinite amount of computational resources, it would have discovered.

To circumvent this problem, let us define the computational-closure knowledge level (KLcc)
of a system as follows. To determine the knowledge contained in a system S, we will allow S

infinite computational resources before it selects the actions to perform. We will then construct a
knowledge level description of S following the approach described above.

2A programmer analyzing (or designing) a program can learn something about the knowledge it contains by
inspecting the program’s data structures. If the program is well-designed, these data structures will have a declarative
reading that aligns well with a knowledge level description. However, the programmer must always be wary of the
“pretend it’s English” problem (McDermott, 1976).
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In practice, of course, we cannot permit any program to consume infinite time and space
resources. However, by inspecting the implementation of the program, we can often determine
whether additional computational resources would change the actions selected by the system.

There are two important points to note about this definition of KLcc. First, because the
knowledge level (and particularly KLcc) is based only on the behavior of a system, it ignores all
issues concerning how the system is implemented. This is particularly true for KLcc, where even
the computational limitations of the implementation are ignored. Hence, if two programs have the
same behavior but one program is much less efficient than the other, then the two systems contain
the same knowledge (from the point of view of KLcc).

Second, because KLcc ignores questions of implementation, it provides a very nice specifica-
tion level for describing the desired properties of systems that are not yet implemented. This
specification defines the meaning of correct and incorrect behavior for the system.

The idea of using the computational closure can be traced to a paragraph in Newell’s paper in
which he discusses one of the many informal uses of the term “knowledge” in describing AI systems:

[W]hen we say, as we often do, that a program “can’t do action A, because it doesn’t
have knowledge K,” we mean that no amount of processing by the processes now in the
program on the data structures now in the program can yield the selection of A. (E.g.,
“This chess program can’t avoid the tie, because it doesn’t know about repetition of
positions.”) Such a statement presupposes that the principle of rationality would lead
to A given K, and no way to get A selected other than having K satisfies the principle
of rationality. If in fact some rearrangment of the processing did lead to selecting A,
then additional knowledge can be expected to have been imported, e.g., from the mind
of the programmer who did the rearranging (though accident can confound expectation
on occasion, of course).

In other words, when we want to claim that a program does not know some knowledge K, we
must show that no matter what computational resources are given to the program, it will never act
as if it knows K.

2.3 Knowledge Level Learning

Now that we have reviewed the definition of the knowledge level and the techniques for applying
that definition, we can turn to the main concern of this chapter—the definition of “learning.” Let
us define knowledge level learning (KLL) as follows:

Definition 2 A program is said to exhibit knowledge level learning if its computational-closure
knowledge level description changes over time.

In other words, suppose that at time t1 we analyze system S using KLcc and determine that
it contains knowledge K1. At some later time t2, after S has changed in some way, we repeat the
analysis and conclude that S now contains knowledge K2. If K2 is different from (and preferably
larger than) K1, then we say that S has learned at the knowledge level.

3 Knowledge Level Analysis of Three Learning Systems

In this section, we will apply the tools described above to analyze three learning systems. For each
system, we will be interested primarily in two questions: (a) can the system’s behavior be predicted
at the knowledge level and (b) does the system exhibit knowledge level learning?
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3.1 Explanation-based Generalization

First, let us consider explanation-based generalization (EBG) systems such as the safe-to-stack

system described in Mitchell, Keller, and Kedar-Cabelli (1986). The task of this system is to de-
termine, by examining descriptions of two objects, whether it is safe to stack one of the objects
on top of the other. The system starts with a “domain theory” that provides an inefficient defi-
nition of safe-to-stack. As it learns, it develops a much more efficient definition using only the
“operational” features of the theory.

If, prior to any learning, we analyze the knowledge in the system using KLcc, we find that it
already knows how to perform its task for any two objects.3 Internally, it determines whether the
objects are safe-to-stack by constructing a proof in its domain theory.

During the learning process, training examples of safe-to-stack objects are presented to the
system. Interestingly, from the KLcc point of view, these training examples do not provide any new
knowledge to the system—it already knows that they are safe-to-stack. However, as Mitchell et
al. point out, the training examples provide guidance to the “concept operationalization” process.
The EBG program constructs a more operational definition of safe-to-stack by constructing an
explanation of why the example objects are safe-to-stack and then using the proof to construct
a generalized description of all pairs of objects to which the same proof could apply. Hence, from a
training example in which object a has a volume of 3 and a density of 2 and object b has a volume
of 5 and a density of 4, the safe-to-stack program might derive the general statement that object
x can be safely stacked on object y if volume(x) × density(x) < volume(y) × density(y).

