
Learning First-Order Probabilistic Models with Combining Rules

Sriraam Natarajan NATARASR@EECS.ORST.EDU

Prasad Tadepalli TADEPALL@EECS.ORST.EDU

Eric Altendorf ALTENDER@EECS.ORST.EDU

Thomas G. Dietterich TGD@EECS.ORST.EDU

Alan Fern AFERN@EECS.ORST.EDU

Angelo Restificar ANGELO@EECS.ORST.EDU

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-3202, USA

Abstract
First-order probabilistic models allow us to
model situations in which a random variable in
the first-order model may have a large and vary-
ing numbers of parent variables in the ground
(“unrolled”) model. One approach to compactly
describing such models is to independently spec-
ify the probability of a random variable condi-
tioned on each individual parent (or small sets
of parents) and then combine these conditional
distributions via a combining rule (e.g., Noisy-
OR). This paper presents algorithms for learning
with combining rules. Specifically, algorithms
based on gradient descent and expectation max-
imization are derived, implemented, and evalu-
ated on synthetic data and on a real-world task.
The results demonstrate that the algorithms are
able to learn the parameters of both the individ-
ual parent-target distributions and the combining
rules.

1. Introduction

New challenging application problems in networked and
relational data have led to the development of algorithms
for learning in first-order relational probabilistic models.
Several formalisms have been introduced including prob-
abilistic relational models (PRMs) (Getoor et al., 2001),
directed acyclic probabilistic entity-relationship (DAPER)
models (Heckerman et al., 2004), Bayesian logic pro-
grams (BLPs) (Kersting & Raedt, 2002), probabilistic
horn abduction language (Poole, 1993), probabilistic logic
programs (PLPs) (Ngo & Haddawy, 1995), stochastic
logic programs (SLPs) (Muggleton, 1996), Bayesian logic
(BLOG) models (Milch et al., 2004), relational Bayesian

Appearing in Proceedings of the 22nd International Conference on
Machine Learning, Bonn, Germany, 2005. Copyright 2005 by the
author(s)/owner(s).

networks (RBNs) (Jaeger, 1997), and Markov logic (ML)
(Domingos & Richardson, 2004). In most of these models,
it is possible to describe a generalized conditional probabil-
ity distribution in which a particular random variable (the
“target”) is conditioned on a set of parent variables in such
a way that when the model is converted to ground form
(“unrolled”), the number of parent nodes is large and varies
from one instance of the target variable to another. For ex-
ample, the size of a population of mosquitos depends on the
temperature and the rainfall each day since the last freeze.
In one location, there might have been 19 days since the
last freeze whereas in another location, there might have
been only 3 days (see Figure 1(a)).

There are two main approaches to deal with this “multiple-
parent” problem: aggregators and combining rules. An ag-
gregator is a function that takes the values of the parent
variables and combines them to produce a single aggregate
value which then becomes the parent of the target variable.
In the mosquito problem, we might define the total tem-
perature and the total rainfall as aggregate variables. These
are well-defined for any number of parents, and they can be
computed deterministically (shown as dashed lines in Fig-
ure 1(b)). The population node then has only two parents:
TotalTemp and TotalRain.

The second approach to the multiple-parent problem is to
have a distribution P(Pop | Temp,Rain) for population
given a single temperature-rain pair and then combine the
distributions from all such related pairs via a combining
rule such as Noisy-OR, Noisy-AND, or Mean (see Fig-
ure 1(c)). The advantage of this method is that it can cap-
ture interactions between the Temp and Rain variables that
are lost when temperature and rain are aggregated sepa-
rately. In effect, the different days are “voting” about the
probability of the mosquito population.

