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Abstract
Consider a binary classification problem in which
the learner is given a labeled training set, an unla-
beled test set, and is restricted to choosing exactly
k test points to output as positive predictions. Prob-
lems of this kind—transductive precision@k—
arise in many applications. Previous methods solve
these problems in two separate steps, learning the
model and selecting k test instances by threshold-
ing their scores. In this way, model training is not
aware of the constraint of choosing k test instances
as positive in the test phase. This paper shows
the importance of incorporating the knowledge of
k into the learning process and introduces a new
approach, Transductive Top K (TTK), that seeks to
minimize the hinge loss over all training instances
under the constraint that exactly k test instances are
predicted as positive. The paper presents two op-
timization methods for this challenging problem.
Experiments and analysis confirm the benefit of in-
coporating k in the learning process. In our ex-
perimental evaluations, the performance of TTK
matches or exceeds existing state-of-the-art meth-
ods on 7 benchmark datasets for binary classifica-
tion and 3 reserve design problem instances.

1 Introduction
In the Transductive Precision@k problem, the training set
and the unlabeled test set are given, and the task is to pre-
dict exactly k test instances as positives. The precision
of these selected instances—the fraction of correct positive
predictions—is the only measure of importance. Our work
is motivated by the problem of designing conservation re-
serves for an endangered species. Suppose a geographical
region is divided into equal-sized cells of land. The species
is present in positive cells and absent in negative cells. To
protect the species, we seek to purchase some cells (“a con-
servation reserve”), and we want as many of those as possible
to be positive cells. Suppose we have conducted a field sur-
vey of publicly-owned land to collect a training set of cells.
With a fixed budget sufficient to purchase k cells, we want
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to decide which k privately-owned (and un-surveyed) cells to
buy. In this paper, we assume that all cells have the same
price. This is an instance of the Transductive Precision@k
problem. Other instances arise in information retrieval and
digital advertising.

The standard approach to this problem is to first train a
classifier or ranker on the training data and then threshold
the predicted test scores to obtain the k top-ranked test in-
stances. Any model that outputs continuous scores (e.g.,
an SVM) can be employed in this two-step process. Bet-
ter results can often be obtained by bipartite ranking algo-
rithms [Burges et al., 2005; Rudin, 2009; Usunier et al., 2009;
Agarwal, 2011; Rakotomamonjy, 2012; Li et al., 2014;
Kar et al., 2015], which seek to minimize a ranking loss.
Recent work focuses even more tightly on the top-ranked in-
stances. The MPG algorithm [Wang et al., 2015] formulates
the ranking problem as an adversarial game and can optimize
several ranking measures. The Accuracy At The Top (AATP)
algorithm [Boyd et al., 2012] seeks to optimize the ranking
quality for a specified top quantile of the training data. Max-
imizing accuracy on the top quantile is intractable, so AATP
optimizes a relaxation of the original objective. However,
none of the algorithms above explicitly considers the con-
straint of choosing k test instances in model training.

Unlike the ranking problems discussed so far, our problem
is transductive, because we have the unlabeled test examples
available. There is a substantial body of research on transduc-
tive classification [Joachims, 1999; Sindhwani and Keerthi,
2006; Pechyony, 2008; Li et al., 2013]. Most transductive
classification algorithms are inspired by either the large mar-
gin principle or the clustering principle. The goal of these al-
gorithms is to develop classifiers that will perform well on the
entire test set. Some transductive classifiers [Joachims, 1999;
Li et al., 2013] have a parameter to specify the desired ratio
of positive predictions. However, such parameter is mainly
used for training a stable classifier, and the ratio not strongly
enforced on the test set.

In this paper, we claim that the knowledge of k helps to
learn a better model in terms of the measure of top-k preci-
sion and that the trained model should be constrained to out-
put a selection of k test instances as positive. We call this
constraint the k-constraint. The benefit of incorporating k
into the learning process can be understood in three ways.
First, the k-constraint greatly reduces the hypothesis space
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and thus reduces the structural risk of the trained model. Sec-
ond, the algorithm can take advantage of the knowledge of k
to jointly optimize the scoring model and the score threshold
with respect to the k-constraint. As a comparison, a two-step
method trains a ranker that is optimal by some standard, but
the ranker together with the threshold may not be optimal for
the selection task. Third, the selection of k test points is di-
rectly obtained through model training, instead of learning a
general classifier or ranker as an intermediate step. Vapnik’s
principle [Vapnik, 1998] dictates that we should not solve a
more difficult problem on the way to solving the problem of
interest.

