
Improving SVM Accuracy by Training on Auxiliary Data Sources

Pengcheng Wu wuwu@cs.orst.edu
Thomas G. Dietterich tgd@cs.orst.edu

School of EECS, Oregon State University, Corvallis, OR 97331

Abstract

The standard model of supervised learn-
ing assumes that training and test data are
drawn from the same underlying distribution.
This paper explores an application in which
a second, auxiliary, source of data is avail-
able drawn from a different distribution. This
auxiliary data is more plentiful, but of signif-
icantly lower quality, than the training and
test data. In the SVM framework, a training
example has two roles: (a) as a data point to
constrain the learning process and (b) as a
candidate support vector that can form part
of the definition of the classifier. The pa-
per considers using the auxiliary data in ei-
ther (or both) of these roles. This auxiliary
data framework is applied to a problem of
classifying images of leaves of maple and oak
trees using a kernel derived from the shapes
of the leaves. Experiments show that when
the training data set is very small, training
with auxiliary data can produce large im-
provements in accuracy, even when the aux-
iliary data is significantly different from the
training (and test) data. The paper also in-
troduces techniques for adjusting the kernel
scores of the auxiliary data points to make
them more comparable to the training data
points.

1. Introduction

When training data are very scarce, supervised learn-
ing is difficult. Recently, many researchers have been
exploring other sources of information that might al-
low successful learning from very small training sam-
ples. These efforts include learning by exploiting back-
ground knowledge (e.g., Clark & Matwin, 1993) and

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

learning from a mixture of supervised and unsuper-
vised data (e.g., Bennett & Demiriz, 1999; Blum &
Mitchell, 1998). In this paper, we investigate another
source of additional information: auxiliary supervised
data drawn from a distribution different from the tar-
get distribution.

Auxiliary data are often available in machine learn-
ing application problems. For example, in medical
applications, data may have been gathered in differ-
ent countries or with somewhat different definitions of
the class labels. In financial analysis, data may have
been gathered in earlier years or with slightly differ-
ent definitions of the attributes (e.g., the definitions
of “productivity” and “consumer price index” change
over time). A challenge for machine learning is to find
ways of exploiting this data to improve performance
on the target classification task.

The utility of auxiliary data can be understood
through a bias/variance analysis. Because the real
training data is scarce, a learned classifier will have
high variance and therefore high error. Incorporating
auxiliary data can reduce this variance, but possibly
increase the bias, because the auxiliary data is drawn
from a different distribution than the real data. This
analysis also suggests that as the amount of real train-
ing data increases, the utility of auxiliary data should
decrease.

This paper was inspired by an application in image
classification for botany. Suppose you are hiking in
the forest, and you encounter an interesting plant. You
wonder what this plant is, so you clip off a leaf, take it
home, and scan it using your scanner. Then you go to
a web-based classification service, upload the image,
and the server classifies the leaf and then provides in-
formation about the plant. We would like to provide
such a service for a large range of plant species. The
research described in this paper is part of this effort.

In this plant image classification task, the primary
classification task is to determine the species of an
isolated leaf, given an image of that leaf. To obtain

1



training (and test) data for this task, we collected in-
dividual leaves from 4 species of maple trees and 2
species of oak trees and scanned these leaves to obtain
high-resolution color images. This is a time-consuming
process, and it is expensive to obtain a large number
of training examples for each species.

There is an alternative source of training data: plant
specimen collections. At many universities, includ-
ing ours, there is an Herbarium—a collection of dried
plant specimens. Each specimen consists of an entire
branch of a plant (stems, leaves, flowers, seed pods,
and sometimes even roots) along with a label indicat-
ing genus, species, date and site of collection, and so
forth. These specimens differ in many ways from iso-
lated leaves. First, the specimens are old and dried,
so they are discolored. Second, each specimen typi-
cally contains several leaves, and these leaves typically
overlap and occlude each other. Third, the other plant
parts (stems, flowers, seeds) are not useful for the pri-
mary isolated-leaf classification task. Nonetheless, the
question arises of whether there is some way that we
can exploit these plant specimens to help train a clas-
sifier for isolated leaves.