How can we learn in the presence of aggregators and com-
bining rules? Most aggregators are deterministic and have
no adjustable parameters, so they pose no additional prob-
lems for learning. However, some aggregators may have

Learning First-Order Probabilistic Models with Combining Rules

Temp1 Rain1 Rain3Temp3

Pop

Rain2Temp2

(a)

Temp1 Rain1 Rain3Temp3

Pop

Rain2Temp2

TotalTemp TotalRain

(b)

Temp1 Rain1 Rain3Temp3Rain2Temp2

Pop1 Pop2 Pop3

Pop

(c)

Figure 1. Three Bayesian networks describing the influence of daily temperature and rainfall on the population of mosquitos. (a) a
network with no aggregation or combination rules leads to a very complex conditional probability distribution, (b) a network with
separate aggregation for temperature and rainfall, (c) a network with separate prediction of the mosquito population each day followed
by a combining rule to predict the overall population.

internal parameters. Suppose, for example, that we ag-
gregated the temperatures as “degree days above 50 de-
grees”: DD(50) =

∑
i max(0,Tempi − 50). The threshold

of 50 might be learned from training data.

Learning with combining rules is more difficult, be-
cause the individual predicted target variables (e.g., Pop1,
Pop2, . . .) are unobserved, so the probabilistic model be-
comes a latent variable model. However, the latent vari-
ables are constrained to all share the same conditional prob-
ability distribution, so the total number of parameters re-
mains small. In previous work, Koller and Pfeffer de-
veloped an expectation maximization (EM) algorithm for
learning in the presence of combining rules and missing
data in relational context (Koller & Pfeffer, 1997). Kerst-
ing and DeRaedt implemented a gradient descent algorithm
for the same (Kersting & Raedt, 2001).

In this paper, we generalize and extend the above work to
weighted combinations of individual combining rules. We
present algorithms based on both gradient descent and EM.
The algorithms are tested on two tasks: a folder prediction
task for an intelligent desktop assistant and a synthetic task
designed to evaluate the ability of the algorithms to recover
the true conditional distribution.

The rest of the paper is organized as follows. Section 2
introduces the necessary background on probabilistic rela-
tional languages and the need for combining rules. Section
3 presents the two gradient descent and EM algorithms that
we have designed for learning the parameters in the pres-
ence of combining rules. Section 4 explains the experi-
mental results on a real-world dataset and on the synthetic
datasets. Section 5 concludes the paper and points out a
few directions for future research.

2. Probabilistic Relational Languages

In this section, we give a brief introduction to our first order
conditional influence language (FOCIL), which will serve
as our formalism for specifying and learning combining
rules. However, we note that our learning techniques are
not tied to this particular language and are applicable to
other probabilistic modeling languages that support com-
bining rules e.g., BLPs.

In the spirit of PRMs, we consider modeling domains that
are described in terms of objects of various types. The type
of an object determines the set of attributes or features that
describe it. In addition, predicates define properties of ob-
jects (e.g., the type) and relationships among those objects.
In this work, we assume that the domain of objects and
relations among the objects are known and that we are in-
terested in modeling the probabilistic relationships among
the attributes of the objects.

2.1. Conditional Influence Statements

The core of our language consists of first-order conditional
influence (FOCI) statements, which are used to specify
probabilistic influences among the attributes of objects in
a given domain. Each FOCI statement has the form:

If 〈condition〉 then 〈qualitative influence〉
where condition is a set of literals, each literal being
a predicate symbol applied to the appropriate number
of variables. A 〈qualitative influence〉 is of the form
X1, . . . ,Xk Qinf Y , where the Xi and Y are of the form V.a,
where V is a variable in condition and a is an object at-
tribute. This statement simply expresses a directional de-
pendence of the resultant Y on the influents Xi. Associated
with each FOCI statement is a conditional probability func-
tion that specifies a probability distribution of the resultant
conditioned on the influents, e.g. P(Y |X1, . . . ,Xk) for the
above statement. We will use Pi to denote the probability
function of the i’th FOCI statement. As an example, con-
sider the statement,

If {Person(p)} then p.diettype Qinf
p.fitness,

which indicates that a person’s type of diet influences
their fitness level. The conditional probability distribu-
tion P(p.fitness | p.diettype) associated with this statement
(partially) captures the quantitative relationships between
the attributes. As another example, consider the statement

If {Student(s) , Course(c) , Takes(t,s,c)}
then s.iq, c.diff Qinf t.grade,

which indicates that a student’s IQ and a course’s difficulty
influence the grade of the student in the course. Note that

Learning First-Order Probabilistic Models with Combining Rules

since Takes is a many-to-many relation, we have intro-
duced an argument t to represent the instance of the stu-
dent taking a course. It can be interpreted as representing a
student-course pair.