In this paper, we jointly train the model and determine the
threshold to obtain exactly k test instances as positive. We
seek a decision boundary that predicts exactly k positives and
has high precision on the training data. The paper proceeds
as follows. We start by identifying a deterministic relation
between the precision@k measure and the accuracy of any
classifier that satisfies the k-constraint. This suggests that the
learning objective should maximize classifier accuracy sub-
ject to the k-constraint. We adopt the space of linear decision
boundaries and introduce an algorithm we call Transductive
optimization of Top k precision (TTK). In the TTK optimiza-
tion problem, the objective is to minimize the hinge loss on
the training set subject to the k-constraint. This optimization
problem is very challenging since it is highly non-convex. We
first formulate this problem into an equivalent Mixed Integer
Programming (MIP) problem and solve it with an off-the-
shelf MIP solver. This method works for small problems.
To solve larger problems, we also design a feasible direction
algorithm, which we find experimentally to converge very
rapidly. Finally, our theoretical analysis of the transductive
precision@k problem shows that one should train different
scoring functions for different values of k. As a byproduct
of the work, We also find a problem in the optimization algo-
rithm used in AATP, which solves a problem similar to ours.

In the experiment section, we first present a small synthetic
dataset to show how the TTK algorithm improves the SVM
decision boundary. Then, we show that our feasible direc-
tion method can find solutions nearly optimal as global opti-
mal solutions. In the third part, we compare the TTK algo-
rithm with five other algorithms on ten datasets. The results
show that the TTK algorithm matches or exceeds the perfor-
mance of these state-of-the-art algorithms on almost all of
these datasets.

2 The TTK model
Let the distribution of the data be D with support in X⇥Y . In
this work, we assume X = Rd and only consider the binary
classification problem with Y = {�1, 1}. By sampling from
D independently, a training set (x,y) = (x

i

, y
i

)

n

i=1 and a test
set (ˆx, ˆy) = (x̂

j

, ŷ
j

)

m

j=1 are obtained, but the labeling ˆ

y of
the test set is unknown. The problem is to train a classifier and
maximize the precision at k on the test set. The hypothesis
space is H ⇢ YX (functions mapping from X to Y). The
hypothesis h 2 H is evaluated by the measure precision@k.

When we seek the best classifier from H for selecting k
instances from the test set ˆx, we only consider classifiers sat-

isfying the k-constraint, that is, these classifiers must be in the
hypothesis space H

k

(

ˆ

x) = {h 2 H|Pm

j=1 I[h(x̂j

) = 1] =

k}, where I[·] is 1 if its argument is true and 0 otherwise.
All classifiers not predicting k positives on the test set are ex-
cluded from H

k

. Note that any two-step method essentially
reaches a classifier in H

k

(

ˆ

x) by setting a threshold in the sec-
ond step to select k test instances. With these methods, the
model optimized at the first step may be optimal in the orig-
inal task, however, the classifier obtained by thresholding is
often not optimal within H

k

.
To maximize the precision of h 2 H

k

(

ˆ

x) on the test set,
we essentially need to maximize the classification accuracy
of h. This can be seen by the following relation. Let m� be
the number of negative test instances, and let mtp, mfp and
mtn denote the number of true positives, false positives, and
true negatives (respectively) on the test set as determined by
h. Then the precision@k of h can be expressed as

⇢(h) =

1

k
mtp =

1

k
(mtn + k �m�)

=

1

2k
(mtp +mtn + k �m�). (1)

Since the number of negative test instances m� is unknown
but fixed, there is a deterministic relationship between the ac-
curacy (mtp +mtn)/m and the precision@k on the test set.
Hence, increasing classification accuracy directly increases
the precision. This motivates us to maximize the accuracy of
the classifier on the test set while respecting the k-constraint.

In this section, we develop a learning algorithm for lin-
ear classifiers and thus H = {h : X 7! Y, h(x;w, b) =

sign(w>x + b)}. Our learning objective is to minimize the
(regularized) hinge loss on the training set, which is a con-
vex upper bound of the zero-one loss. Together with the k-
constraint, the optimization problem is

min

w,b

1

2

kwk22 + C
nX

i=1

[1� y
i

(w>x
i

+ b)]+, (2)

s.t.
mX

j=1

I[w>x̂
j

+ b > 0] = k ,

where [·]+ = max(·, 0) calculates the hinge loss on each in-
stance. Due to the piece-wise constant function in the con-
straint, the problem is very hard to solve.