This paper explores a general solution to this problem
within the framework of support vector machines. We
consider two different ways in which auxiliary train-
ing data can be incorporated into (a form of) support
vector machines, and we experimentally evaluate these
methods. The paper begins with a description of the
main approach. This is followed by presentation of our
particular application problem. Then the experiments
and their results are presented. A discussion of the
results and conclusions completes the paper.

2. Exploiting auxiliary training data

Suppose we are given Np training examples (xp
i , y

p
i )

for i = 1, . . . , Np for our primary supervised learning
problem, where xp

i is a description of the ith training
example, and yp

i is the corresponding class label. The
superscript p indicates the “primary” learning task. In
addition, suppose we are given Na auxiliary training
examples (xa

i , ya
i ) for i = 1, . . . , Na. We will assume

that these training examples are somehow similar to
the primary task, but they should be treated as weaker
evidence for the design of a classifier.

Most learning algorithms can be viewed as seeking
an hypothesis h that minimizes some loss function
L(h(x), y) between the predicted class label h(x) and
the observed label y. Often, this can be formulated as
finding the hypothesis h that minimizes the objective

function

J(h) =
∑

i

L(h(xi), yi) + λ D(h),

where D(h) is a complexity penalty to prevent over-
fitting, and λ is an adjustable parameter that controls
the tradeoff between fitting the data (by minimizing
the loss) and hypothesis complexity.

A natural approach to exploiting auxiliary training
data would be to change the objective to have a sepa-
rate term for fitting the auxiliary data

J ′(h) =
Np∑
i

L(h(xp
i ), y

p
i )+ γ

Na∑
i

L(h(xa
i ), ya

i )+ λD(y).

The parameter γ (presumably less than 1) controls
how hard we try to fit the auxiliary data. Cross-
validation or hold-out methods could be applied to set
γ and λ.

2.1. Auxiliary data with k-nearest neighbors

In many learning algorithms, the training data play
two separate roles. Not only do they help define the
objective function J(h), but they also help define the
hypothesis h. In the k-nearest neighbor algorithm
(kNN), for example, h(x) is defined in terms of the
k training data points nearest to x. The parameter k
is chosen to minimize J(k) where J is the leave-one-out
cross-validation estimate of the loss. In this setting, we
can now consider two different roles for the auxiliary
data. First, when choosing k, we can include the aux-
iliary data in the objective function as J ′(k). Second,
we can include the auxiliary data in the set of poten-
tial neighbors. In other words, the auxiliary data can
be used both to evaluate a candidate classifier using
J ′ and also to define the classifier.

To include the auxiliary data in the set of potential
neighbors, we found it best to separately compute the
Kp nearest primary neighbors and the Ka nearest aux-
iliary neighbors, and then take a weighted combination
of the votes of these neighbors. Specifically, let V p(c)
and V a(c) be the number of votes for class c from the
primary and auxiliary nearest neighbors. Then the
overall vote for class c is defined as

V (c) = θ(V p(c)/Kp) + (1 − θ)(V a(c)/Ka).

The parameter θ controls the relative importance of
the two types of neighbors. If θ = 1, then only the
primary nearest neighbors are voting, if θ = 0.5 and
Kp = Ka, then equal importance is given to primary
and auxiliary neighbors, and if θ = 1, then only the
auxiliary neighbors determine the classification. The

2



parameters θ, Kp, and Ka must be set by internal
cross-validation to optimize the objective function (J
or J ′).

2.2. Auxiliary data with support vector
machines

Now let us consider support vector machines and re-
lated methods. A support vector classifier has the form

y =
{

1 when
∑

j αjyjK(xj ,x) + b ≥ 0
−1 otherwise

,

where the αj and b are learned parameters and the
function K(xj ,x) is a kernel function that in some
sense measures the similarity between the test example
x and the training example xj . Training examples for
which αj > 0 are called support vectors.

