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ABSTRACT

This paper explores the proposition that inductive learning from examples is fundamentally limited to
learning only a small fraction of the total space of possible hypotheses� We begin by de�ning the notion of
an algorithm reliably learning a good approximation to a concept C� An empirical study of three algorithms
	the classical algorithm for maximally speci�c conjunctive generalizations� ID�� and back
propagation for
feed
forward networks of logistic units� demonstrates that each of these algorithms performs very poorly
for the task of learning concepts de�ned over the space of Boolean feature vectors containing � variables�
Simple counting arguments allow us to prove an upper bound on the maximum number of concepts reliably
learnable from m training examples�

INTRODUCTION

How good are current inductive learning algorithms� How well can any inductive learning algorithmperform�
This paper addresses these questions for the case of learning concepts de�ned over the universe of Boolean
n
tuples�

Most work in the probably
approximately correct 	PAC� learning theory yields results of the form 
If the

learning algorithm searches a space of hypotheses H and �nds an hypothesis �h � H consistent with all m
given training examples� and if m is large enough� then �h is probably approximately correct�� The goal
of this paper is to turn these results around and ask 
Suppose we are given m training examples� what is
the size of the largest space of concepts H such that if h � H is the correct hypothesis� a given learning
algorithm will �nd an hypothesis �h that is probably approximately correct��

We approach this question by �rst de�ning a new notion� frequently approximately correct 	FAC� learning�
that assumes the uniform probability distribution over the space of training examples 	sampling without
replacement�� Then� we report the results of an experiment on three existing learning algorithms to determine
the number of hypotheses that each algorithm can FAC
learn� Finally� we derive an upper bound on the
maximum number of concepts FAC
learnable by any algorithm� The results suggest either that the upper
bound is not tight or else that current algorithms are not very good� In either case� the upper bound
demonstrates that only a small fraction of the space of possible hypotheses is FAC
learnable by any inductive
learning algorithm�

NOTATION

Following the usual practice in PAC
learning theory� we de�ne the set U to be the space of all Boolean
n
tuples� A concept h is a subset of U � so there are �jUj � ��

n

possible concepts de�nable over U � An
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example of a concept h is a pair of the form 	u��� if u � h and 	u��� otherwise� A training sample of size
m is a set S of m distinct examples�

Suppose a learning algorithm is given a sample S and produces as output the hypothesis �h� We say that the

error of �h is the fraction of U that is incorrectly classi�ed by �h� This is equal to jh��hj
�n � where � denotes the

disjoint union� This error measure is a special case of the PAC error measure for learning problems where
the examples are drawn without replacement according to the uniform distribution�

Let T be the total number of possible training sets of size m for a given concept h� Since there are �n

possible training examples� there are T �
��n
m

�
possible training sets�

We say that an algorithm frequently approximately correctly 	FAC� learns a concept h if for 	�� ��T training

sets� the guess �h returned by the algorithm has error at most �� Let FA	m� �� �� be number of distinct concepts
FAC learnable by learning algorithm A� One goal of inductive learning research is to �nd an algorithm A

that maximizes FA	m� �� �� for typical values of � and ��

EXPERIMENTAL RESULTS

We have experimentally measured the FA of three popular learning algorithms for the case n � �� � � �
� � and

� � �
�� � This case is admittedly small� since there are only � possible training examples and ��� possible

hypotheses� However� it is the largest case that it has thus far been practical to compute� The three
algorithms are

CONJ� the classical algorithm for computing the maximally speci�c conjunctive Boolean formula consistent
with the training set� If there are no positive examples in the training sample� then the algorithm
returns the concept NIL 	the empty set�� If there is no conjunctive concept� the algorithm is considered
to have returned a concept with error greater than ��

ID�� a version of Quinlan�s popular algorithm for constructing decision trees 	Quinlan� ������ This version
employs the information gain criterion to select the root feature for each decision 	subtree�� Windowing
is not performed�

BACK� the version of the error back
propagation algorithmdescribed in 	Rumelhart� Hinton� and Williams�
������ This version employs a learning rate of ���� and a momentum term of ���� An architecture
consisting of � hidden units 	fully connected to the � inputs� and � output unit 	fully connected to the
hidden units� is trained until minimumerror is attained 	change in total error of less than ����� after a
complete pass over the training set� and no classi�cation errors are made on the training set� Each unit
computes the logistic function� For training purposes� an output value of �� or greater is considered a
one� an output �� or less is considered a zero� and all other output values are indeterminate� For testing
purposes� an output is a one if it is greater than �� and a zero otherwise� If the algorithm is unable
to �nd a consistent network after �� attempts 	each attempt starting with randomized weights�� then
the algorithm is considered to have returned a concept with error greater than ��

For each possible concept h de�ned over � Boolean features� all
�
��

�

�
� �� training sets of size � were generated

and processed by each algorithm� If on at least �� of those training sets the algorithm returned an hypothesis
that incorrectly classi�ed at most one of the � possible examples� then the concept h was FAC
learned by
the algorithm� The results are summarized in Table ��

The results show that only a very small fraction of the ��� possible concepts are FAC
learned by these
algorithms� The relative order of the three algorithms is probably not generalizable to larger n� and the
reader should not conclude from this experiment that CONJ is superior to ID� or that ID� is superior to
BACK� The surprising result is that none of the algorithms performs very well�



Table �� Number of concepts FAC
learnable when n � ��m � �� � � �
� � and � �

�
�� �

Algorithm Number of FAC
learned concepts
ID� �

BACK �
CONJ ��

This demonstrates the fallacy of the following argument� 	a� ID� learns decision trees� 	b� any Boolean
concept can be represented by a decision tree� therefore 	c� ID� can learn any Boolean concept� This is true
only if all of the possible training examples are given to the algorithm� In practice� it is rare for a learning
algorithm to have even ��� of the possible training examples available for learning� Similar arguments have
been put forward concerning the learning power of back propagation� It should be clear that the expressive
power of the hypothesis space is not the only factor to consider in assessing the ability of a learning algorithm
to FAC
learn an unknown concept�

To obtain the data for Table �� each learning algorithm was executed ����� times� Unfortunately� to obtain
data for the analogous case where n � � and m � � would require executing each algorithm ��������� times�
Statistical approximations do not substantially decrease this number� We are currently reimplimenting our
code on a connection machine to perform these runs�

AN UPPER BOUND

To determine how well any algorithm could do� it is useful to view a learning algorithm as a mapping from
training sets to concepts� For a given training set of size m� there are ��

n�m possible consistent concepts�
This is because there are �n � m remaining examples in U � and each one of them could be classi�ed in
� possible ways� A learning algorithm must choose one of these consistent concepts 	or possibly some

inconsistent concept�� as its guess �h�

Now the �h that it guesses will be a good approximation 	error � �� for some of the ��
n�m hypotheses

and a bad approximation for the others� From the de�nition of FAC learning� we see that a concept h is
FAC
learnable only if for most of the training sets consistent with h� the guess �h is a good approximation
to h� An algorithm will perform badly if it tends to 
scatter� its guesses� so that for some training sets
consistent with h� the guess �h is good and for others it is bad� An algorithm will perform well if it can
more
or
less concentrate its guesses on a subset of the possible hypotheses� This perspective allows us to
prove the following theorem�

Theorem � If m � 	�� ���n� then no learning algorithm can FAC�learn more than

�m
P��n

i��

��n�m
i

�
�� �

concepts from m training examples� for error parameter � and con�dence parameter ��

Proof�

For a training set S� when a learning algorithm A makes a guess� �h� there are at most

Ball	�� �
��nX
i��

�
�n �m

i

�



concepts that are within � of �h and consistent with S� This is because there are exactly
��n�m

i

�
concepts at

Hamming distance i from �h� and we sum for Hamming distances from � up to ��n� The binomial coe�cient is
well
de�ned only when �n�m � ��n� or m � 	�� ���n� Let us call these �
close concepts 
wins�� Similarly�
there are at least

��
n�m �Ball	��

concepts that have error more than � from �h� Let us call these 
losses��

Because there are
�
�n

m

�
�m training sets� no learning algorithm can create more than

�
�n

m

�
�mBall	�� wins� We

will call a concept h a winner if in at least 	� � ��
��n
m

�
of the training sets with which it is consistent� it

receives a 
win�� A winner is therefore FAC
learnable� An optimal FAC algorithm can do no better than to
allocate exactly 	� � ��

��n
m

�
wins to each winner� This spreads the wins as widely as possible and therefore

maximizes the number of winners� Let W be the maximum number of winners created by any FAC
learning
algorithm� By dividing the maximum number of wins by the minimum number of wins needed to create a
winner� we obtain the following bound�

W �

��n
m

�
�mBall	��

	�� ��
��n
m

� �

Simplifying� this gives us

W �
�mBall	��

�� �
�

�m
P��n

i��

�
�n�m

i

�
�� �

��

When m � �� n � �� � � �
� � and � �

�
�� � this quantity is ��� Comparison with Table � suggests either that our

bound is too high or else that existing learning algorithms could stand signi�cant improvement� In either
case� however� this theorem puts a bound on the fraction of the ��

n

concepts that can be FAC
learned from
examples�

While Theorem � gives useful answers for small values of n� it is surely an overestimate for large n� since it
grows as O	�n�

n

�� Another way of deriving a bound is to apply the following theorem proved by Ehrenfeucht�
Haussler� Kearns� and Valiant 	������

Theorem � Assume � � � � �
� � � � � � �

��� � and V Cdim	H� � �� Then any learning algorithm A that

PAC learns every concept in H for any probability distribution P over U must use sample size

m �
V Cdim	H�� �

���
�

Here the V Cdim	H� is the Vapnik
Chervonenkis dimension of H 	Blumer� Ehrenfeucht� Haussler� and

Warmuth� in press�� Natarajan 	in press� has proved that V Cdim	H� �
l

�
n�� lg jHj

m
� Hence� by combining

these results and solving for jHj� we obtain the following bound�

Corollary � Assume � � � � �
� � � � � � �

��� � and V Cdim	H� � �� Then given m training examples� the

number of hypotheses any algorithm A can PAC learn is bounded by

jHj � �	n��
	���m
�

For practical cases� m will be a polynomial function of n� �
�
� and �

�
� Hence� Corollary � states that jHj

can only grow as �poly	n
 for some polynomial� Since there are ��
n

possible concepts� this means that for
reasonable sample sizes� only a small fraction of the possible concepts can be learned from examples under
arbitrary distributions�



It is important to realize that the bound in Corollary � is not directly comparable to Theorem �� because
Corollary � requires that every concept in H be learnable from any probability distribution P over U �
Theorem �� on the other hand� is only concerned with the case where the probability distribution P is
uniform� It is likely that fewer examples are required to learn under a �xed distribution than under an
unknown distribution� Hence� for a given number of training examples m� it is likely that a larger number
of concepts is learnable from a �xed distribution�

IMPLICATIONS

The fact that inductive learning methods are fundamentally limited to learning only a small fraction of all
possible hypotheses has many implications�

First� it means that there are no general purpose learning methods that can learn any concept 	from a sample
of reasonable size�� Instead� di�erent classes of learning problems may call for di�erent learning algorithms�
An important problem for future research is to attempt to identify relationships between types of learning
problems 	e�g�� problems in speech understanding� and types of hypothesis spaces 	e�g�� decision trees� neural
nets� etc���

Second� the results suggest that human learning involves much more than learning from positive and negative
training examples� It is unlikely that human learning is limited in the way that these inductive learning
algorithms are limited� since people seem to be able to learn well in a wide variety of domains� If these
results accurately modeled human learning situations� one would expect that people would only succeed in
learning a small proportion of the 
concepts� that they face in daily life�

Third� these results underline the importance of studying actual learning situations to determine what prior
knowledge and sources of information 	including training examples� are available to the learner� Research
aimed at understanding how prior knowledge and other sources of information can be exploited by the
learning process is also very important�

Fourth� if the upper bounds can be tightened� and I believe they can� then the results would indicate that
further work on inductive learning methods�including methods that construct 
new terms��is unlikely to
produce signi�cant improvements in learning performance� In any case� algorithms that introduce new terms
cannot overcome these upper bounds�

Future work must focus on reducing the di�erence between the performance of existing algorithms and the
upper bound�
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