We relax the equality constraint to an inequality constraint
and get the following optimization problem.

min

w,b

1

2

kwk22 + C
nX

i=1

[1� y
i

(w>x
i

+ b)]+, (3)

s.t.
mX

j=1

I[w>x̂
j

+ b > 0]  k .

This relaxation generally does not change the solution to the
optimization problem. If we neglect the constraint, then the
solution that minimizes the objective will be an SVM. In our
applications, there are typically significantly more than k pos-
itive test points, so the SVM will usually predict more than k

1782



positives. In that case, the inequality constraint will be ac-
tive, and the relaxed optimization problem will give the same
solution as the original problem 1.

Even with the relaxed constraint, the problem is still hard,
because the feasible region is non-convex. We first express
the problem as a Mixed Integer Program (MIP). Let G be a
large constant and ⌘ be a binary vector of length m. Then we
can write the optimization problem as

min

w,b,⌘

1

2

kwk22 + C
nX

i=1

[1� y
i

(w>x
i

+ b)]+, (4)

s.t. w>x̂
j

+ b  ⌘
j

G, j = 1, . . . ,m

⌘
j

2 {0, 1}, j = 1, . . . ,m
mX

j=1

⌘
j

= k

Theorem 1 Optimization problems (3) and (4) are equiva-
lent.

Proof: Since the two problems have the same objective that
involves (w, b) only, we just need to show that the two con-
straint sets of the two problems are equivalent in terms of
(w, b). Suppose (w1, b1) is a solution of (3), then at most k
instances have positive scores. Let ⌘1 be a binary vector with
length m. Set ⌘1

j

= 1 if instance j has positive score, and
set other entries of ⌘1 to get

P
j

⌘1
j

= k. Then (w1, b1, ⌘1)

is a solution of (4). If (w2, b2, ⌘2) is a solution of (4), then at
most k test instances get positive scores, and then (w2, b2) is
a solution of (3). ⇤

For this MIP, a globally optimal solution can be found for
small problem instances via the branch-and-bound method
with an off-the-shelf package. We used Gurobi[Gurobi Opti-
mization, 2015].

For large problem instances, finding the global optimum of
the MIP is impractical. We propose to employ a feasible di-
rection algorithm [Bazaraa et al., 2006], which is an iterative
algorithm designed for constrained optimization. In each iter-
ation, it first finds a descending direction in the feasible direc-
tion cone and then calculates a step size to make a descending
step that leads to an improved feasible solution. The feasible
direction algorithm fits this problem well. Because the con-
straint is a polyhedron, a step in any direction within the fea-
sible direction cone will generate a feasible solution provided
that the step length is sufficiently small. Since our objective
is convex but the constraint is highly non-convex, we want to
avoid making descending steps along the constraint boundary
in order to avoid local minima.

In each iteration, we first need to find a descending direc-
tion. The subgradient (rw,rb) of the objective with respect
to (w, b) is calculated as follows. Let ⇠

i

= 1� y
i

(w>x
i

+ b)
be the hinge loss on instance i. Then

rw = w � C
X

i:⇠i>0

y
i

x
i

, rb = �C
X

i:⇠i>0

y
i

. (5)

1In the extreme case that many data points are nearly identical,
the original problem may not have a solution while the relaxed prob-
lem always has one.

We need to project the negative subgradient (�rw,�rb) to
a feasible direction to get a feasible descending direction. Let
L, E, and R be the sets of test instances predicted to be pos-
itive, predicted to be exactly on the decision boundary, and
predicted to be negative:

L = {j : w>x̂
j

+ b > 0},
E = {j : w>x̂

j

+ b = 0},
R = {j : w>x̂

j

+ b < 0}.
With the constraint in (3), there can be at most k instances in
L.

When (w, b) changes in a descending direction, no instance
can move directly from L to R or from R to L without going
though set E due to the continuity of its score. A feasible
direction only allows (w, b) to moves no more than k � |L|
from E to L. Therefore, the feasible direction cone is

F =

8
<

:(d
w

, d
b

) :

X

j2E

I[x̂>
j

d
w

+ d
b

> 0] + |L|  k

9
=

; . (6)

To avoid that the descending direction moves exessive in-
stances from E to L, we project the direction into the null
space of a set B ✓ E of test instances, then the instances in
B will stay in E. We also need to guarantee that no more
than k� |L| instances in E \B moves from E to L. Now the
problem is how to find the set B.

