
Pruning Improves Heuristic Search for Cost-Sensitive Learning

Valentina Bayer Zubek bayer@cs.orst.edu
Thomas G. Dietterich tgd@cs.orst.edu

Department of Computer Science, Oregon State University, Corvallis, OR 97331 USA

Abstract

This paper addresses cost-sensitive classifi-
cation in the setting where there are costs
for measuring each attribute as well as costs
for misclassification errors. We show how
to formulate this as a Markov Decision Pro-
cess in which the transition model is learned
from the training data. Specifically, we as-
sume a set of training examples in which
all attributes (and the true class) have been
measured. We describe a learning algorithm
based on the AO∗ heuristic search procedure
that searches for the classification policy with
minimum expected cost. We provide an ad-
missible heuristic for AO∗ that substantially
reduces the number of nodes that need to be
expanded, particularly when attribute mea-
surement costs are high. To further prune the
search space, we introduce a statistical prun-
ing heuristic based on the principle that if
the values of two policies are statistically in-
distinguishable (on the training data), then
we can prune one of the policies from the
AO∗ search space. Experiments with realis-
tic and synthetic data demonstrate that these
heuristics can substantially reduce the mem-
ory needed for AO∗ search without signifi-
cantly affecting the quality of the learned pol-
icy. Hence, these heuristics expand the range
of cost-sensitive learning problems for which
AO∗ is feasible.

1. Introduction

Given a training set of labeled examples, a classical
machine learning task is to learn a classifier that can
predict the class of new examples. The usual measure
of performance for such classifiers is the error rate.
However, in some application problems, we must also
account for the cost of misclassification errors and the
cost of measuring the attribute values. Consider, for
example, the medical problem of diagnosing diabetes.

Each medical test that a doctor performs on a patient
has an associated cost. There are also costs for false
positive and false negative diabetes diagnoses. Given
a set of training examples, we wish to learn a diag-
nostic policy that minimizes the expected total cost of
diagnostic decision making.

Some previous research has considered only misclassi-
fication costs (Margineantu, 2001), or only test costs
combined with information gain heuristics (Norton,
1989; Nunez, 1991; Tan, 1993). More recently, re-
searchers have begun to consider both test and mis-
classification costs (Turney, 1995; Greiner et al., 2002).

It is important to consider both types of costs together
in diagnostic problems. If we consider only the mis-
classification costs, we ignore the delicate balance a di-
agnostician has to find in real life when choosing tests
to perform, where she has to consider both how expen-
sive the tests are and how informative they are. For ex-
ample, if the most informative test is extremely expen-
sive, the optimal classifier will prefer less-informative
but less-costly tests. In contrast, a cost-insensitive
method, such as C4.5, will choose the most informative
test first, since it has the largest information gain.

If we consider only the cost of testing and just use
the 0/1 loss to measure misclassification errors, other
problems arise. In medicine, for example, the vast
majority of patients are healthy, so the minimum-cost
classifier will test no attributes and just predict that
everyone is healthy. But a false negative diagnosis
(i.e., declaring a sick patient to be healthy) is a life-
threatening error in medicine that should be consid-
ered very expensive.

It is interesting to note that the problem of learning
good diagnostic policies is difficult only when the cost
of testing is comparable to the cost of misclassifica-
tion. If the tests are very cheap compared to mis-
classification errors, then it pays to measure all of the
attributes. If the tests are very expensive, then it pays
to classify directly without measuring any attributes.

In this paper we introduce a new algorithm for learn-

ing classifiers to minimize the total cost of attribute
measurement plus misclassification error. The algo-
rithm is based on formulating the classification process
as a Markov Decision Process whose optimal policy
gives the optimal diagnostic procedure (on the train-
ing data). We then show how the AO∗ algorithm can
search for this optimal policy, and we present an ad-
missible search heuristic for AO∗. This heuristic re-
sults in large reductions in the size of the search graph,
particularly when the attribute measurement costs are
high. To address problems where the attribute costs
are low, and to reduce overfitting, we introduce an
additional pruning heuristic that we call “statistical
pruning.” Statistical pruning exploits the fact that,
given a small training sample, many MDP policies are
statistically indistinguishable from one another. This
means that we can safely prune some policies from the
AO∗ search space without eliminating a policy that is
indistinguishable from the optimal policy. We show
experimentally that the combination of our admissi-
ble heuristic with statistical pruning yields large re-
ductions in the size of the AO∗ search space without
significantly changing the true cost of the learned pol-
icy. Hence, these heuristics expand the range of cost-
sensitive learning problems for which AO∗ is feasible.