After learning, a KLcc analysis of the knowledge in the system shows that the system is still
capable of performing its task for any two objects. Of course now the task is performed by simply
applying the operational definition of safe-to-stack rather than by applying the domain theory.
Hence, the speed at which the system performs is much faster. However, at the knowledge level, this
change in implementations is invisible, because given infinite computational resources, the system
produces the same behavior.

Let us turn to our two main questions: knowledge level predictability and knowledge level learn-
ing. Our analysis shows that the safe-to-stack program is predictable at the knowledge level—
even while the program is “learning.” Furthermore, according to the KLcc analysis, explanation-
based generalization programs such as the safe-to-stack program do not exhibit knowledge level
learning. Hence, our proposed definition of learning does not capture the kind of learning performed
by these systems.

3.2 Database Systems

The second kind of learning system we wish to consider is a simple deductive database system, such
as Prolog (Clocksin & Mellish, 1984), in which the task is to accept facts and rules and to provide
answers to queries. While such systems are not usually considered learning systems, we will see
that our definition of knowledge level learning labels them as such.

To make things concrete, consider an ordinary Prolog interactive session. Suppose we type

asserta((mortal(X) :- man(X))).
asserta(man(socrates)).

This can be interpreted as asserting that all men are mortal and that Socrates is a man. We now
ask Prolog whether Socrates is mortal:

?- mortal(socrates).

3The objects are assumed to be represented using only operational features.
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yes

Prolog returns yes. Now suppose we ask it whether Homer is mortal:

?- mortal(homer).
no

It returns no, which in this case, we will interpret as meaning that it doesn’t know.4 But suppose
that we tell it that Homer is a man:

asserta(man(homer)).

Now, Prolog will answer that Homer is mortal as well:

?- mortal(homer).
yes

It has learned something new.
A knowledge level analysis of programs like Prolog is very straightforward, because the internal

structures of these programs can be viewed as logical sentences. We begin by attributing to Prolog
the goal of printing correct answers. After the first two assertions have been entered, we also ascribe
to Prolog the knowledge that all men are mortal and that Socrates is a man. Given even modest
computational resources, we see from the first query that Prolog also knows that Socrates is mortal.
However, Prolog does not know whether Homer is mortal (or whether he is a man), and no amount
of computation will allow it to derive that knowledge.

When we tell Prolog that Homer is a man, we are giving Prolog some new knowledge. It
combines this new knowledge with its previous knowledge and therefore knows that Homer is
mortal as well.

In summary, let us consider the answers to our two questions of knowledge level prediction and
knowledge level learning. First, the full behavior of Prolog, as it processes assertions and queries, is
predictable at the knowledge level. Second, the KLcc analysis of Prolog shows that it does perform
knowledge level learning because its knowledge level description changes over time. At one time
(after the first two assertions), it did not know that Homer was mortal and at a later time (after
the third assertion), it did.

3.3 Inductive learning programs

The third class of learning programs that we wish to consider is the class of programs that acquire
general rules by inductive inference from training examples. For concreteness, we will consider the
ID3 program developed by Ross Quinlan (1986).5

The performance task of ID3 is to classify objects (or events) into one of a finite number of
classes. Each object is described to ID3 as a simple vector of features, and ID3 produces as output
the name of the class to which that object belongs. The possible features, feature values, and class
names are defined to ID3 during program initialization.

ID3 also accepts input in the form of training examples—examples of objects with the correct
classifications given as well. By analyzing these examples, ID3 constructs and maintains definitions
for each of the classes in terms of the object features.

4We are ignoring the negation-as-failure feature of Prolog. Because SLD resolution is complete, failure to find a
proof (which is what no means), indicates that no proof exists. Consequently, Prolog does not know whether Homer
is mortal.

5Our example treats ID3 as if it were an incremental learning program. This could be accomplished by re-running
ID3 after each new example is presented. Alternatively, the incremental version of the algorithm, ID4 (Schlimmer &
Fisher, 1986), could be used instead.
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Let us consider a particular session with ID3. Suppose there are two (mutually exclusive) classes
of objects, Pretty and Ugly. Each object is described by three features: Color (red or black),
Size (small or large), and Shape (circle or square). Suppose we begin by presenting ID3 with
a single training example: a small, red, square:

[red, small, square] --> Pretty

Next, suppose that we ask ID3 to classify a new object, a large, black, circle. In response, ID3
will answer “Pretty.” In fact, ID3 will classify any object as pretty after seeing only one example.
The definition it has constructed for Pretty states that all objects are pretty.

Now suppose we present a second training example, a large, black square that is ugly.

