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Abstract

Real-time problems prediction problems pose a challenge to
machine learning algorithms because learning must be fast,
the set of classes may be changing, and the relevance of some
features to each class may be changing. To learn robust clas-
sifiers in such nonstationary environments, it is essentialnot
to assign too much weight to any single feature. We address
this problem by combining regularization mechanisms with
online large margin learning algorithms. We prove bounds
on their error and show that removing features with small
weights has little influence on prediction accuracy, suggest-
ing that these methods exhibit feature selection ability. We
show that such regularized learning algorithms automatically
decrease the influence of older training instances and focus
on the more recent ones. This makes them especially at-
tractive in dynamic environments. We evaluate our algo-
rithms through experimental results on real data sets and
through experiments with an online activity recognition sys-
tem. The results show that these regularized large-margin
methods adapt more rapidly to changing distributions and
achieve lower overall error rates than state-of-the-art meth-
ods.

Keywords: Classification, online learning, feature selec-
tion, activity recognition, non-stationary environments.

1 Introduction

When applying machine learning to real-world problems
such as web page categorization and activity recognition, ef-
ficiency and non-stationarity are important issues. Popular
web sites, such as blogs and newspapers, continually gener-
ate large numbers of novel documents. Learning over such
web-scale data is very expensive, even with thousands of ma-
chines running in parallel [24]. In addition, topics of inter-
est change rapidly – a topic with millions of visits last year
might be completely ignored this year.

Similar challenges arise when intelligent personal assis-
tants seek to track desktop activities (e.g., [18, 17, 26, 30]).
Each time the user provides feedback (either implicit or ex-

plicit) about a prediction, the assistant needs to update its
predictor. This update must be very efficient in order for such
an assistant to be usable. User activity patterns change over
time, as a result of changes in the mix of projects and dead-
lines, which again raises the problem of non-stationarity.

In this paper, we explore learning algorithms that are
able to efficiently handle large-scale data sets and rapidly
adapt to changes in the set of categories, their definitions,
and their relative frequencies.

Online learning algorithms are algorithms that consume
a constant amount of storage and incrementally update the
classifier in a constant amount of time for each new train-
ing example. In the stationary case, the ultimate accuracy
of such algorithms is limited by the total number of train-
ing examples. However, in the non-stationary case, only
the more recent training examples within each class are rel-
evant to recognizing that class. The greater the degree of
non-stationarity (i.e., the faster the problem is changing), the
smaller the effective number of training examples. As a con-
sequence, the risk of overfitting increases, and it is important
to prevent overfitting through some form of regularization
or feature selection. This is particularly true for text clas-
sification problems where there are thousands of candidate
features (words).

In this paper, we design and evaluate efficient large mar-
gin learning algorithms by combining regularization mecha-
nisms with online updates. Regularization has been shown
to be effective for batch learning algorithms when learn-
ing from data with many irrelevant features [33, 15]. The
regularization penalty shrinks the classifier weights towards
zero and has the effect of controlling the variance of the
learned model. Appropriate regularization can generally re-
duce over-fitting by trading off a small increase in bias for
a large reduction in variance. Compared with feature selec-
tion, regularization is a continuous process that shrinks the
influence of some features. Because it can be implemented in
an online algorithm, unlike standard feature selection meth-
ods, it is more suitable for nonstationary data. Unlike other
weight-shrinking online learning algorithms [16, 21], oural-



gorithms penalizes the model complexity without compro-
mising the margin of the training instances. This paper in-
vestigates both L1 and L2 regularization for online updates.
We analyze the characteristics of the regularization mecha-
nism in online learning settings.