Given a fixed domain of objects and a database of facts
about those objects, FOCI statements define Bayesian net-
work fragments over the object attributes. In particular,
for the above statement, the unrolled Bayesian network
includes a variable for the grade of each student-course
object, the IQ of each student, and the difficulty of each
course. The parents of each grade variable are the IQ
and difficulty attributes corresponding to the appropriate
student and course. Each grade variable has an identi-
cal conditional probability table P(t.grade|s.iq,c.diff)—
that is, the table associated with the above rule.

FOCI statements capture the same kind of influence knowl-
edge as in PRMs, BLPs, and DAPER models, with some
differences. Unlike PRMs, which only allow path expres-
sions, the conditions can express arbitrary conjunctions of
literals. In BLPs, the conditions are not syntactically sep-
arated from the influents. DAPER models attach arbitrary
first-order conditions to the Bayes net arcs. FOCIL attaches
them to hyper-arcs, which allows it to express conditions
that relate parents to one another.

In addition, our language supports qualitative constraints
such as monotonicity, saturation and synergies. Although
in this paper we do not learn with these constraints, we have
well-defined semantics of the constraints in FOCIL and
learning algorithms for propositional models with mono-
tonicity constraints (Altendorf et al., 2005).

2.2. Combining Rules

The following example illustrates the multiple-parent prob-
lem described in the introduction. Consider an intelligent
desktop assistant that must predict the folder of a document
to be saved. Assume that there are several tasks that a user
can work on, such as proposals, courses, budgets, etc. The
following FOCI statement says that a task and the role the
document plays in that task influence its folder.

If {task(t), document(d), role(d,r,t)} then
t.id,r.id Qinf d.folder.

Typically a document plays several roles in several tasks.
For example, it may be the main document of one task but
only a reference in some other task. Thus there are multi-
ple task-role pairs (t1,r1), . . . ,(tm,rm), each yielding a dis-
tinct folder distribution P(d.folder | ti.id,ri.id). We need
to combine these distributions into a single distribution for
the folder variable. We could apply some kind of aggrega-
tor (e.g., the most frequently-occurring task-role pair) as in
PRMs (Getoor et al., 2001). However, it is easy to imagine
cases in which a document is accessed with low frequency
across many different tasks, but these individual accesses,
when summed together, predict that the document is stored

in a convenient top-level folder rather than in the folder of
the most frequent single task-role pair. This kind of sum-
ming of evidence can be implemented by a combining rule.

t1

d1.folder d1.folder

d1.folder

Weighted Mean

d1.folder d1.folder

f2

d1.folder d1.folder

Mean Mean

r1 t2 r2
f1

Figure 2. Use of Combining rules to combine the influences of
task and role on the one hand and the source folder on the other
on the folder of the current document.

In the above example, a combining rule is applied to com-
bine the distributions due to different influent instances of
a single FOCI statement. In addition, combining rules can
be employed to combine distributions arising from multiple
FOCI statements with the same resultant. The following
example captures such a case (see Figure 2 for the unrolled
network):

WeightedMean{
If {task(t), doc(d), role(d,r,t)} then

t.id, r.id Qinf (Mean) d.folder.
If {doc(s), doc(d), source(s,d)} then

s.folder Qinf (Mean) d.folder.}

Figure 3. Example of specifying combining rules in FOCIL.

The expression in Figure 3 includes two FOCI statements.
One statement is the task-role influence statement dis-
cussed above. The other says that the folder of the source
document of d influences d’s folder. The source of a doc-
ument is a document that was edited to create the current
document. There can be multiple sources for a document.
The distributions corresponding to different instances of
the influents in the same statement are combined via the
mean combining rule (indicated by the keyword “Mean”).
The two resulting distributions are then combined with a
weighted mean combining rule. The precise meanings of
these rules are described in the next section.