[black, large, square] --> Ugly

Now if we ask ID3 to classify a large, black, circle, it will answer “Ugly.” The definition that it
has learned is that all red things are pretty and all black things are ugly. It selected this definition
because the color is sufficient to distinguish between the two training examples. It could have just
as well selected size, because, based on the two examples, size is also a discriminating feature. The
choice of color rather than size was arbitrary.

A knowledge level analysis of ID3 must be done carefully. Therefore, let us employ first-order
predicate logic as our second system, S2, for performing the analysis. Let us also postpone for
a moment the question of what knowledge ID3 contains initially and begin by considering the
knowledge in ID3 after the first training example is presented. Clearly, based on the performance
of ID3, the system contains the knowledge that all objects are pretty:

∀ x Pretty(x)

However, after the second training example, ID3 now contains the knowledge that all red objects
are pretty and all black objects are ugly:

∀ x Color(x) = red ⊃ Pretty(x)

∀ x Color(x) = black ⊃ Ugly(x)

Therefore, the knowledge level description of ID3 is changing over time—it is exhibiting knowledge
level learning.

In the two previous kinds of learning systems, we were able to predict the behavior of the system
from the knowledge level. Can this be done for ID3? Let us focus on the change in knowledge
that occurs as a result of the second training example. What knowledge is provided to ID3 by the
second example itself? According to S2, it simply states that a large, black square is ugly:

Size(e2) = large ∧ Color(e2) = black ∧ Shape(e2) = square ∧ Ugly(e2)

This contradicts the knowledge contained in ID3 at this point (namely, ∀ x Pretty(x)). Because of
this contradiction, the principle of rationality cannot provide us with a unique prediction for the
future behavior of ID3. Therefore, ID3 is not predictable at the knowledge level.

This contradiction between the knowledge in the system and the knowledge provided by inputs
from the environment did not arise in either of the two previous learning systems. The reason for
this is that neither of those systems “went beyond” the knowledge provided by the environment to
make “inductive leaps.” Contradictions cannot arise in EBG systems, because the training instances
are already derivable from the domain theory and hence do not tell the learning system anything
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new. Contradictions cannot arise in the Prolog examples because negated assertions cannot be
entered.6

To summarize, let us consider our two questions of knowledge level prediction and learning once
again. The analysis shows that ID3 is not predictable at the knowledge level. The analysis also
shows that ID3 exhibits knowledge level learning.

Before leaving ID3 altogether, let us consider what happens when the first training example
is processed. Before the example is presented, ID3 will not classify any objects as being either
pretty or ugly. Therefore it is difficult to characterize its starting knowledge. Russell (1986) has
proposed that the starting knowledge be described by logical sentences called determinations. In
this case, the determination would state that some combination of color, size, and shape determines
the classification:

∀ x, y Color(x) = Color(y) ∧
Size(x) = Size(y) ∧

Shape(x) = Shape(y) ⊃ [Pretty(x) ≡ Pretty(y)].

This seems to capture fairly well the intent of the user in specifying these features to ID3.
However, from this weak determination and the knowledge provided by the first example (that

a small, red, square is pretty), the principle of rationality cannot predict how ID3 will classify other
objects, such as large, black circles. The problem is that our knowledge level description of ID3
is incomplete. All it could predict is that ID3 will classify all other small, red, squares as pretty
also. Hence, the same problems that arose with the second training example—the failure of the
knowledge level to predict future performance—arise with the first example as well.

If we are willing to attribute more starting knowledge to ID3, we can construct a knowledge
level description that predicts ID3’s behavior after the first training instance only. For example,
suppose we ascribe to ID3 the starting knowledge that either “all objects are pretty” or else “all
objects are ugly,”

[∀ x Pretty(x)] ∨ [∀ x Ugly(x)].

Given the first training example (a small, red square that is pretty), ID3 could logically conclude
that all objects must be pretty, because the existence of a single pretty object rules out the alter-
native hypothesis that “All objects are ugly.”

This “trick” resolves the problem of the first training example, but no similar trick can be
used to predict ID3’s behavior after the second training example. The fundamental problem is
that inductive learning programs go beyond their starting knowledge (and the knowledge received
from the environment) to make “inductive leaps”. This shows up as nonmonotonic behavior in this
example: ID3 classifies the large, black, circle as pretty after the first training example, but after
the second training example, it “changes its mind” and classifies it as ugly.

In summary, ID3 exhibits knowledge level learning, but more significantly, its behavior not
predictable at the knowledge level.