We first sort the instances in E in descending order ac-
cording to the value of �x̂>

j

rw �rb. Let j0 : 1  j0  |E|
re-index the instances in this order. To construct the set B,
we start with B = ; and the initial direction (d

w

, d
b

) =

�(rw,rb). The starting index is j0 = 1 if |L| = k, and
j0 = 2 if |L| < k. Then with index j0 starting from j0 and in-
creasing, we consecutively put instance j0 into B and project
(d

w

, d
b

) into the null space of {(x̂
j

� , 1) : j� 2 B}. We stop at
j0 = j1 when the direction (d

w

, d
b

) decreases the scores of all
the remaining instances in E. The final projected direction is
denoted by (d?

w

, d?
b

). The direction (d?
w

, d?
b

) has non-positive
inner product with all instances with indices from j0 = j0 to
j0 = |E|, so these instances will not move into the set L when
(w, b) moves in that direction. Only when |L| < k, is the first
instance allowed to move from E to L. It is easy to check
that the final projected direction (d?

w

, d?
b

) is in the feasible
cone F and that it is a descending direction. This subgradient
projection algorithm is summarized in Algorithm 1.

In this design, we have the following considerations. When
|L| < k, the instance in E that has the largest inner product
with the negative subgradient is allowed to enter set L. We
allow at most one instance to move from E to L to reduce the
chance that (w, b) hits the boundary. In the projecting itera-
tions, instances with large inner products are selected first to
reduce the number of projections.

Once a descending direction is chosen, we perform a line
search to determine the step size. We first find the maximum
step size ↵ that guarantees the feasibility of the descending
step. That is, no points in R will cross the decision boundary
and enter L with the step length ↵.

↵ = min

j2R : x̂>
j d

?
w+db>0

�(x̂>
j

w + b)

x̂>
j

d?
w

+ d
b

. (7)
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Algorithm 1 Find a descending feasible direction
Input: subgradient (rw,rb), instance set {x̂

j

: j 2 E},
size |L|, k
Output: descending feasible direction (d?

w

, d?
b

)

Sort instances in E in descending order according to
�x̂>

j

rw �rb
Initialize (d

w

, d
b

) = �(rw,rb)
Initialize B = ;
j0 = min(k � |L|, 1) + 1

for j0 = j0 to |E| do
if 9j00 : j0  j00  |E|, x̂>

j

00d
w

+ d
b

> 0 then
B = B [ {j0}
project (d

w

, d
b

) into the null space of (x̂
B

,1)
else

break
end if

end for
d?
w

= d
w

, d?
b

= d
b

Then we do a line search in [0, 0.5↵] to find the best step
length ↵?. Note that the objective function is a convex piece-
wise quadratic function, so we only need to check these elbow
points plus a minimum between two elbow points to find the
best step length. We omit the details. The shrinkage 0.5 of ↵
reduces the chance of (w, b) hitting the boundary.

We initialize w by training a standard linear SVM (al-
though any linear model can be used) and then initialize b
to satisfy the k-positive constraint. This gives us a pair (w, b)
that is a feasible solution to (3). Then (w, b) is updated in
each iteration according to (w, b) := (w, b)+↵?

(d?
w

, d?
b

) un-
til convergence.

We set the maximum number of iterations, T , to 500; the
algorithm typically requires only 200-300 iterations to con-
verge. In each iteration, the two most expensive calculations
are computing the subgradient and projecting the negative
subgradient. The first calculation requires O(nd) operations,
and the second one takes at most O(ud2) operations, where u
is the largest size of E. The overall running time is the time
of training an initial model plus O(T (nd+ ud2)).

Though the problem is highly non-convex, the proposed
projected subgradient method is very effective in practice,
which is indicated by the comparison between solutions ob-
tained by this method and optimal solutions obtained by
Gurobi in the experiment section.