3. Learning Model Parameters

In this section, we present algorithms for learning the pa-
rameters of the combining rules and the conditional proba-
bility tables (CPTs).

Learning First-Order Probabilistic Models with Combining Rules

3.1. Problem Setup

Consider a generic influence statement Si:

if 〈condition〉 then X i
1, . . . ,X

i
k Qinf Y .

We assume without loss of generality that each influence
statement Si (‘rule i’ for short) has k influents, X i

1 through
Xi

k (which we jointly denote as Xi), that influence the tar-
get variable. When this rule is instantiated or “unrolled”
on a specific database, it generates multiple, say mi, sets of
influent instances, which we denote as Xi

1 . . .Xi
mi

. This is
shown in Figure 4. In the figure, the instantiations of a par-
ticular statement are combined with the mean combining
rule, while the distributions of the different statements are
combined via the weighted mean combining rule.

x1
11

...
x1
1k

x1
m11

... x1
m1k x2

11
...

x2
1k

x2
m21

... x2
m2k

1
. . . m1 1

. . . m2

Mean
. . .

Mean

Weighted Mean

Figure 4. Unrolling of FOCI statements

The role of the combining rule is to express the probability
Pi(Y |Xi

1 . . .Xi
mi

) as a function of the probabilities Pi(Y |Xi
j),

one for each j, where Pi is the CPT associated with Si.
Since these instance tuples are unordered and can be arbi-
trary in number, our combining rule should be symmetric.
For example, with the mean combining rule, we obtain:

P(y|Xi
1 . . .Xi

mi
) =

1
mi

mi∑
j=1

Pi(y|Xi
j) (1)

If there are r such rules, we need to estimate the conditional
probability P(Y |X 1

1,1...X
r
mr,k

). Since each rule is distinctly
labeled and its instances can be identified, the combining
rule need not be symmetric, e.g., weighted mean. If w i
represents the weight of the combining rule, the “weighted
mean” is defined as:

P(Y |X1
1,1...X

r
mr,k) =

∑r
i=1 wiP(Y |Xi

1 . . .Xi
mi

)∑r
i=1 wi

(2)

We write xi
j,1, . . . ,x

i
j,k ≡ xi

j to denote the values of Xi
j and y

to denote the value of Y . We write θy|xi to denote Pi(y|xi).
Note that in this case we omit the subscript j because the
parameters θ do not depend on it.

3.2. Gradient Descent for Mean-squared Error

In this section, we derive the gradient-descent algorithm
for the mean-squared error function for the prediction of
the target variable, when multiple FOCI-statements are
present. Let the lth training example el be denoted by
(〈x1

l,1,1, . . . ,x
rl
l,ml,rl

,k〉,yl), where xi
l, j,p is the pth input value

of the jth instance of the ith rule on the lth example. The
predicted probability of class y on el is given by

P(y|el) =
1∑
i wi

rl∑
i

wi

ml,i

ml,i∑
j

Pi(y|xi
l, j). (3)

In the above equation, rl is the number of rules the example
satisfies, i is an index of the applicable rule, and ml,i is
the number of instances of rule i on the l th example. The
squared error is given by

E =
1
2

n∑
l=1

∑
y

(I(yl,y)−P(y|el))2. (4)

Here y is a class label, and yl is the true label of lth exam-
ple. I(yl,y) is an indicator variable that is 1 if yl = y and 0
otherwise. Taking the derivative of negative squared error
with respect to P(y|xi) = θy|xi , we get

−∂E
∂θy|xi

=
n∑

l=1

∑
y

[
(I(yl ,y)−P(y|el)) (5)

[
1∑
i′ wi′

wi

ml,i
#(xi|el)

]]
.

Here #(xi|el) represents the number of occurrences of the
tuple xi in the x-instances of the ith rule of example el . Gra-
dient descent increments each parameter θy|xi by - α ∂E

∂θy|xi
in

each iteration. After each iteration, the parameters are nor-
malized so that the distributions are well-defined1.