2. Cost-sensitive Learning with
Attribute Costs is an MDP

The problem of cost-sensitive learning with attribute
costs can be represented as a Markov Decision Pro-
cess (MDP). We begin by defining the actions of this
MDP. We assume that there are N measurement ac-
tions (tests) and K classification actions. Measure-
ment action n (denoted xn) returns the value of at-
tribute xn, which we assume is a discrete variable with
values {v1, ..., vVn}. Let C(xn) denote the cost of mea-
surement action xn. We assume it depends only on
the action itself and not on which other measurements
have already been performed, nor does it depend on
the true class y. We believe these assumptions can be
relaxed without substantial changes to our algorithm.

Classification action k (denoted fk) is the act of clas-
sifying the patient into class y = k. The cost of a
classification action depends on the true class of the
example. Let MC(fk, y) be the misclassification cost
of guessing class k when the true class is y.

Now let us define the states and transition probabili-
ties for the MDP. There is one state for each possible
combination of measured attributes. For example, the
state {} is the start state in which no attributes have
been measured. The state {age = old, insulin = low} is
a state in which the “age” attribute has been measured

to have the value “old” and the “insulin” attribute has
been measured to have the value “low”. For measure-
ment action xn executed in state s, the result state s′

will be s′ = s ∪ {xn = v}, where v is the measured
value of xn. The probability of this transition will de-
pend on the values of all of the previously-measured
attributes: Ptr(s′|s, xn) = P (xn = v|s). The cost of
this transition will be written C(s, xn), though with
our assumptions it is only C(xn).

There is also a special terminal state sf . Every classifi-
cation action makes a transition to sf with probability
1 (once a classification is made, the task terminates).
Because the true class y of an example is not known
at classification time, the cost of a classification action
(which depends on y) must be viewed as a random vari-
able whose value is MC(fk, y) with probability P (y|s),
which is the probability that the true class is y given
the current state s. Fortunately, to compute the op-
timal policy for the MDP, we only need the expected
cost of each action. The expected cost of classification
action fk in state s is C(s, fk) =

∑
y

P (y|s)·MC(fk, y),

which is independent of y.

If Vn = V, ∀n, then the total number of states of the
MDP is (V +1)N+1, because an attribute can be either
measured (so it will have one of the V values) or not
measured. We assume that once an attribute is mea-
sured, it cannot be tested again. The set A(s) of ac-
tions executable in state s consists of those attributes
not yet measured and all the classification actions.

We will say that an example matches a state s if the
example agrees with the attribute values defining s.
Given a training set of labeled examples with no miss-
ing attribute values, we can directly learn the MDP’s
transition probabilities. Ptr(s′|s, xn) is computed as
the ratio of the number of training examples that
match state s′ (where xn = v) divided by the num-
ber of training examples that match s. We can also
estimate the class probabilities P (y|s) needed to com-
pute the expected costs, C(s, fk), of the classification
actions. P (y|s) is the fraction of training examples
matching state s that belong to class y.

A policy π for an MDP is a mapping from states to
actions. The value function of a policy, V π(s), is the
expected total cost of following policy π starting in
state s until the terminal state is reached. The termi-
nal state is always reached, because only finitely-many
measurement actions can be executed, after which any
classification action will cause the MDP to enter the
terminal state. The optimal policy π∗ minimizes V π(s)
for all states, and its optimal value is V ∗(s). Note that
for the terminal state V π(sf) = 0 for every policy π.