The α and b values are learned by solving a convex op-
timization problem. In this paper, we will consider lin-
ear programming support vector machines (LP-SVMs)
(Mangasarian, 2000) since they encourage sparser so-
lutions than the usual SVM quadratic regularization
penalty. This sparseness reduces the number of kernels
evaluated at classification time (Graepel et al., 1999):

Minimize :
∑

j

αj + C
∑

i

ξi

s.t. : yi


∑

j

yjαjK(xj ,xi) + b


 + ξi ≥ 1 ∀i

αj ≥ 0 ∀j.

The objective function includes one term,
∑

j αj , that
penalizes the complexity of the classifier and another
term, C

∑
i ξi, that measures how poorly the classifier

fits the training data. The slack variables ξi will be
positive precisely for those training examples that the
classifier does not classify correctly with a margin of
at least 1.

As with kNN, there are two possible roles for an aux-
iliary training example. It can be considered as a po-
tential support vector (indexed by j), and it can be
included as a constraint to be satisfied in the opti-
mization problem (indexed by i). This results in the
following optimization problem:

Minimize:
Np∑
j

αp
j +

Na∑
j

αa
j + Cp

Np∑
i

ξp
i + Ca

Na∑
i

ξa
i

subject to:

yp
i


 Np∑

j

yp
j αp

jK(xp
j ,x

p
i ) +

Na∑
j

ya
j αa

j K(xa
j ,xp

i ) + b


 + ξp

i

≥ 1 i = 1, . . . , Np

ya
i


 Np∑

j

yp
j αp

jK(xp
j ,x

a
i ) +

Na∑
j

ya
j αa

j K(xa
j ,xa

i ) + b


 + ξa

i

≥ 1 i = 1, . . . , Na

αp
j ≥ 0 j = 1, . . . , Np αa

j≥ 0 j = 1, . . . , Na

This can be simplified in two ways. First, we can re-
move the auxiliary training examples from the con-
straints by deleting the second set of constraints (in-
volving ξa) and setting Ca = 0. This gives an LP-SVM
in which the auxiliary examples are only used as sup-
port vectors. This increases the expressive power of
the classifier, but it is still trained only to classify the
primary examples correctly.

Alternatively, we can keep the constraints but delete
the auxiliary examples from the set of candidate sup-
port vectors by deleting all terms involving

∑Na

j in the
constraints and the objective function. The resulting
SVM will be defined using only primary training exam-
ples as support vectors, but it will have been trained
to classify both primary and auxiliary examples well.

In the remainder of this paper, we will evaluate exper-
imentally which of these three configurations (both,
support-vectors only, and constraints-only) gives the
best results on our isolated leaf classification problem.

3. Application: Leaf Classification

Figure 1 shows examples of isolated leaves and Herbar-
ium specimens. Rather than extract feature vectors,
we compare leaf shapes to one another directly as fol-
lows. First, each image is thresholded to obtain a bi-
nary image (1 for plant pixel and 0 otherwise). Then
the boundary of each region is traversed, and the shape
of the boundary is converted into a sequence of local
curvatures. Let (xj , yj) be the coordinates of the jth
point on the boundary of a region. Define angle θj

as the angle between the line segments (xj−10, yj−10)–
(xj , yj) and (xj , yj)–(xj+10, yj+10). The sequence of
angles forms a loop. To compare two leaves, we apply
dynamic programming algorithms to align their an-
gle sequences and compute a distance between them.
Similar “edit distance” methods have been applied
many times in pattern recognition and bioinformatics
(Durbin et al., 1998; Milios & Petrakis, 2000; Petrakis
et al., 2002).

We employ three different dynamic programming al-
gorithms. The first algorithm is applied to compare
two isolated leaves. Let {θi : i = 1, . . . , N} be the an-
gle sequence of the first leaf, and {ωj : j = 1, . . . , M}
be the angle sequence of the second leaf. We will du-
plicate the angle sequence of the second leaf so that j

3



(a)

(b)

Figure 1. Plant leaf images: (a) Isolated leaves; (b) Herbar-
ium leaves

goes from 1 to 2M (and ωj = ωj+M for j = 1, . . . , M).