When we adjust the weights of the rules using examples,
we preserve the sum of the weights of the matching rules
in each example, so that the overall sum of all weights is
preserved, and the dependencies between the weights are
properly taken into account when we take the derivatives.
In particular, the gradients with respect to rule weights are
computed as follows:

−∂E
∂wi

=
n∑

l=1

[
δ(el, i)− 1

rl

∑
r

δ(el,r)

]
, (6)

1Though we did not find it necessary in this problem, another
approach would be to reparameterize the objective function with
exponentials, thus incorporating the normalization constraint.

Learning First-Order Probabilistic Models with Combining Rules

where δ(el,r) is given by

∑
y

(I(yl ,y)−P(y|el))
1∑
i′ wi′

1
ml,r

∑
j

Pr(y|xr
l, j) (7)

3.3. Gradient Descent for Loglikelihood

In the context of probabilistic modeling, it is more common
to maximize the log likelihood of the data given the hypoth-
esis (Binder et al., 1997). From the definition of P(y l|el),
we can see that this is

L =
∑

l

logP(yl |el). (8)

Taking the derivative of L with respect to P(y|x i) = θy|xi ,
gives

∂L
∂θy|xi

=
∑

l

1
P(yl|el)

1∑
i′ wi′

rl∑
i

wi

ml,i
#(xi|el). (9)

As before, the partial derivative of L with respect to the
weights is given by

∂L
∂wi

=
n∑

l=1

[
δ(el , i)− 1

rl

∑
r

δ(el,r)

]
. (10)

But now,

δ(el,r) =
1

Pr(yl |el)
1∑
i wi

1
ml,r

∑
j

Pr(yl |xr
l, j). (11)

We have found that it is important to have separate learn-
ing rates for the CPT parameters and for the combining-
rule weights. In particular, the weights should be updated
much more slowly than the conditional probabilities. This
is because the each iteration of each example only changes
a few of the CPT parameters, whereas it changes most of
the weights.

3.4. Expectation-Maximization

Expectation-Maximization (EM) is a popular method to
compute maximum likelihood estimates given incomplete
data (Dempster et al., 1977). EM iteratively performs two
steps: the Expectation step, where the algorithm computes
the expected values of the missing data based on the current
parameters, and the Maximization step, where the maxi-
mum likelihood of the parameters is computed based on the
current expected values of the data. We adapted the EM al-
gorithm for two-component mixture models from (Hastie
et al., 2001). Consider n rules with the same resultant. Ac-
cordingly, there will be n distributions that need to be com-
bined via a weighted mean. Let wi be the weight for rule i,
such that

∑
i wi = 1.

Table 1. EM Algorithm for parameter learning in FOCIL

1. Take initial guesses for parameters θ and weights wi

2. E Step: ∀i and for each instantiation of each rule, compute
the responsibilities

γi
l, j =

(wi) 1
ml,i

θy|xi
l, j∑

l,i′, j
(wi′)

1
ml,i′

θ
y|xi′

l, j

3. M Step: Compute the new parameters:

∀i,xi θy|xi =

∑
l, j

γi
l, j |y,xi∑

y,l, j
γi

l, j |y,xi

and, if instantiations of at least two rules are present in l,
compute

∀i wi =
(∑

l, j γi
l, j

)/
n2

where n2 is the number of examples with two or more rules
instantiated.

4. Continue E and M steps until convergence.

The EM algorithm for parameter learning in FOCIL is pre-
sented in Table1. In the expectation step, we compute
the responsibility of each instantiation of each rule. The
responsibilities reflect the relative density of the training
points under each rule (Hastie et al., 2001). Note that we
consider the weight of the current rule and the number of
instantiations of the current rule while computing the re-
sponsibility of an instantiation of the current rule. In the
maximization step, we use these responsibilities to update
the CPTs. We use the responsibilities of the instantiations
of an example to compute the weights if at least two rules
are instantiated in the example. If an example matches less
than two rules, the weights do not affect the distribution.

For instance, consider the update of P(y1 | xi). This is the
fraction of the sum of all the responsibilities when Y = y1
over all Y given xi. Likewise, the weight of the current
rule is the fraction of the sum of the responsibilities of all
instantiations of the rule over the number of examples with
two or more rules instantiated.