4 A Taxonomy of Learning Systems

The three learning systems discussed in the last section were chosen to illustrate the relationship
between knowledge level learning and knowledge level prediction. The explanation-based general-
ization programs do not perform knowledge level learning but they are predictable at the knowledge

6Again, we are ignoring the negation-as-failure feature of Prolog. It can easily lead to contradictions and non-
monotonic behavior. Similar problems arise in deductive database systems when they need to perform belief revision
(Winslett, 1986).
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Figure 1: A taxonomy of learning systems

level. The deductive database systems exhibit both knowledge level learning and predictability at
the knowledge level. Finally, the inductive learning programs exhibit knowledge level learning but
are not predictable at the knowledge level.

Figure 1 summarizes this relationship. The set of systems that perform knowledge level learning
partially intersects the set of systems that are predictable at the knowledge level. Based on the
definitions of knowledge level learning and knowledge level predictability, we can give reasonable
names to these three classes of learning systems. We call the first class (EBG systems) symbol level
learning (SLL) systems, because their learning behavior is apparent only at the symbol level.

Definition 3 Symbol level learning is improvement in computational performance that yields no
change in the computational-closure knowledge level description of the system.

The second class (Prolog-like systems), we call determined knowledge level learning (DKLL)
systems, because their behavior can be determined (predicted) at the knowledge level using the
principle of rationality. These systems can also be viewed as symbol level learning systems that
also receive inputs from some external source of knowledge.

Definition 4 Determined knowledge level learning is knowledge level learning that can be described
(and predicted) at the knowledge level.

Finally, we call the third class (which includes AQ11, ID3 and other inductive learning programs)
non-determined knowledge level learning (NKLL) systems.

Definition 5 Non-determined knowledge level learning is knowledge level learning that cannot be
described (or predicted) at the knowledge level.

Now that we have developed our taxonomy of learning systems, let us attempt to characterize
each of the categories in more detail.
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4.1 Symbol level learning

As we have seen above, the goal of a symbol level learning system is to improve its performance
as much as possible without changing the knowledge level view of the system. Another way of
phrasing this is that SLL is correctness-preserving program improvement.

This observation raises two important points. First, the knowledge level description of the
system serves as a specification for “correct” behavior. This is particularly useful, because it
provides a way of evaluating and comparing different SLL techniques. As we shall see below, there
is no similar definition of “correctness” for KLL systems, and this has made progress in this area
more difficult.

Second, an important source of techniques for SLL is the work that has been accomplished in
the areas of automatic programming and algorithm design. Research such as Mostow’s (1983) FOO
program and Keller’s (1983) analysis of LEX2 and Meta-LEX show how automatic programming
methods can be adapted and applied to machine learning problems.

4.2 Knowledge level learning

Knowledge level learning (both DKLL and NKLL) can also be characterized precisely. A system
performs knowledge level learning if and only if (a) it receives input from the environment and (b)
that input causes a change in the behavior of the system (as compared to the behavior without the
input or with some other input).

To see that these two conditions are necessary, consider the KLcc analysis of a system that
receives no inputs from the environment. Such a system, at the KLcc level, is simply permitted
to reach computational closure, at which point, we ascribe knowledge by observing its behavior.
Suppose at some future time we again wish to determine the knowledge contained in the system.
Again we permit the system to reach computational closure, and the same resulting knowledge will
be obtained (because the computation is deterministic7). The only difference in the system at the
later time may be that it was already at or near computational closure, because it remembered
results from the previous computation. Hence, condition (a) is required for knowledge level learning.

Suppose now that we have a system that accepts input from the environment, but this input
does not contribute to any change in behavior. Because the knowledge level description of the
system is derived from its behavior, this means that there will be no change in the knowledge level.
Therefore the system will not exhibit knowledge level learning. Explanation-based generalization
programs have precisely this property. The training examples do not cause any behavioral changes.

Given that both conditions are necessary, we must now show that they are sufficient. By condi-
tion (b), the behavior of the system changes over time. By condition (a), the system “pauses,” and
therefore, these changes in behavior will be observable. Hence, the system will exhibit knowledge
level learning.

These two conditions therefore provide a complete characterization of knowledge level learning.

4.3 Non-determined knowledge level learning

NKLL is much more difficult to characterize. Although we normally associate it with any kind of
inductive or non-monotonic reasoning technique, the use of these techniques does not necessarily
produce NKLL.

7If the system contains a genuine source of nondeterminism—e.g., the system clock time—then that is considered
to be an input to the system.
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The LEX system, for example, employs inductive techniques to learn search control heuristics.
However, these heuristics merely improve the speed with which the system performs, and hence,
the overall system exhibits only SLL (more on this below).