Let F be an N by 2M matrix of costs oriented to lie
in the first quadrant. We can visualize an alignment
of the two leaves as a path that starts in some location
F1,k and matches the first angle θ1 of the first leaf to
angle ωk of the second leaf. This path then moves up-
ward (increasing i) and to the right (increasing j) until
it ends in some position FN,k′ , where it matches the
last angle θN of the first leaf to angle ωk′ of the second
leaf. Cell Fi,j stores the total cost of the minimum-
cost path from F1,k for any k to Fi,j . The F matrix
can be filled in by traversing the matrix according to
the rule

Fi,j := min




Fi−1,j−1 + dij

Fi,j−1 + W1 + dij

Fi−1,j + W2 + dij

where dij = (θi − ωj)2 is the cost of matching the
two angles, W1 is the cost of a horizontal move that
skips ωj and W2 is the cost of a vertical move that
skips θi. In our experiments, W1 = W2 = 150. Note
that the match is constrained to match all of the θ

50

100

150

200

100 150 200

200

400

200 400 600 800

Optimal match
250

300

350
750 800 850

Unrepresentative
portions removed

(a) (b) (c)

Figure 2. Generating herbarium segments: (a) An isolated
example; (b) An herbarium region showing the longest
match to (a); (c) Close-up of the longest match.

angles, but that the match may stop before it has
matched all of the ω angles or it may wrap around
and match some ω’s twice. The final matching score
is (minj FN,j)/

√
N2 + (k′ − k)2.

This first dynamic programming algorithm works well
for comparing isolated leaves, but it works very badly
for comparing isolated leaves to herbarium samples
or herbarium samples to each other. The problem
is that a region of an herbarium sample can be very
large and contain multiple, overlapping leaves. We
decided, therefore, to use our isolated training exam-
ples as “templates” to identify parts of the herbarium
samples that are most likely to correspond to a sin-
gle leaf. Specifically, we take each isolated training
example and match it to each segment of each herbar-
ium sample of the same species. The purpose of this
match is to find the longest contiguous partial match
of the isolated leaf against some part of the herbarium
sample. This partial match will be called an herbarium
segment, and it will play the role of the auxiliary train-
ing data in our experiments. The process is illustrated
in Figure 2.

The dynamic program for extracting herbarium seg-
ments works as follows. Let {θi : i = 1, . . . , N} be the
sequence of angles extracted from the isolated leaf and
{ωj : j = 1, . . . , M} be the angle sequence extracted
from one connected region of an herbarium sample of
the same species. Let S be a 2N ×2M matrix of costs.
A match will consist of a path that starts at any arbi-
trary point (is, js) in the lower left N ×M matrix and
terminates at some arbitrary point (ie, je) above and
to the right. S is filled according to the rule

Si,j := max




Si−1,j−1 + γ − dij

Si,j−1 + γ − W1 − dij

Si−1,j + γ − W2 − dij

0

As before, dij = (θi − ωj)2 is the cost of matching θi

to ωj , W1 is the cost of a horizontal move (skipping

4



0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 2 3 4 5 6

E
rr

or
 r

at
e

Number of isolated training examples per species

Isolated kNN
Herbarium kNN

Mixed kNN

Figure 3. kNN error rates (error bars show 95% confidence
interval)

ωj) and W2 is the cost of a vertical move (skipping
θi). The important thing in this formula is γ, which is
the “reward” for extending the match one more angle.
The match begins and ends at points where 0 is the
largest of the four options in the max. It is easy to
keep track of the longest match in the array and to
extract the corresponding sequence of angles from the
herbarium region, (ωjs , . . . , ωje), to form an herbarium
segment. Empirically the value of γ is varied within
the range 250 ± 64 in each matching process until a
good match is found, that is, the ratio of the length of
the matched angle sequences is not less than 1/

√
2 and

not greater than
√

2. Finally, the extracted segment is
post-processed to remove angles skipped (by horizontal
moves) during the match.

The third dynamic program matches herbarium seg-
ments to each other and to isolated training examples.
It is identical to the first algorithm, except that we do
not permit wrap-around of herbarium segments.