4. Experiments and Results

In this section, we describe results on the two data sets
that we employed to test the learning algorithms. The first
is based on the folder prediction task, where we applied
two rules to predict the folder of a document. The second
data set is a synthetic one that permits us to test how well
the learned distribution matches the true distribution. We
present the results for both the experiments and compare
them with the propositional classifiers.

Learning First-Order Probabilistic Models with Combining Rules

4.1. Folder prediction

We employed the two rules that were presented earlier in
Figure 3, combined using the weighted mean. As part of
the Task Tracer project (Dragunov et al., 2005), we col-
lected data for 500 documents and 6 tasks. The documents
were stored in 11 different folders. Each document was
manually assigned to a role with respect to each task with
which it was associated. A document was assigned the
main role if it was modified as part of the task. Otherwise,
the document was assigned the reference role, since it was
opened but not edited. A document is a source document if
it was opened, edited, and then saved to create a new doc-
ument or if large parts of it were copied and pasted into
the new document. Since the documents could play several
roles in several tasks, the number of 〈t,r〉 pairs vary2.

We applied Gradient Descent and EM algorithms to learn
both the parameters of the CPTs and the weights of the
weighted mean combining rule. We employed 10-fold
cross-validation to evaluate the results. Within each fold,
the learned network was applied to rank the folders of the
current document and the position of the correct folder in
this ranking was computed (counting from 1). The results
are shown in Table 2, where the counts report the total num-
ber of times (out of 500) that the correct folder was ranked
1st , 2nd , etc. The final row of the table reports the mean
reciprocal rank of the correct folder (the average of the re-
ciprocals of the ranks). It is clear from the table that all
the three relational algorithms performed very well: almost
90% of the documents had their correct folders ranked as 1
or 2 by all three algorithms3.

To compare these results with propositional learners, we
flattened the data using as features the numbers of times
each task-role pair and each source folder appears in each
example. We then used Weka to run J48 and Naive Bayes
algorithms on this new dataset. J48 on the flattened data
also performs as well as the relational classifiers while
Naive Bayes does a little worse on the same data set. All
the relational algorithms attributed high weights to the sec-
ond rule compared to the first (see Table 3).

To test the importance of learning the weights, we altered
the data set so that the folder names of all the sources were
randomly chosen. As can be seen in Table 3, with this
change, the source document rule is assigned low weight
by the learning algorithms with a small loss in the score.

4.2. Synthetic data set

To realistically model a complex real-world domain, it is
not enough to have a good classification accuracy on a sin-

2On average, each document participated in 2 〈t,r〉 pairs, al-
though a few documents participated in 5 to 6 〈t,r〉 pairs.

3If the algorithm were to rank the folders at random, the score
would be around 0.2745.

Rank EM GD-MS GD-LL J48 NB
1 349 354 346 351 326
2 107 98 113 100 110
3 22 26 18 28 34
4 15 12 15 6 19
5 6 4 4 6 4
6 0 0 3 0 0
7 1 4 1 2 0
8 0 2 0 0 1
9 0 0 0 6 1
10 0 0 0 0 0
11 0 0 0 0 5

Score 0.8299 0.8325 0.8274 0.8279 0.797

Table 2. Results of the learning algorithms on the folder predic-
tion task. GD-MS: Gradient descent for Mean Square error; GD-
LL: Gradient descent for log-likelihood; J48: Decision Tree; NB:
Naive Bayes for loglikelihood.