3. Heuristic Search

Each diagnostic policy can be viewed as a subtree of an
AND/OR graph. Each OR node represents an MDP
state s in which there is a choice among different pos-
sible actions a. Each AND node (s, a) corresponds to
performing action a in state s, and it stores a probabil-
ity distribution over the possible outcomes of the ac-
tion. The value of the optimal policy for the AND/OR
graph can be computed by a bottom-up sweep through
the graph. First, assign the terminal state a value of 0.
Then iteratively consider any AND or OR node all of
whose children have already received values. Compute
the value of an AND node (s, a) as the expected value
of its action a. Compute the value of an OR node
as the minimum of the values of its AND children.
Continue this process until a value is assigned to the
root OR node. This is the value of the optimal policy.
We can view this computation as a single-pass ver-
sion of value iteration in which each AND node com-
putes Q(s, a) = C(s, a) +

∑
s′ P (s′|s, a) · V (s′), and

each OR node computes V (s) = mina Q(s, a). This
AND/OR graph formulation suggests that we apply
AO∗ to search for the optimal policy.

A similar approach was taken by Hansen (1998) and
Washington (1997). They applied AO∗ search to find
the optimal infinite-horizon policy in POMDPs (Par-
tially Observable Markov Decision Processes). Hansen
performed the search in the space of finite-state con-
trollers, which is not compatible with our problem,
since we can only measure an attribute once for a given
example. Washington used the value function of the
underlying MDP to define lower and upper bounds.

3.1 Overview of the AO∗ Algorithm

The AO∗ algorithm (Nilsson, 1980) computes the opti-
mal solution graph of an AND/OR graph, given an ad-
missible heuristic. A heuristic is admissible if it never
over-estimates the optimal cost of getting from a state
s to a terminal state.

During its search, AO∗ considers partial policies in
which not all nodes have been expanded. The AO∗

algorithm repeats the following steps: in the current
best partial policy, it selects an AND node to expand;
it expands it; and then it recomputes (bottom-up) the
optimal value function and policy of the revised graph.
The algorithm terminates when the best decision in all
leaf nodes of the current policy is to classify.

To apply AO∗ to cost-sensitive learning, we need to
compute the probabilities in the AND nodes. We
do this by “dropping” the training data through
the AND/OR graph in the same way that data is

“dropped” through a decision tree. The entire data
set starts in the root node (the start state). At each
OR node, the data is sent to all child AND nodes. At
each AND node, the data is partitioned according to
the value of the measured attribute. That is, if the
AND node measures attribute xn, then there will be
one child OR node for each observed outcome xn = v,
and only training examples with xn = v will be sent
to that node. Hence, the probability of the child OR
node is the ratio of the number of examples in the child
node to the number of examples in its parent node.

In practice, systematic search methods such as AO∗

are limited by memory rather than CPU time. To
make AO∗ practical, we must reduce the number of
nodes it expands. We will do this by introducing an
admissible heuristic and a statistical pruning heuristic.

3.1.1 Optimistic Heuristic, Optimistic Values
and Optimistic Policy

Our admissible heuristic provides an optimistic esti-
mate, Qopt(s, a), of the expected cost of an unex-
panded AND node (s, a). It is based on an incom-
plete 2-step lookahead search. The first step of the
lookahead search is defined as Qopt(s, a) = C(s, a) +∑

s′ Ptr(s′|s, a) · `opt(s′). Here s′ represents one of the
states resulting from action a. The second step of
the lookahead is defined by the function `opt(s′) =
mina′∈A(s′) C(s′, a′), which is the minimum over the
cost of each classification action and the cost of each
remaining attribute x′ in s′. That is, rather than con-
sidering the states s′′ that would result from measuring
x′, we only consider the cost of measuring x′. It fol-
lows immediately that `opt(s′) ≤ V ∗(s′) ∀s′, because
C(s′, x′) ≤ Q∗(s′, x′) = C(s′, x′) +

∑
s′′ Ptr(s′′|s′, x′) ·

V ∗(s′′). The key thing to notice is that the cost of
measuring a single attribute x′ is ≤ the cost of any
policy that begins by measuring x′, because the policy
must pay the cost of at least one more action (classifi-
cation or measurement) before entering sf .