4. Experiments

We collected isolated leaves and photographed herbar-
ium samples for six species—four maples (Acer Circi-
natum, Acer Glabrum, Acer Macrophyllum, and Acer
Negundo) and two oaks (Quercus Kelloggii and Quer-
cus Garryana). There are between 30 and 100 primary
examples and herbarium specimens for each species.

Because we are interested in cases where primary data
is especially scarce, we choose 6 isolated training ex-
amples at random from each class and retained the
remaining examples as the (isolated) test set.

We generated learning curves by varying the size of
the training set from 1 to 6 examples per species. For

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

M
ix

in
g 

pa
ra

m
et

er
 θ

Number of isolated training examples per species

Figure 4. Chosen mixing rates θ for kNN

training sets of size m ≤ 6, there are
(

6
m

)
possible dis-

tinct training sets, so we report the error rate averaged
over all of these.

In each run, the auxiliary data is obtained by matching
the isolated examples in the training set against all re-
gions of all herbarium samples from the same species.
Because the parameter γ is sensitive to tuning and
the length ratio constraint is strict, only 1 out of 5
matching processes produces a usable hebarium seg-
ment. Thus for each primary training set, we have an
auxiliary data set roughly 10 times as large.

4.1. kNN Experiments

Figure 3 shows the learning curves for kNN. In all
cases, the values of Kp (the number of primary nearest
neighbors), Ka (the number of auxiliary nearest neigh-
bors), and θ (the mixing coefficient) were set to opti-
mize a lexicographical objective function consisting of
four quantities. The most important quantity was the
leave-one-out number of isolated examples misclassi-
fied. Ties were then broken by considering the leave-
one-out number of herbarium segments misclassified.
Remaining ties were broken to reduce the error mar-
gin (number of votes for the winning class − number
of votes for the correct class) on the isolated examples
and finally to reduce the error margin on the herbar-
ium samples. The figure shows that for small sam-
ples, mixing the herbarium examples with the isolated
training examples gives better performance, but the
differences are not statistically significant. If we clas-
sify isolated test examples using only the herbarium
segments, the results are significantly worse for small
training sets.

Figure 4 shows the values chosen for the mixing pa-

5



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6

T
es

t e
rr

or
 r

at
e

Training examples per species

iso constraints - iso SVs
her constraints - iso SVs
mix constraints - iso SVs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6

T
es

t e
rr

or
 r

at
e

Training examples per species

iso constraints - her SVs
her constraints - her SVs
mix constraints - her SVs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6

T
es

t e
rr

or
 r

at
e

Training examples per species

iso constraints - mix SVs
her constraints - mix SVs
mix constraints - mix SVs

Figure 5. Learning curves for 9 configurations of LP-SVMs.
From top to bottom: isolated support vectors, herbarium
support vectors, and mixed support vectors.

rameter θ. We can see that for samples of size 1 (per
species), approximately 75% of the weight is given to
the auxiliary neighbors, whereas for samples of size 6,
only 40% of the weight is given to the auxiliary neigh-
bors. This accords with our intuition that as the sam-
ple gets larger, the variance (due to the small sample
of isolated leaves) decreases and hence, the auxiliary
neighbors become less useful.

4.2. LP-SVM Experiments

To apply SVMs, we must first convert the edit distance
computed by the dynamic programming algorithms
into a kernel similarity function. We employed the
simple transformation K(xi,xj) = 1/(edit distance).
However, it should be noted that this kernel is not
a Mercer kernel. First of all, it is not symmetric,
K(xi,xj) �= K(xj ,xi), because the dynamic program-
ming algorithm does not treat the two angle sequences
identically (one is required to wrap around exactly,
while the other is not). Second, we verified that some
of the eigenvalues of the kernel matrix are negative,
which would not be true for a Mercer kernel. The
practical consequences of this are not clear, and other
authors have found that empirical “kernels” of this
sort work very well (Bahlmann et al., 2002). However,
from a theoretical standpoint, unless a kernel is a Mer-
cer kernel, there is no equivalent higher-dimensional
space in which the learned decision boundary is a
maximum-margin hyperplane (Cristianini & Shawe-
Taylor, 2000).

There are nine possible configurations for our LP-
SVMs. The constraints can include only isolated
leaves, only herbarium segments, or both. The support
vectors can include only isolated leaves, only herbar-
ium segments, or both.