EM GD-MS GD-LL
Original Weights 〈.15, .85〉 〈.22, .78〉 〈.05, .95〉
data set Score .8299 .8325 .8274

Modified Weights 〈.9, .1〉 〈.84, .16〉 〈1,0〉
data set Score .7934 .8021 .7939

Table 3. Results of learning the weights in the original data set
and the modified data set.

gle task. To use these predictions in complex inferences,
it is important to accurately model the probability distri-
butions. To estimate the accuracy of the learned model,
we constructed a synthetic data set. The data are gener-
ated using a synthetic target as defined by two FOCI state-
ments, each of which has two influents and the same target
attribute. The two influents in each rule have a range of
10 and 3 values respectively. The target attribute can take 3
values. The probability values in the distribution of the syn-
thetic target are randomly generated to be either between
0.9 and 1.0 or between 0.0 and 0.1. This is to make sure
that the probabilistic predictions on examples are not too
uncertain. The rule weights are fixed to be 0.1 and 0.9 to
make them far from the default, 0.5. Each example matches
a rule with probability 0.5, and when it does match, it gen-
erates a number of instances randomly chosen between 3
and 10. This makes it imperative that the learning algo-
rithm does a good job of inferring the hidden distributions
both at the instance level and the rule level.

We trained the learning algorithms on 30 sets of 2000 train-
ing examples and tested them on a set of 1000 test exam-
ples. The average absolute difference between correspond-
ing entries in the true distribution and the predicted distri-
bution was averaged over all the test examples. Like the
folder data set, we flattened the data set by using the counts

Learning First-Order Probabilistic Models with Combining Rules

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Training Examples

Av
er

ag
e

er
ro

r

EM
GDMS
GDLL
J48
NB

Figure 5. Learning curves for the synthetic data. EM: Expectation
Maximization; GDMS: Gradient descent for Mean Square error;
GDLL: Gradient descent for log likelihood; J48: Decision tree;
NB: Naive Bayes.

of the instances of the parents as features and used Weka to
run J48 and Naive Bayes on this modified data set.

The results are presented in Figure 5. All three relational
algorithms have a very low average absolute error between
the true and the predicted distribution. The overlapping of
the error bars suggests that there is no statistically signifi-
cant difference between the algorithms’ performances. On
the other hand, the propositional classifiers perform poorly
on this measure compared to the relational algorithms.

As with the folder data set, we wanted to understand the
importance of learning the weights. Hence, for each learn-
ing algorithm, we compared three settings. The first setting
is the normal situation in which the algorithm learns the
weights. In the second setting, the weights were fixed at
〈0.5,0.5〉. In the third setting, the weights were fixed to be
their true values.

The results are presented in Figures 6, 7, and 8. There
are three curves in each figure corresponding to the three
settings. In all three algorithms, the first setting (weights
are learned) gave significantly better error rates than the
second setting (weights fixed at 〈0.5,0.5〉) (Figures 6,7,8).
This clearly demonstrates the importance of learning the
weights. There was no significant difference between
learning the weights and knowing the true weights. This
shows that our algorithms effectively learn the weights of
the combining rules.

5. Conclusion and Future Work

Combining rules help exploit causal independence in
Bayesian networks and make representation and inference
more tractable in the propositional case (Heckerman &
Breese, 1994). In first order languages, they allow succinct

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Training Examples

Av
er

ag
e

Er
ro

r

GDMS

GDMS-True

GDMS-Fixed

Figure 6. Learning curves for mean squared gradient descent on
the synthetic data. GDMS: learning the weights; GDMS-True:
gradient descent with true weights; GDMS-Fixed: gradient de-
scent with weights fixed as 〈0.5,0.5〉.

representation and learning of the parameters of networks
where the number of parents of a variable varies from one
instantiation to another. They make it possible to express
pairwise interactions between influences and provide a nat-
ural representation for many models of influence.

We showed that we can employ classic algorithm schemes
such as gradient descent and EM to learn the parameters of
the conditional influence statements as well as the weights
of the combining rules. The performances of the three al-
gorithms were quite similar on both data sets. In the folder
data set, the propositional classifiers performed as well as
the relational ones. This is partly because the examples
in this dataset often have only one or two task-role pairs,
which makes it an easier problem. In the synthetic domain,
all examples have at least 3 task-role pairs, and the proposi-
tional algorithms performed poorly. The experiments also
show that learning the probability model is much more dif-
ficult than learning to classify. We showed that gradient
descent and EM can also learn the weights of the combin-
ing rules in addition to the CPTs of the FOCI statements.