The definition of the optimistic Q value Qopt can be
extended to apply to all AND nodes as follows:

Qopt(s, a) =

C(s, a)
if a = f (a classification action)

C(s, a) +
∑

s′ Ptr(s′|s, a) · `opt(s′)
if (s, a) is unexpanded

C(s, a) +
∑

s′ Ptr(s′|s, a) · V opt(s′)
if (s, a) is expanded

where V opt(s) def= mina∈A(s) Qopt(s, a). The optimistic
policy is πopt(s) = argmina∈A(s) Qopt(s, a). Every OR
node s stores its optimistic value V opt(s), and every
AND node (s, a) stores Qopt(s, a). Theorem 1 proves

that Qopt and V opt form an admissible heuristic.

Theorem 1 For all s and all a ∈ A(s), Qopt(s, a) ≤
Q∗(s, a), and V opt(s) ≤ V ∗(s).

Proof by induction:

Base case for Qopt

If a is a classification action f , then Qopt(s, f) =
C(s, f) = Q∗(s, f). If (s, a) is unexpanded, then
Qopt(s, a) = C(s, a) +

∑
s′ Ptr(s′|s, a) · `opt(s′) ≤

C(s, a) +
∑

s′ Ptr(s′|s, a) · V ∗(s′) = Q∗(s, a), because
`opt(s′) ≤ V ∗(s′).

Base case for V opt

Let su be any state where all its AND nodes (su, a), if
any, are unexpanded. Then V opt(su) ≤ V ∗(su) follows
from the base case of Qopt.

Any other state se in the graph has at least one AND
node (se, a) previously expanded. Let sc be any of the
result states of (se, a).

Induction hypothesis
If V opt(sc) ≤ V ∗(sc), ∀sc, then Qopt(se, a) ≤
Q∗(se, a), ∀a ∈ A(se), and V opt(se) ≤ V ∗(se).

We only need to consider the case of an expanded ac-
tion a ∈ A(se), because the other situations are cov-
ered by the base case. By definition, Qopt(se, a) =
C(se, a) +

∑
s′ Ptr(s′|se, a) · V opt(s′). Because s′ is

one of the result states of (se, a), we can apply the
induction hypothesis with sc = s′, so V opt(s′) ≤
V ∗(s′), hence Qopt(se, a) ≤ Q∗(se, a). It follows that
Qopt(se, a) ≤ Q∗(se, a), ∀a ∈ A(se), and V opt(se) ≤
V ∗(se). Q.E.D.

3.1.2 Realistic Values and Realistic Policy

We also introduce an upper bound, V real(s), which
is an overestimate of the value of the optimal policy
rooted at s. Every OR node s stores a realistic value
V real(s), and every AND node (s, a) stores a realistic
Q value, Qreal(s, a). For a ∈ A(s) define

Qreal(s, a) =

C(s, a)
if a = f (a classification action)

C(s, a) +
∑

s′ Ptr(s′|s, a) · V real(s′)
if (s, a) is expanded

ignore if (s, a) is unexpanded

and V real(s) = mina∈A′(s) Qreal(s, a), where the set
A′(s) is A(s) without the unexpanded actions. The
realistic policy is πreal(s) = argmina∈A′(s) Qreal(s, a).

In the current graph expanded by AO∗, assume that
we ignore all unexpanded AND nodes (s, a). We call
this graph the realistic graph. The current realistic

policy is the best policy (according to the training
data) from this realistic graph.

Theorem 2 The realistic value V real is an upper
bound: V ∗(s) ≤ V real(s), ∀s.

Proof: Base case: By definition, a leaf node s in
the realistic graph has πreal(s) = f , where f is the
best classification action in s. Therefore V real(s) =
C(s, f) ≥ V ∗(s), because we ignore unexpanded AND
nodes (s, xn), and it could well be that C(s, f) ≥
Q∗(s, xn). Induction step: The internal nodes in the
graph compute their realistic values using a one step
Bellman backup based on realistic values of the next
states, V real(s) = min

a∈A′(s)
[C(s, a) +

∑
s′

Ptr(s′|s, a) ·

V real(s′)]. Q.E.D.

Corollary 1 If a is an expanded action in state s or
a classification action, then Q∗(s, a) ≤ Qreal(s, a).