The AATP algorithm [Boyd et al., 2012] faces an optimiza-
tion problem similar to (3) and uses a different relaxation to
find an appoximate solution. Here we show that their relax-
ation is very loose. The AATP objective is equivalent to ours,
and the difference is that the constraint is posed on the train-
ing set. Their constraint is that the top q quantile of training
instances must receive positive scores and all others, nega-
tive scores. The AATP authors assume that the optimal deci-
sion boundary must go though a single training instance, so
their relaxation of the optimization problem is constrained to
require one instance to be on the decision boundary. How-
ever, their assumption is incorrect, since the optimal solution
would put multiple instances on the boundary. So their re-

laxation is very loose, and their solutions classify much more
than quantile q of the instances as positive. Our analysis is
verified by the experiment results, which will be shown in the
experiment section.

3 Analysis
Before presenting experiments, we first argue that different
values of k require us, in general, to train different models.
We work with the population distribution D instead of with
samples, and we assume linear models. Suppose the distribu-
tions of positive instances and negative instances have proba-
bility measures µ+ and µ� defined on Rd. The total distribu-
tion is a mixture of the two distributions, and it has measure
µ = �µ+ + (1� �)µ� with � 2 (0, 1). The classifier (w, b)
defines a positive region R

w,b

= {x 2 Rd, w>x + b > 0}.
Assume µ+(Rw,b

) and µ�(Rw,b

) are both differentiable with
respect to (w, b). If we consider classifiers that classify frac-
tion q of the instances as positive, then µ(R

w,b

) = q. The
precision of the classifier will be �µ+(Rw,b

) / q. The opti-
mal classifier is therefore

(w?, b?) = argmax

(w,b)
�µ+(Rw,b

) (8)

s.t. �µ+(Rw,b

) + (1� �)µ�(Rw,b

) = q.

If we change q, we might hope that we do not need to
modify w? but instead can just change b?. However, this is
unlikely to work.
Theorem 2 If (w?, b1) and (w?, b2) are two optimal solu-
tions for (8) with two different quantile values q1 and q2, then
9s1, t1, s2, t2,2 R,

s1
@µ+(Rw

?
,b1)

@(w?, b1)
= t1

@µ�(Rw

?
,b1)

@(w?, b1)
, (9)

s2
@µ+(Rw

?
,b2)

@(w?, b2)
= t2

@µ�(Rw

?
,b2)

@(w?, b2)
. (10)

The proof follows directly from the KKT conditions. Note
that (9) and (10) are two vector equations. When b1
is changed into be b2, the vectors of partial derivatives,
@µ+(Rw

?
,b1)/@(w

?, b1) and @µ�(Rw

?
,b1)/@(w

?, b1) must
change their directions in the same way to maintain optimal-
ity. This will only be possible for very special choices of
µ+ and µ�. This suggests that (w?, b?) should be optimized
jointly to achieve each target quantile value q.

4 Experimental Tests
4.1 An illustrative synthetic dataset
We begin with a simple synthetic example to provide some
intuition for how the TTK algorithm improves the SVM deci-
sion boundary, see Figure 1. The dataset consists of 40 train-
ing and 40 test instances. The training and testing sets each
contain 22 positive and 18 negative instances. Our goal is to
select k = 4 positive test instances. The bold line is the de-
cision boundary of the SVM. It is an optimal linear classifier
both for overall accuracy and for precision@k for k = 24.
However, when we threshold the SVM score to select 4 test
instances, this translates the decision boundary to the dashed
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Figure 1: TTK improves the SVM decision boundary (“d.
b.”). Square/circle: positive/negative instance, colored/gray:
training/testing instance. k = 4.

line, which gives very poor precision of 0.5. This dashed line
is the starting point of the TTK algorithm. After making fea-
sible direction descent steps, TTK finds the solution shown
by the dot-dash-dot line. The k test instances selected by this
boundary are all positive. Notice that if k = 24, then the
SVM decision boundary gives the optimal solution. This pro-
vides additional intuition for why the TTK algorithm should
be rerun whenever we change the desired value of k.

4.2 Effectiveness of Optimization
One way to compare different algorithms is to see how well
they optimize the training and test surrogate loss functions.
We trained standard SVM, AATP, and TTK on three UCI
[Lichman, 2013] datasets: diabetes, ionosphere and sonar.
The proposed TTK objective is solved by the MIP solver
and the feasible direction method (denoted by TTKMIP and
TTKFD ). We set k to select 5% of the test instances. For the
SVM and AATP methods, we fit them to the training data and
then obtain a top-k prediction by adjusting the intercept term
b. We compare the regularized hinge loss on the training set
and the hinge loss on the test set of each model after adjusting
b, since the model with b adjusted is the true classifier used
in the task. The hyper-parameter C is set to 1 for all meth-
ods. The results in Table 1 show that TTK with either solver
obtains much lower losses than the competing methods. The
small difference between the third (MIP) and the fourth (fea-
sible direction) columns indicates that the feasible direction
method finds near-optimal solutions.