Figure 5 plots learning curves for these nine config-
urations. We note that, first, the overall best con-
figuration is to combine mixed constraints and mixed
support vectors. In short, the auxiliary data are use-
ful both for representing the classifier and for training
the classifier. Second, for samples of size 1, it is very
important to have both mixed constraints and mixed
support vectors. This is exactly what is predicted by a
bias/variance analysis. Small samples have high vari-
ance, so it is better to mix in the auxiliary data to
reduce the variance, even if this introduces some bias.
Third, for samples of size 4, 5, and 6, it is very im-
portant to have mixed constraints, but it is OK to
use just isolated training examples as support vectors.
Hence, the auxiliary data is still important. One pos-
sible explanation is that 6 examples per species is still
not enough data to eliminate the need for auxiliary
training data. This is supported by the kNN experi-
ments, where the best θ value was only 0.6 even with
6 examples per class.

To assess the statistical significance of the results, we
applied McNemar’s test to perform pairwise compar-
isons of various configurations. These comparisons
confirm that the three trends mentioned above are sta-
tistically significant.

6



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000

P
ro

ba
bi

lit
y

Edit Distance

Isolated Herbarium

Figure 6. Comparison of edit distance scores for isolated
leaves and herbarium segments. The herbarium histogram
has been truncated. An additional 1.1% of the herbarium
edit distances extend from 1000 to 3200.

0

1

2

3

4

5

1 2 3 4 5 6

O
pt

im
al

 C
p /C

a

Training examples per species

w/o histogram equalization
w/ histogram equalization

Figure 7. Trained values of Cp/Ca

4.3. Histogram Equalization
Figure 6 compares the distribution of the edit dis-
tances computed between all of the examples (iso-
lated and herbarium) and (a) the isolated leaves or (b)
the herbarium segments. The herbarium distances are
larger and 1,998 segments (1.1%) have edit distances
larger than 1000 (beyond the right edge of the figure).
We suspected that if we could make these distributions
more comparable, performance might improve.

We applied the following histogram equalization tech-
nique: Each distance computed with an herbarium
segment was transformed by taking the logarithm and
then scaling these to have the same range as the iso-
lated edit distances. This eliminates the very large
edit distance scores and shifts the distribution lower.

Histogram equalization has no effect on the kNN al-

gorithm, since our kNN algorithm handles the pri-
mary and auxiliary data separately. For LP-SVMs,
histogram equalization had no statistically significant
effect on either the error rates or the relative merits
of the 9 different configurations. The best configura-
tion is still the mixed-constraints/mixed-SV configura-
tion. We did find, however, that histogram equaliza-
tion changed the number of support vectors found by
the LP-SVM. At a sample size of 1, histogram equal-
ization cuts the number of herbarium support vectors
by more than half and doubles the number of isolated
support vectors. At a sample size of 6, the number of
isolated support vectors is unchanged, but the number
of herbarium support vectors is reduced by roughly an
order of magnitude. An explanation for this is that
with the “outlier” herbarium segments reduced by his-
togram equalization, fewer herbarium support vectors
were needed to fit them. However, since test set per-
formance is measured strictly on isolated leaves, this
reduction in herbarium support vectors has relatively
little impact on the error rate.

Another effect of histogram equalization was to change
the relative sizes of Cp and Ca, the complexity con-
trol parameters of the LP-SVM. Figure 7 plots the
ratio Cp/Ca. Without histogram equalization, we can
see that Cp was much larger than Ca for sample sizes
greater than 2, so much more weight was being placed
on fitting the primary training examples than on fit-
ting the auxiliary ones. With histogram equalization,
the ratio stays closer to 1, which indicates that roughly
equal weight was being placed on primary and auxil-
iary training examples.

5. Conclusions

This paper has described a methodology for exploit-
ing sources of auxiliary training data within the kNN
and LP-SVM learning algorithms. We have shown
that auxiliary data, drawn from a different distribution
than the primary training and test data, can signifi-
cantly improve accuracy. For the LP-SVM, Figure 8
shows that when training on only 1 example per class,
auxiliary data reduces the error rate from 27.8% to
22.5%, a reduction of nearly 20%. When training on 6
examples per class, the error rate decreases from 11.2%
to 5.8%, a reduction of 48%.