Proof: If a is a classification action f then
Qreal(s, f) = C(s, f) = Q∗(s, f). If a is an expanded
action, the proof is immediate from the definition of
Qreal(s, a) based on one step lookahead, and using
Theorem 2 in the result states s′. Q.E.D.

3.1.3 Node Expansion

In the current optimistic policy πopt, we choose to ex-
pand the unexpanded AND node (s, πopt(s)) with the
largest impact on the root, defined as

argmax
s

(V real(s) − V opt(s)) · Preach(s|πopt),

where Preach(s|πopt) is the probability of reaching
state s from the root, following policy πopt. The dif-
ference V real(s) − V opt(s) tells how much we expect
the value of state s to change if we expand πopt(s).

3.1.4 AO∗ Implementation

Our implementation of AO∗ is the following:

repeat
select an AND node (s, a) to expand (using πopt,

V opt, and V real).
expand (s, a).
do bottom-up updates of Qopt, V opt, πopt

and of Qreal, V real, πreal.
until there are no unexpanded nodes reachable by πopt.

As more nodes are expanded, the optimistic values
V opt increase, becoming tighter lower bounds to the
optimal values V ∗, and the realistic values V real de-
crease, becoming tighter upper bounds. They converge
to the value of the optimal policy on the training data:
V opt(s) = V real(s) = V ∗(s), ∀s reachable by π∗.

For an unexpanded AND node (s, a), if V real(s) <
Qopt(s, a), then action a does not need to be ex-
panded, and therefore our heuristic provides a cut-off
in node expansions. In this case, V opt(s) ≤ V ∗(s) ≤
V real(s) < Qopt(s, a) ≤ Q∗(s, a). So V opt(s) <
Qopt(s, a) ⇒ πopt(s) 6= a, and V ∗(s) < Q∗(s, a) ⇒
π∗(s) 6= a.

The AO∗ algorithm can be viewed as an “anytime”
algorithm. If we want to stop the algorithm after a
certain number of nodes have been expanded or if we
run out of memory, then we can return the realistic
policy πreal computed up to that point.

3.2 Statistical Pruning

For problems with many low-cost, weakly-informative
attributes, our admissible heuristic is unable to prune
many nodes, and hence, the search space will explode.
If we consider this explosion from the perspective of
machine learning, we are led to ask whether it is re-
ally necessary to consider all of these different policies.
Given a small training sample, there are many pairs
of policies that are statistically indistinguishable. We
would like to find a way that we can prune subgraphs
from the AND/OR graph while ensuring that AO∗ still
finds a policy statistically indistinguishable from the
optimal policy. Let us formalize this observation as
the following indifference principle:

Indifference Principle. Given two policies π1 and
π2 whose values are statistically indistinguishable based
on the training data set, a learning algorithm can
choose arbitrarily between them.

Strictly speaking, we cannot apply this principle until
AO∗ has generated two complete policies π1 and π2,
and hence, we could not apply the principle to avoid
computation. However, we can apply the principle
heuristically by identifying an AND node (s, a) with
the following properties: (i) action a has not been ex-
panded, (ii) with high probability, when a is expanded,
the resulting optimal policy rooted at a will be statisti-
cally indistinguishable from the current realistic policy
rooted at s. If such an AND node (s, a) can be found,
then we can prune it from the graph. We call this
heuristic statistical pruning (abbreviated SP).

To decide whether an unexpanded AND node (s, a)
has property (ii), we perform a statistical test to de-
termine whether V real(s) is statistically distinguish-
able from Qopt(s, a). If the test cannot reject the null
hypothesis that these two values are equal, then we
prune the AND node from the graph. The statistical
test is a paired test for the difference of two means. For
each training example j that matches state s, we com-

pute its actual cost creal(j) according to πreal and its
optimistic cost copt(j) according to πopt. These costs
are based on the observed values of j and its true class
yj . We then compute a normal confidence interval for
the mean of the difference creal(j)−copt(j), and if this
interval contains zero, then we cannot reject the null
hypothesis that V real(s) = Qopt(s, a).

Statistical pruning is easily incorporated into AO∗.
When a node (s, a) is selected to be expanded, we
apply the paired-difference test. If the test decides
to prune this action, then we delete it from A(s) and
update Qopt, V opt, πopt. The realistic graph does not
need to be updated, because (s, a) was unexpanded,
so it did not and will not influence the realistic policy.