It is also possible for a system to exhibit NKLL when it is applying primarily explanation-
based learning techniques. The LEAP system (Mahadevan, 1985), for instance, accepts training
examples of VLSI design steps and learns general rules for VLSI design. This process in itself
is simple EBG in which the goal concept is “legal VLSI design step” and the learned rules are
particular specializations of this concept. However, when LEAP applies these rules, it gives them
preference over other design steps that, while provably correct according to the goal concept, have
not been observed by LEAP. In other words, LEAP assumes that the training examples it receives
are also examples of “desirable VLSI design steps.” It expects that applying these rules will lead
to good designs, not merely legal designs. A knowledge level analysis of LEAP shows that prior to
learning, it is capable of producing all legal VLSI designs, whereas after learning, it has learned to
produce (and recognize) only good designs. It has performed NKLL. Notice however that the use
of EBG techniques has nothing to do with the NKLL. The “inductive leap” occurs when LEAP
prefers the observed design steps to other, legal steps.

Fundamentally, the only characterization of NKLL systems is that they cannot be predicted at
the knowledge level. To predict the behavior of the ID3 system, for example, we must leave the
knowledge level and descend to the symbol level. Here, we see that ID3 represents its knowledge
(of, e.g., pretty and ugly objects) as a decision tree. During learning, it prefers the smallest decision
tree consistent with the data. Hence, after seeing one example of a pretty, small, red square, ID3
constructs the degenerate tree (a single leaf node) that simply labels all objects as pretty. After
seeing the second example of an ugly, large, black square, this tree is inconsistent, so ID3 constructs
a tree in which the root node tests the color of the object. Red objects are labelled pretty; black
objects are labelled ugly. This tree is (one of) the smallest tree(s) consistent with the data. It
is this preference for syntactic simplicity (smallest trees) that provides a way of predicting ID3’s
behavior. This preference is usually called a “bias” (Utgoff & Mitchell, 1982).

This lack of predictability at the knowledge level means that the knowledge level cannot provide
a specification of correct behavior for NKLL systems. This has important implications for machine
learning research, because, without a method for specifying the correct behavior of a system, it is
difficult to evaluate alternative implementations of that system.

There are two avenues to explore in response to this problem. One approach is to develop an
extension to the knowledge level based on the notion of rational plausible reasoning. The other
approach is to shift to a “situated action” definition of rational behavior, in which we consider
methods that are rational and plausible only in certain environments (Barwise & Perry, 1983). Let
us consider each of these in turn.

A theory of rational plausible reasoning would dictate what new beliefs should be adopted when
new information is received from the environment. It would provide a general method by which
prior beliefs could be revised in the light of new evidence. The best tool we have for developing
such a theory is probability theory. Unfortunately, like logics, probability theory is a symbol
level mechanism, and it requires something analogous to model theory in order to be applied as a
knowledge level analysis tool. This is an important area for future research, and significant progress
is being made (Nilsson, 1986).

The alternative approach—the situated action approach—has been explored in much greater
depth. The basic theme of this approach is to consider the relationship between the system and its
environment rather than focusing on the system alone. Notice, in particular, that the knowledge
level defines the knowledge contained in a system without reference to the environment. Conse-
quently, the knowledge can be completely inaccurate. Similarly, efforts to construct theories of
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plausible rationality also focus on the beliefs of the system. The advantage of such “environment-
independent” methods is that they can be applied in any environment. Hence, the principle of
rationality can be applied to predict the behavior of any rational system in any environment, no
matter how hostile or foreign it may be.

When we shift to the situated-action viewpoint, we give up this environment-independence.
Instead of searching for learning methods that work in all possible worlds, we focus instead on
learning methods that work in our world. Inverting this argument, we stop asking “what methods
would be rational in all environments?” and instead ask “in what environments would this method
appear to be rational?”

The simplest instance of this approach is the line of research that is exploring the space of
learning methods. In this research, new methods are invented and then tested to see how well they
work on a variety of test domains. Different groups of researchers are working on different aspects
of intelligent systems.

One group of researchers is exploring the computational properties of various architectures and
exploiting their constraints to provide preferences (biases) for inductive learning (e.g., Genesereth,
1980). This is the approach of the connectionists (e.g., Hinton, Sejnowski & Ackley, 1984) and also
of the SOAR group (Steier, et al., 1987).

Another group of researchers—historically, the main stream of AI learning research—is exploring
various inductive learning algorithms, all within a conventional symbolic architecture. A recent,
healthy development is the use of common data sets to compare the performance of these learning
methods. Fisher (in press) and Kibler and Aha (1987) have used a data set originally developed by
Quinlan, Compton, Horn, and Lazarus (1986). A data set developed by Michalski and Chilausky
(1980) has been employed by Fisher (1987).