This paper has also shown how SVMs can be trained
to classify objects based on shape, by using boundary
curvature edit distances as a kind of kernel function.
By using separate Cp and Ca parameters in the SVM,
we can adjust the relative importance of fitting the two
data sources. Edit distances have been used with the
kNN classifier for many years. Our results suggest that

7



0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6

T
es

t e
rr

or
 r

at
e

Training examples per species

Isolated Constraints and Support Vectors

Mixed Constraints and Support Vectors

Figure 8. Comparison of training on primary data only
(Isolated Constraints and Support Vectors) with training
on both primary and auxiliary data (Mixed Constraints
and Support Vectors).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7

T
es

t e
rr

or
 r

at
e

Training set size (per species)

SVMs

Mixed kNN

Figure 9. Performance of mixed kNN vs mixed SVMs.

SVMs may be able to give significant improvements in
performance over such kNN classifiers. Figure 9 shows
that SVMs reduce the error rates by 34.6% (training
size 1) and 70.7% (training size 6).

Clearly, the more we can make the auxiliary data re-
semble the primary data, the more useful it will be.
In our application problem, we showed how to apply
the primary training examples as templates to extract
similar shape segments from the auxiliary data. In
addition, we found that equalizing the distance distri-
butions of the two data sources reduced the number of
support vectors.

It is easy to imagine ways of extending other learn-
ing algorithms to exploit auxiliary data sources. For
example, decision tree algorithms could use auxiliary
data for attribute selection, split threshold selection,
and tree pruning. Neural network algorithms could
train on auxiliary data, but with reduced penalties

for misclassification. There are several interesting
directions to pursue for exploiting auxiliary data in
Bayesian network classifiers.

References

Bahlmann, C., Haasdonk, B., & Burkhardt, H. (2002).
On-line handwriting recognition with support vec-
tor machines—a kernel approach. 8th International
Workshop on Frontiers in Handwriting Recognition
(pp. 49–54). Los Alamitos, CA: IEEE.

Bennett, K., & Demiriz, A. (1999). Semi-supervised
support vector machines. Advances in Neural Infor-
mation Processing Systems 11 (pp. 368–374). MIT
Press.

Blum, A., & Mitchell, T. (1998). Combining labeled
and unlabeled data with co-training. Proc. 11th
Annu. Conf. on Comput. Learning Theory (pp. 92–
100). ACM Press, New York, NY.

Clark, P., & Matwin, S. (1993). Using qualitative mod-
els to guide inductive learning. Machine Learning:
Proceedings of the Tenth International Conference
(pp. 49–56). San Francisco, CA: Morgan Kaufmann.

Cristianini, N., & Shawe-Taylor, J. (2000). An in-
troduction to support vector machines (and other
kernel-based learning methods). Cambridge Univer-
sity Press.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G.
(1998). Biological sequence analysis: Probabilistic
models of proteins and nucleic acids. Cambridge:
Cambridge University Press.

Graepel, T., Herbrich, R., Scholkopf, B., Smola, A.,
Bartlett, P., Robert-Muller, K., Obermayer, K., &
Williamson, B. (1999). Classification on proximity
data with LP–machines. Proceedings of the Ninth
International Conference on Artificial Neural Net-
works (pp. 304–309).

Mangasarian, O. (2000). Generalized support vector
machines. In A. J. Smola, P. L. Bartlett, B. Schlkopf
and D. Schuurmans (Eds.), Advances in large mar-
gin classifiers, 135–146. Cambridge, MA.: MIT
Press.

Milios, E., & Petrakis, E. (2000). Shape retrieval based
on dynamic programming. IEEE Transactions on
Image Processing, 8, 141–146.

Petrakis, E., Diplaros, A., & Milios, E. (2002). Match-
ing and retrieval of distorted and occluded shapes
using dynamic programming. IEEE PAMI, 24,
1501–1516.

8