One of our goals is to extend this work to more general
classes of combining rules and aggregators including tree-
structured CPTs and noisy versions of other symmetric
functions. The combining rules must be “decomposable” in
the sense that they involve only a small number of indepen-
dent parameters that can be learned in a tractable fashion.
The relationship between the aggregators and combining
rules must be better understood and formalized. Efficient
inference algorithms must be developed that take advantage
of the decomposability of the combining rules as well as the
flexibility of the first-order notation. Finally, we would like
to develop more compelling applications in knowledge-rich
and structured domains that can benefit from the richness of
the first-order probabilistic languages.

Learning First-Order Probabilistic Models with Combining Rules

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Training Examples

Av
er

ag
e

Er
ro

r GDLL

GDLL-True

GDLL-Fixed

Figure 7. Learning curves for log-likelihood gradient descent on
the synthetic data. GDLL: learning the weights; GDLL-True: gra-
dient descent with true weights; GDLL-Fixed: gradient descent
with weights fixed as 〈0.5,0.5〉.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Training Examples

Av
er

ag
e

Er
ro

r

EM

EM-True

EM-Fixed

Figure 8. Learning curves for EM on the synthetic data. EM:
learning the weights; EM-True: EM with true weights; EM-
Fixed: EM with weights fixed as 〈0.5,0.5〉.

6. Acknowledgement

The authors gratefully acknowledge support of the Defense
Advanced Research Projects Agency under DARPA grant
HR0011-04-1-0005. Views and conclusions contained in
this document are those of the authors and do not neces-
sarily represent the official opinion or policies, either ex-
pressed or implied of the US government or of DARPA.
We thank the reviewers for their excellent comments.

References

Altendorf, E. E., Restificar, A. C., & Dietterich, T. G.
(2005). Learning from sparse data by exploiting mono-
tonicity constraints. Proceedings of UAI 05.

Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997).
Adaptive Probabilistic networks with hidden variables.
Machine Learning, 29, 213–244.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algo-
rithm (with discussion). Journal of the Royal Statistical
Society, B.39.

Domingos, P., & Richardson, M. (2004). Markov logic:
A unifying framework for statistical relational learning.
Proceedings of the SRL Workshop in ICML.

Dragunov, A. N., Dietterich, T. G., Johnsrude, K.,
McLaughlin, M., Li, L., & Herlocker, J. L. (2005). Task-
tracer: A desktop environment to support multi-tasking
knowledge workers. Proceedings of IUI.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001).
Learning probabilistic relational models. Invited contri-
bution to the book Relational Data Mining, S. Dzeroski
and N. Lavrac, Eds.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Ele-
ments of Statistical learning. Springer.

Heckerman, D., & Breese, J. S. (1994). Causal indepen-
dence for probability assessment and inference using
bayesian networks (Technical Report MSR-TR-94-08).
Microsoft Research.

Heckerman, D., Meek, C., & Koller, D. (2004). Probabilis-
tic models for relational data (Technical Report MSR-
TR-2004-30).

Jaeger, M. (1997). Relational Bayesian networks. Proceed-
ings of UAI-97.

Kersting, K., & Raedt, L. D. (2001). Adaptive bayesian
logic programs. Proceedings of the ILP ’01 (pp. 104–
117).

Kersting, K., & Raedt, L. D. (2002). Basic principles
of learning bayesian logic programs (Technical Report
172).

Koller, D., & Pfeffer, A. (1997). Learning probabilities for
noisy first-order rules. IJCAI (pp. 1316–1323).

Milch, B., Marthi, B., & Russell, S. (2004). Blog: Rela-
tional modeling with unknown objects. Proceedings of
the SRL Workshop in ICML.

Muggleton, S. (1996). Stochastic logic programs. Ad-
vances in Inductive Logic Programming (pp. 254–264).

Ngo, L., & Haddawy, P. (1995). Probabilistic logic
programming and Bayesian networks. Proceedings
ACSC95.

Poole, D. (1993). Probabilistic Horn abduction and
bayesian networks. Artificial Intelligence, Volume 64,
Numbers 1, pages 81-129.