Statistical pruning is a heuristic that approximately
implements the Indifference Principle. Most of the
time, the statistical test correctly identifies AND nodes
whose expansions cannot lead to a policy that is sta-
tistically distinguishable from πreal. This is because
Qopt(s, a) ≤ Q∗(s, a), so expanding AND node (s, a)
can only cause the estimated value Qopt(s, a) to in-
crease. Hence, if Qopt(s, a) is indistinguishable from
V real(s), then Q∗(s, a) is likely to be even closer to
V real(s). The heuristic can fail if Q∗(s, a) has very
low variance on the training set so that even though it
is closer to V real(s), it is also statistically distinguish-
able. We believe such cases will arise rarely.

4. Experiments

To test the effectiveness of the admissible heuristic and
the SP heuristic, we implemented AO∗ with the admis-
sible heuristic (algorithm AO∗), and AO∗ with both
heuristics (algorithm AO∗+SP). We tested them on
two synthetic problems and we measured the amount
of memory required by both algorithms to converge.
The memory used is computed as the total number
of OR nodes and AND nodes. We also measured the
quality of the learned policy to see whether the mem-
ory savings achieved by statistical pruning caused a
significant change in the quality of the policy.

4.1 Naive Bayes Synthetic Problem

Our first set of experiments is conducted on a syn-
thetic problem generated from a simple Naive Bayes
network. The network has the following structure.
There are two classes y = 0 and y = 1 with equal
probability P (y = 0) = P (y = 1) = 0.5. There are
8 binary attributes. Attribute x1 has probabilities
P (x1 = 0|y = 0) = P (x1 = 0|y = 1) = 0.5, so it
provides no information about the class. The remain-
ing 7 attributes share the same symmetric distribution

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

m
em

or
y

at
 c

on
ve

rg
en

ce
 (

O
R

 +
 A

N
D

 n
od

es
)

cost of an attribute

exhaustive search
AO*

AO* + SP

Figure 1. Naive Bayes problem, AO∗ memory and
AO∗+SP memory at convergence for different costs of an
attribute, for p = 0.1, 1000 training examples.

P (xi = 0|y = 0) = P (xi = 1|y = 1) = p, ∀i > 1. In
the experiments, we vary p from 0.1 to 0.4 in steps of
0.1. As p approaches 0.5, the attributes become use-
less; as p approaches 0, the attributes become perfect
predictors of the class. The cost of misclassification
(false positive or false negative) is fixed at 20, the cost
of measuring x1 is fixed at 0.1, and the remaining at-
tributes have identical cost c, which we vary in the
experiments from 0 to 10 in steps of 0.1. This upper
limit of 10 was chosen to be half the misclassification
cost, because, for more expensive attributes, the opti-
mal diagnostic policy would be to classify immediately
without measuring any attributes.

For each value of p, we generated 1000 training exam-
ples from the Naive Bayes network. For each attribute
cost c, we run the AO∗ and AO∗+SP algorithms. We
employed a confidence level of 99.9999% for the statis-
tical tests in the SP heuristic. After each node expan-
sion, we measured the performance of the realistic pol-
icy on the true model. We also computed the amount
of memory consumed by each algorithm.

Figures 1, 2, 3 and 4 show the results for p = 0.1,
p = 0.2, p = 0.3, and p = 0.4. Each figure com-
pares the amount of memory consumed by exhaustive
search, by AO∗, and by AO∗+SP. All methods are
run to completion. The horizontal axis gives the cost
of measuring an attribute. We see that the admissible
heuristic gives a massive reduction in memory, partic-
ularly when the cost c is large. This is because the
optimal policy tests few or no attributes, and the ad-
missible heuristic prunes most of the search space. In

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

m
em

or
y

at
 c

on
ve

rg
en

ce
 (

O
R

 +
 A

N
D

 n
od

es
)

cost of an attribute

exhaustive search
AO*

AO* + SP

Figure 2. Naive Bayes, p = 0.2, 1000 training examples.