A third group is studying the role of vocabulary choice in learning systems, while holding the
learning method fixed (see, e.g., Lenat & Brown, 1984; Flann & Dietterich, 1985, 1986). Given a
specific learning problem, how can we choose the vocabulary so that the learning is made easy? In
current induction systems, a great deal of vocabulary engineering takes place behind the scenes. We
need to study this phenomenon and try to extract some principles. Are our vocabulary engineers
relying on their own knowledge of the “right answer” to guide their choices?

In all of these groups, the proof that a learning method is valuable is based on empirical testing.
Furthermore, the very nature of these methods appears to dictate that methods that perform well
in one domain or environment will perform poorly in others. This is the price of the situated-action
approach.

The situated-action approach is also being explored via theoretical methods. One of the earliest
attempts in this direction was Gold’s (1967) definition of identification in the limit. This criterion
states that, given enough training instances, the learning system should eventually converge on
the correct theory (i.e., concept, language, etc.). To demonstrate that a given learning method
converges, Gold (and his successors; see Angluin & Smith, 1983; Oshersson, Stob, & Weinstein,
1986) place certain restrictions on the environments in which the method is to operate. They then
prove that for any concept satisfying the given restrictions, the learning method will converge.

Identification in the limit is a very weak criterion, and it certainly does not completely char-
acterize the ideal learning system. Recent work by Valiant (1984) has produced a much more
interesting criterion: PAC learning (“probably approximately correct”). The idea is that an NKLL
program should, with high probability, adopt knowledge (or beliefs) that are approximately correct
(with respect to its environment). There are two opportunities for error under the PAC definition.
First, the learning system is occasionally permitted to adopt knowledge that is wildly incorrect.
Second, most of the time the knowledge adopted by the learning system will not be exactly correct,
but it will be close. Kearns, Li, Pitt & Valiant (1987) give a good review of recent progress in this
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area.
As with the proofs of identification in the limit, proofs of PAC learning require that we make

some assumptions about the nature of the environment (e.g., that the correct theory can be ex-
pressed as a formula in disjunctive normal form where each disjunct contains at most k terms).
Once we have some limits on the complexity of the environment, we can then show that, with high
probability, a given learning algorithm will produce knowledge that has a guaranteed error level.
(With low probability, the knowledge will exceed the error level.) Both the error level and the
bounded number of exceptions are given as functions of the number of examples observed.

In summary, the use or non-use of “inductive” methods is not sufficient to characterize NKLL.
Fundamentally, NKLL signals a failure of the knowledge level to describe and predict an important
kind of intelligent behavior. Hence, we must seek alternatives to the knowledge level. One alterna-
tive is to develop a principle of rational plausible reasoning and use it to extend the knowledge level
notion. The other alternative is to take a situated-action approach in which we consider methods
that are rational and plausible only in certain kinds of environments (Barwise & Perry, 1983). The
hope is that we can find methods that work over a wide range of environments (but of course, not
all).

5 Discussion

Now that we have developed our taxonomy of learning systems and analyzed in detail each kind,
we now turn our attention to some general issues raised by the taxonomy.

5.1 The definition of learning

One pleasing aspect of our taxonomy of learning systems is that it formalizes the intuition that
there are two very different kinds of learning: learning that improves performance and learning that
acquires new knowledge. For many years there has been some controversy about how ‘learning’
should best be defined. The majority of workers in machine learning subscribed to the following
“improved performance” definition (Simon, 1983):

Learning denotes changes in the system that are adaptive in the sense that they enable
the system to do the same task or tasks drawn from the same population more efficiently
and more effectively the next time.

This definition was always intended to include both SLL and KLL. The feeling was that perfor-
mance could be “improved” either by improving the efficiency with which existing knowledge was
used or by acquiring new knowledge (see, for example, Dietterich, et al., 1982). However, Simon
termed his definition “only partially satisfactory,” and other researchers (e.g., Scott, 1983) have
criticized it for excluding important kinds of learning. In particular, the improved performance
definition requires that there exist some performance task by which the improvement can be mea-
sured. Learning in the absence of a specific performance task is not true learning according to this
definition. In retrospect, we can see that this was all a maneuver to avoid talking about knowledge.
By defining knowledge in terms of problem-solving performance, it was possible to convert “acqui-
sition of knowledge” into “improvement of performance.” Newell’s clarification of the knowledge
level eliminates the need for this dodge. We can now come right out and say it: one kind of learning
is the acquisition of knowledge.
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5.2 Moving the system boundary

A second issue raised by the taxonomy, and particularly by the discussion of NKLL, is how the
knowledge level description of a system changes as we move the system boundary. The issue arises
most clearly in the LEX system (Mitchell, Utgoff & Banerji, 1983). LEX solves symbolic integration
problems in calculus. It contains a simple heuristically-guided uniform-cost problem solver and a
body of symbolic integration operators. When it begins, it has no search control heuristics, so it
simply conducts a breadth-first search. During the learning process, problems are solved and then
analyzed to extract search heuristics so that future problem solving is more efficient. After each
integration problem is solved, the sequence of operators on the successful path is analyzed to extract
positive and negative examples of cases where a given operator (e.g., integration by parts) should
have been applied. These are then generalized inductively to produce a general search heuristic for
that operator.