The results also show that the AATP method does not min-
imize the objective very well. Due to its loose relaxation of
the objective, the original AATP solution often predicts many
more positives than the target quantile of 5% of the test in-
stances. This requires to change the intercept term b to satisfy
the k-constraint.

To further understand and compare the behavior of AATP
and TTK, we performed a non-transductive experiment (by
making the training and test sets identical). We measured the
number of training instances that fall on the decision bound-
ary and the fraction of training instances classified as posi-
tive (see Table 2). The optimal solution given by the MIP
solver always puts multiple instances on the decision bound-
ary, whereas the AATP method always puts a single instance
on the boundary. The MIP always exactly achieves the de-

Table 1: Training and test loss attained by different methods.
The symbol “+b

adj

” indicates that the bias term is adjusted
to satisfy the k-constraint

dataset SVM +badj AATP +badj TTKMIP TTKFD

diabetes
train obj. 311 ± 25 265 ± 23 224 ± 7 226 ± 7
test loss 323 ± 20 273 ± 24 235 ± 6 235 ± 5

ionosphere
train obj. 325 ± 46 474 ± 88 127 ± 4 136 ± 4
test loss 338 ± 44 488 ± 85 146 ± 5 150 ± 7

sonar
train obj. 167 ± 52 166 ± 41 20 ± 8 30 ± 10
test loss 216 ± 22 213 ± 30 103 ± 19 105 ± 24

sired k, whereas AATP always classifies many more than k
instances as positive. This shows that the AATP assumption
that the decision boundary should pass through exactly one
training instance is wrong.

4.3 Precision evaluation on real-world datasets
In this subsection, we evaluate our TTK method on ten
datasets. Seven datasets, {diabetes, ionosphere, sonar,
spambase, splice} from UCI repository and {german-numer,
svmguide3} from the LIBSVM web site, are widely studied
binary classification datasets. The other three datasets, NY16,
NY18 and NY88, are three species distribution datasets ex-
tracted from a large eBird dataset [Sullivan et al., 2009]; each
of them has 634 instances and 38 features. The eBird dataset
contains a large number of checklists of bird counts reported
from birders around the world. Each checklist is associated
with the position of the observation and a set of 38 features
describing the habitat. We chose a subset of the data consist-
ing of checklists of three species from New York state in June
of 2012. To correct for spatial sampling bias, we formed spa-
tial cells by imposing a grid over New York and combining all
checklists reported within each grid cell. This gives 634 cells
(instances). Each instance is labeled with whether a species
was present or absent in the corresponding cell.

We compare the proposed TTK algorithm with 5 other
algorithms 2. The SVM algorithm [Schölkopf and Smola,
2002] is the baseline. The Transductive SVM (TSVM)
[Joachims, 1999] compared here uses the UniverSVM [Sinz
and Roffilli, 2012] implementation, which optimizes its
objective with the convex-concave procedure. SVMperf
[Joachims, 2005] can optimize multiple ranking measures
and is parameterized here to optimize precision@k. Two al-
gorithms, Accuracy At The Top (AATP) [Boyd et al., 2012]
and TopPush [Li et al., 2014], are specially designed for top
precision optimization. Each algorithm is run 10 times on
10 random splits of each dataset. Each of these algorithms
requires setting the regularization parameter C. This was
done by performing five 2-fold internal cross-validation runs
within each training set and selecting the value of C from
the set {0.01, 0.1, 1, 10, 100} that maximized precision on the
top 5% of the (cross-validation) test points. With the chosen

2One reviewer suggests comparing our algorithm with the MPG
algorithm [Wang et al., 2015]. We will provide the result of the
comparison separately.
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Table 2: AATP and TTK solution statistics: Number of instances on the decision boundary (”# at d.b.”) and fraction of instances
predicted as positive (”fraction +”)

dataset, dimension, ratio of positives AATP TTKMIP

# at d.b. fraction + # at d.b. fraction +
diabetes, d = 8, n+/n = 0.35 1 0.12 5 0.05

ionosphere, d = 33, n+/n = 0.64 1 0.53 21 0.05
sonar, d = 60, n+/n = 0.47 1 0.46 40 0.05