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

m
em

or
y

at
 c

on
ve

rg
en

ce
 (

O
R

 +
 A

N
D

 n
od

es
)

cost of an attribute

exhaustive search
AO*

AO* + SP

Figure 3. Naive Bayes, p = 0.3, 1000 training examples.

such cases, statistical pruning is not needed. The dif-
ficult cases for AO∗ are when the test cost c is small,
because this is when the optimal policy can afford to
test many attributes, and hence, the AND/OR graph
grows large. Here, we see that SP gives important ad-
ditional memory reductions. When c < 2, the reduc-
tions range from 17-fold (p = 0.1, c = 1.3) to 5-fold
(p = 0.2, c = 0.1) to 1-fold (p = 0.4, c = 1.9).

To determine whether SP caused an increase or de-
crease in the total expected cost of the policy, we com-
pared the values of the policies learned using equal
amounts of memory. Specifically, for each combina-
tion of p and c, we trained both AO∗ and AO∗+SP to
convergence. We then determined which method (usu-
ally AO∗+SP) used the smallest amount of memory at

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

m
em

or
y

at
 c

on
ve

rg
en

ce
 (

O
R

 +
 A

N
D

 n
od

es
)

cost of an attribute

exhaustive search
AO*

AO* + SP

Figure 4. Naive Bayes, p = 0.4, 1000 training examples.

convergence. Let π1 be the final policy computed by
this method. We then found the point where the other
method (usually AO∗) used the same amount of mem-
ory. Let π2 be this policy. We then computed the
values of π1 and π2 on the true model and compared
them. There are 404 combinations of p and c values.
Using the sign test (with significance level of 0.05),
we cannot reject the null hypothesis that the policies
computed by AO∗ have the same values as the policies
computed by AO∗+SP. Hence, the reductions in mem-
ory were obtained without any statistically significant
change in performance of the learned policies.

We also ran experiments with smaller training sets
to determine how the size of the training set affects
statistical pruning. Figure 5 shows the percentage
of AO∗ memory used by AO∗+SP (ignoring the easy
cases where AO∗+SP memory < 200 nodes). This
shows that SP becomes more and more effective as
the size of the training set becomes smaller, because
more and more policies become statistically indistin-
guishable and can be pruned. For all of these cases,
the sign test found that there was no significant dif-
ference between the quality of the policies learned by
AO∗ and learned by AO∗+SP.

We performed a scaling-up experiment in which we
increased the number of binary attributes to 20 with
three different training set sizes and three different test
costs c (and a memory limit of 106 nodes). For each
of the 9 settings, we had 10 training sets. In 89 of the
90 runs, the policy constructed by AO∗+SP was equal
to or better than AO∗. We believe that the AO∗+SP
policies were close to optimal (although the problems
are too large to verify this by systematic search).

0

10

20

30

40

50

60

70

80

90

64 128 256 512 1024 2048

A
O

*+
S

P
_m

em
or

y
/ A

O
*_

m
em

or
y

*
10

0%

size of training data

25% - median - 75%
median

Figure 5. Naive Bayes. Percentage of AO∗ memory used
by AO∗+SP for all (p, c) combinations.

Table 1. Diabetes data. Confidence interval for the differ-
ence in (AO∗ − SP) values on the test set.

ex 95% CI result
537 [0.228, 0.855] AO∗+SP better than AO∗

268 [–0.515, 0.070] AO∗+SP and AO∗ the same
134 [–0.399, 0.511] AO∗+SP and AO∗ the same

4.2 Diabetes Synthetic Problem

Our second problem is based on the Pima Indians
Diabetes dataset, donated by Vincent Sigillito, with
attribute costs donated by Peter Turney, which can
be found at the UCI repository. The data consists of
768 examples with no missing values, 8 attributes, and
two classes (healthy or diabetic). 500 of the examples
(65.10%) are labeled as healthy (class 0). Test costs
are 1, 17.61, and 22.78. We assigned a cost of 100 to
false negative diagnoses, and a cost of 80 to false pos-
itive diagnoses. Because our current implementation
works for binary attributes, we first discretized the
diabetes data into two levels by computing, for each
attribute, the threshold value that maximizes the mu-
tual information with the class variable.