At the KLcc knowledge level, LEX is classified as a symbol level learning system, because before
learning begins, it is already capable of solving all (solvable) integration problems (given infinite
resources). The learning process simply speeds up this problem solving.

However, if we move the system boundary so that we are only considering the body of search
heuristics, then the inputs to this subsystem are the training examples and the outputs are judg-
ments concerning the advisability of applying a given operator in a given state. This subsystem
(call it H) is clearly learning at the knowledge level, because, prior to learning, it is incapable of
making any operator-selection judgments. After learning, it is capable of making such judgments.

Why could we not detect this KLL subsystem H when we considered the entire LEX system?
The reason is that the actions of H are not observable at the boundary of the entire LEX system.
The only thing that crosses the LEX boundary is the final solution to the integration problem. The
problem solver inside LEX is already capable of producing these outputs correctly before learning
even begins. In other words, by moving the system boundary, we change the behavior that is
externally observable and we change the performance task of the system.

This example raises two questions. First, if we expand the system boundary far enough, does
all learning become SLL? Second, if we shrink the boundary small enough, does all learning become
KLL?

The answer to the first question is probably “yes,” at least in the most extreme case. If
our universe is closed and we expand the boundary so that it encompasses the entire universe,
then no information or action flows across the boundary. Without inputs, we have seen that
KLL is impossible. Certainly without outputs, there is no externally visible behavior, and the
whole exercise becomes pointless. In less extreme cases, as long as some subsystem receives inputs
(indirectly) from the environment and produces outputs that influence the KLcc behavior of the
overall system, then KLL in the subsystem will be observable at the overall system boundary.
In the LEX case, the behavior of H does not change the behavior of LEX as a whole at the
computation-closure knowledge level, so it is invisible. Hence, in many cases, enlarging the system
boundary will not automatically “convert” KLL into SLL until the system is entirely isolated from
the environment.

The answer to the second question is a “yes”, although the reasons are not profound. As we
narrow the system boundary, we are likely to cut across lines of communication connecting our
selected subsystem with the larger system. Hence, our subsystem will be receiving inputs and
producing outputs. If changes in the inputs cause changes in the outputs, then the subsystem will
exhibit KLL. Any simple memory unit meets these conditions, since the output produced by the
unit depends on the inputs that were stored in it.
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5.3 “Justified generalization” is misdirected

A third issue pointed up by our three-part taxonomy of learning systems is that the goal of devel-
oping learning systems that produce “justified generalizations” is misguided.

When explanation-based generalization techniques were first developed, they were contrasted
with inductive learning techniques (see, e.g., Mitchell, 1983). The latter were criticized for mak-
ing “unjustified” inductive leaps, whereas the EBG methods are able to determine the correct
generalization analytically.

The knowledge level analysis shows that these two kinds of learning systems are attacking two
very different goals. The EBG systems are addressing the goal of improving “operationality” or
efficiency, while the inductive learning programs are attempting to acquire new knowledge. The
reason that EBG generalizations are “justified” is that the EBG systems already know the right
answer. If a learning system is attempting to acquire knowledge from external sources, it by
definition does not know the right answer. Therefore, this attempt to compare inductive leaps with
explanation-based generalizations is misguided—it compares apples with oranges.

This notion of “justified generalization” turns out to be incorrect for another reason, having
nothing to do with knowledge-level learning. Keller (1987) points out that there is no particular
reason to assume that concepts expressed using an “operational” vocabulary are actually opera-
tional (i.e., actually improve the performance of the system). For example, in LEX2, an analysis
of the training example

∫
5xdx produces the following rule:

If current state matches
∫

rf(x)dx

Then apply OP3:
∫

rf(x)dx −→ r
∫

f(x)dx.

This heuristic will be inefficient for problems like
∫

0x2dx.

5.4 Chunking is not a completely general learning mechanism

The final issue to be discussed in this section concerns the work of the SOAR group in their search
for a general learning mechanism. A learning mechanism is a subsystem that, when incorporated
into a problem-solving system, confers some learning capabilities on the system.