Table 3: Mean Precision (± 1 standard deviation) of classifiers when 5% of testing instances are predicted as positives.
dataset SVM TSVM SVMperf TopPush AATP TTKMIP TTKFD

diabetes .86±.08 .86±.09 .69±.20 .80±.10 .68±.28 .85±.10 .86±.08
ionosphere .76±.13 .80±.17 .82±.22 .71±.16 1.00±.00 .97±.05 .84±.15

sonar .96±.08 .98±.06 .85±.16 .88±.13 .90±.11 .96±.08 1.00±.00
german-numer .70±.08 .72±.08 .56±.17 .63±.12 NA. NA. .71±.06

splice 1.00±.00 1.00±.00 1.00±.01 1.00±.00 NA. NA. 1.00±.00
spambase .97±.02 .97±.02 .98±.01 .96±.02 NA. NA. .98±.01

svmguide3 .86±.07 .85±.07 .91±.04 .83±.07 NA. NA. .87±.06
NY16 .64±.08 .64±.09 .65±.12 .62±.10 .62±.08 .68±.07 .70±.09
NY18 .44±.11 .45±.10 .36±.07 .43±.13 .46±.12 .46±.08 .47±.12
NY88 .40±.08 .33±.12 .37±.15 .34±.08 .31±.09 .40±.09 .42±.07

TTKMIP w/t/l 1/5/0 2/4/0 2/4/0 1/5/0 2/4/0
TTKFD w/t/l 3/7/0 4/6/0 3/6/1 7/3/0 4/1/1

value of C, the algorithm was then run on the full training set
(and unlabeled test set) and the precision on the top 5% was
measured. The achieved precision values were then averaged
across the 10 independent runs.

Table 3 shows the performance of the algorithms. For
datasets with more than 1000 instances, the AATP and
TTKMIP algorithms do not finish within a practical amount
of time, so results are not reported for these algorithms on
those datasets. This is indicated in the table by “NA”. The
results for each pair of algorithms are compared by a paired-
differences t-test at the p < 0.05 significance level. If one
algorithm is not significantly worse than any of the other algo-
rithms, then it is regarded as one the best and its performance
is shown in bold face. Wins, ties and losses of of TTKMIP and
TTKFD with respect to all other algorithms are reported in the
last two rows of Table 3.

On each of the six small datasets, the performance of
TTKMIP matches or exceeds that of the other algorithms. The
TTKFD method does almost as well—it is among the best al-
gorithms on 8 of the 10 datasets. It loses once to SVMperf (on
svmguide3) and once to AATP (on ionosphere). None of the
other methods performs as well. By comparing TTKFD with
SVM, we see that the performance is improved on almost
all datasets, so the TTKFD method can be viewed as a safe
treatment of the SVM solution. As expected, the transductive
SVM does not gain much advantage from the availability of
the testing instances, because it seeks to optimize accuracy
rather than precision@k. The TopPush algorithm is good at
optimizing the precision of the very top instance. But when
more positive instances are needed, the TopPush algorithm
does not perform as well as TTK.

5 Summary
This paper introduced and studied the transductive
precision@k problem, which is to train a model on a
labeled training set and an unlabeled test set and then select
a fixed number k of positive instances from the testing set.
Most existing methods first train a scoring function and
then adjust a threshold to select the top k test instances. We
show that by learning the scoring function and the threshold
together, we are able to achieve better results.

We presented the TTK method. The TTK objective is the
same as the SVM objective, but TTK imposes the constraint
that the learned model must select exactly k positive instances
from the testing set. This constraint guarantees that the final
classifier is optimized for its target task. The optimization
problem is very challenging. We formulated it as a mixed in-
teger program and solved it exactly via an MIP solver. We
also designed a feasible direction algorithm for large prob-
lems. We compared both TTK algorithms to several state-of-
the-art methods on ten datasets. The results indicate that the
performance of the TTK methods matches or exceeds all of
the other algorithms on most of these datasets.

Our analysis and experimental results show that the TTK
objective is a step in the right direction. We believe that the
performance can be further improved if we can minimize a
tighter (possibly non-convex) bound on the zero-one loss.
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