Since the dataset is quite small, we measured perfor-
mance by generating 100 random splits of the data
into 70% training and 30% test examples (with sam-
pling stratified by class). For each split of the diabetes
data, the training set had 537 examples. To generate
learning curves, we further subdivided each training
set to produce training sets of size 268 and 134.

Both AO∗ and AO∗+SP were trained on each of these
training sets, and their performance was measured on
the corresponding test set. The confidence level for

10

15

20

25

30

35

40

45

128 256 512 1024

A
O

*+
S

P
_m

em
or

y
/ A

O
*_

m
em

or
y

 *
 1

00
%

size of training data

25% - median - 75%
median

Figure 6. Diabetes data. Percentage of AO∗ memory used
by AO∗+SP.

the statistical pruning heuristic was set at 99.9999%.

Figure 6 shows the results. In all cases, AO∗+SP uses
much less memory than AO∗. Again, we observe that
statistical pruning is especially effective for small train-
ing sets, but even with the large training set, it requires
half the memory of AO∗. The average CPU times are
16.45s for AO* and 29.78s for AO∗+SP.

We applied a paired-difference test to determine
whether the policy learned by AO∗+SP was worse
than that learned by AO∗. Table 1 shows that for
training sets of size 134 and 268, there was no signif-
icant difference. However, for the large training set,
AO∗+SP produced a policy significantly better than
the AO∗ policy (given the same amount of memory).
For this case, Figure 7 shows a scatter plot of the val-
ues on the test set of the AO* and AO∗+SP policies for
the 100 data splits of diabetes. Since half of the points
are under the diagonal y = x (AO∗+SP is better than
AO*), a fourth are on the diagonal (ties) and the rest
are above the diagonal (AO∗+SP is worse than AO*,
but not markedly worse), this graph illustrates that
AO∗+SP performs better than AO* more often than
not. By reducing the search space, AO∗+SP overfits
less than AO* and this leads to a reduction in cost.

5. Conclusions

Systematic search of the space of decision trees is
infeasible in ordinary supervised learning. This pa-
per has shown that in cost-sensitive learning, system-
atic search (using AO∗) has the potential to be feasi-
ble when combined with an admissible heuristic and

24

26

28

30

32

34

36

38

40

24 26 28 30 32 34 36 38 40

va
lu

e
of

 A
O

*+
S

P
 p

ol
ic

y
on

 te
st

 s
et

value of AO* policy on test set

Figure 7. Diabetes. Scatter plot of the values of AO* and
AO∗+SP policies for 100 splits, each with 537 examples.

the statistical pruning heuristic. These heuristics give
massive reductions in the search space without hurting
the quality of the resulting diagnostic policy. Further-
more, statistical pruning can sometimes improve the
diagnostic policy by reducing overfitting.

Acknowledgements. This research was supported
by NSF IIS-0083292. We also thank Peter Turney for
helpful discussions.

References

Greiner, R., Grove, A., & Roth, D. (2002). Learning cost-
sensitive active classifiers. Art. Int. Journal, in press.

Hansen, E. (1998). Solving POMDPs by searching in policy
space. UAI-98 (pp. 211–219). Morgan Kaufmann.

Margineantu, D. (2001). Methods for cost-sensitive learn-
ing. Dissertation, Oregon State Univ.

Nilsson, N. (1980). Principles of artificial intelligence. Palo
Alto: Tioga Publishing Co.

Norton, S. W. (1989). Generating better decision trees.
IJCAI-89 (pp. 800–805). Morgan Kaufmann.

Nunez, M. (1991). The use of background knowledge in
decision tree induction. Mach. Learn., 6, 231–250.

Tan, M. (1993). Cost-sensitive learning of classification
knowledge and its applications in robotics. Mach.
Learn., 13, 1–33.

Turney, P. D. (1995). Cost-sensitive classification: Empiri-
cal evaluation of a hybrid genetic decision tree induction
algorithm. JAIR, 2, 369–409.

Washington, R. (1997). BI-POMDP: Bounded, incremen-
tal partially-observable Markov-model planning. Proc.
4th Eur. Conf. Plan.