There are two ways in which a learning mechanism can be “general.” One is that it is capable of
being incorporated into a wide variety of problem-solving systems. Chunking is a general mechanism
in this sense, because it places very few constraints on the problem-solving system.

The second way in which a learning mechanism can be general is if it confers a wide range of
learning capabilities. A completely general learning mechanism, in this sense, would result in a
system that exhibited all three types of learning discussed in this chapter: SLL, DKLL, and NKLL.

Chunking is clearly not general in this second sense. When chunking is incorporated into a
problem-solving system, the only form of learning behavior guaranteed to result is symbol-level
learning. This is because chunking is simply a method of generalized caching. It caches the results
of previous computations, but it also generalizes those results using a method similar to EBG, so
that the memorized “chunk” will apply to situations that are not identical to the situation in which
the chunk was developed. The effect is to speed up computations that would have taken place even
if the chunk were not present.

Chunking may act in combination with other features of the problem solver to produce DKLL or
NKLL. For example, Rosenbloom, Laird, and Newell (1987) have shown that if the problem-solving
system accepts inputs from the environment and processes them in a particular way (i.e., as search
control on a “reconstructive” problem space), then chunking can be used to store the environmental
inputs in long term memory. If these chunks are subseqently processed properly, then the learned
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information can be applied to aid later problem solving. In short, if the problem-solving system
accepts input from the environment, chunking can be used to obtain DKLL.

The larger goal of the SOAR group is to demonstrate how the relatively small number of features
of the SOAR architecture can work together to produce a wide range of intelligent behaviors
(including, of course, learning behaviors). Hence, while chunking is not itself a general learning
mechanism, it appears to be a good building block for providing learning behaviors to SOAR. By
itself, it provides SLL. In combination with the simple ability to accept environmental inputs, it
provides DKLL. Perhaps some other simple mechanism can be added to SOAR that will provide a
way of expressing inductive biases, which could then be combined with chunking to produce NKLL.

6 Summary and Conclusions

Let us review the major points of this chapter.
The knowledge level provides a method for predicting the future behavior of systems based only

on their past behavior and the inputs they have received from the environment. The predictions are
computed using the rationality principle, which states that rational systems are capable of recog-
nizing the relationships among their knowledge, their goals, and their available actions and taking
appropriate actions. Two notions can be defined: knowledge level predictability and knowledge level
learning. These notions generate a three-fold taxonomy of learning systems. Symbol-level learning
(SLL) systems are predictable at the knowledge level but do not exhibit knowledge level learning.
Determined knowledge-level learning (DKLL) systems exhibit both knowledge level predictability
and learning. Non-determined knowledge-level learning (NKLL) systems are not predictable at the
knowledge level but do exhibit knowledge level learning.

This taxonomy has implications for future research in the development of learning methods. Be-
cause SLL is simply correctness-preserving (or goal-preserving) program improvement, new learning
methods can be developed by studying the techniques of automatic programming. Because NKLL
systems lack a knowledge level description, the knowledge level cannot provide a standard of correct
behavior or a way of evaluating alternative NKLL methods. One response to this problem is to
extend probability theory to develop a principle of plausible rationality. An alternative response,
and one that has been explored in much more detail, is to search for learning methods that work
well in particular environments. Empirical research, based on comparing learning methods using
test data sets, and theoretical research, based on the notion of PAC learning, are both making
progress in this direction. However, a major concern is that this research will not lead to any
general-purpose NKLL methods.

The taxonomy also formalizes the intuition that there are two distinct kinds of learning: learn-
ing that improves existing capabilities of the system and learning that acquires new knowledge
(new capabilities) for the system. The definition of knowledge level learning does not require any
consideration of the methods employed by the learning system, and hence, avoids many of the prob-
lems inherent in previous discussions of inductive and deductive reasoning, where it was necessary
to assign truth values to internal data structures.

This realization that there are two distinct kinds of learning uncovers some errors in previous
discussions of the goals and benefits of explanation-based learning. Explanation-based learning
methods are solving a different problem (SLL) than inductive learning methods (NKLL), and
therefore, their method of computing “justified generalizations” does not solve the problem of how
inductive learning methods should determine which inductive leaps to make.

The distinction between SLL and KLL also clarifies a limitation of the learning method of
chunking employed in the SOAR system (and all related methods of explanation-based general-
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ization). Chunking, by itself, is capable only of SLL. The challenge facing the SOAR group is to
find other, relatively simple, features of the SOAR architecture that can combine with chunking to
produce forms of KLL.
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