The regularization penalty drives the weights of many
features towards zero. The theoretical analysis shows that
ignoring features with small weights has little influence on
the prediction accuracy. This feature selection effect canalso
explain why regularized online learning is usually more ac-
curate, as confirmed by our experiments. For real-world on-
line learning problems, the distribution generating the data
is usually changing as the time passes. A very discrimi-
native feature can rapidly become less useful or even use-
less. By avoiding over-weighting a feature, our regularized
methods can shift to the right model more quickly when the
data changes. We also show that the L2 regularized learning
method has another property appropriate for dynamic envi-
ronments – it automatically shrinks the influence of older
training instances and pays more attention to more recent
ones.

We present an application of our algorithms to an intel-
ligent activity management system, the TaskTracer system
[10, 30]. TaskTracer helps users organize and retrieve in-
formation based on user activities. It collects various time-
stamped user interactions (such as file open, save, text se-
lection, copy/paste, window focus, web navigation, email
read/send and so on) in Microsoft Office (Word, Excel, Pow-
erPoint, Outlook), text and pdf files, Internet Explorer, and
the Windows operating system. Each interaction generates
events which are stored in a database. TaskTracer associates
with each activity the set of resources accessed when per-
forming that activity. It employs this data to configure the
desktop to assist users in organizing and re-finding informa-
tion. TaskTracer requires the user to explicitly declare the
current activity in order to correctly associate resourceswith
activities. This approach fails when the user is interrupted
(e.g., by a phone call, instant message). The user typically
changes documents, web pages, and so on without remem-
bering to first inform TaskTracer. To address this problem,
we designed and implemented an activity recognition com-
ponent by applying a variation of the learning algorithms de-
scribed in this paper [29].

This paper is organized as follows. We begin with an in-
troduction to online learning and a discussion of our motiva-
tion. We then derive our regularized large margin algorithms
and present their theoretical analysis. We show experimental
results on real data sets to evaluate the performance of our
algorithms. We present an application in the activity recog-
nition component of TaskTracer. We conclude the paper with
a discussion of future work.

2 Online Algorithms and Dynamic Environments

An online learning algorithm processes instances in se-
quence. In iterationt, the algorithm receives instancext ∈
R

n and makes a prediction with its current learned func-
tion ft. Then it receivesyt, the correct label ofxt, and
computes the update conditionC. If C is true, it updates
ft to produceft+1 so that a requirement setR is satis-
fied. The goal is to minimize the online prediction error
of a single pass over all instances [2]. Online learning al-
gorithms can be characterized based on their choices ofC
andR [28, 22, 13, 23, 21, 7, 6]. We focus on the binary
class problem whereyt ∈ {+1,−1} andft is a linear clas-
sifier: ft = wt · xt. The results can easily be generalized
to multiclass problems. We consider only additive update
algorithms.

The termyt(wt · xt) is generally referred to as themar-
gin. Enforcing a large margin can often improve prediction
accuracy. In this paper, we consider algorithms that perform
aPassive-Aggressive(PA) update [6] when the classifier fails
to correctly classify an instance with a functional margin of
1. The PA update modifies the learned function subject to
two constraints: (a) the correct label should have a functional
margin of 1, and (b) the change to the weights should be min-
imal in order to reduce fluctuations. The PA update sets the
new weight vectorwt+1 to be the solution to the following
constrained optimization problem,

wt+1 = arg min
w∈Rn

1

2
‖w − wt‖2

2

s.t.

yt(w · xt) ≥ 1.

Most online learning algorithms have no limitation on
the size of the feature weights. Consequently, some weights
can grow to be quite large. This is inappropriate in dy-
namic environments, where features that were important at
one time may become unimportant at later times. For exam-
ple, let’s consider the problem of sentiment prediction where
the goal is to predicts whether a product review is positive.
Consider an imaginary product, theiLearn. Suppose that
when it first appears on the market, it gets many positive re-
views, because of its novel functionality. Hence, the word
iLearn is a good indicator of positive sentiment and receives
a large weight. But then suppose that a serious problem is
discovered with theiLearn. Then the wordiLearn imme-
diately changes from predicting positive sentiment to pre-
dicting negative sentiment. However, sinceiLearn received
a large positive weight during the early phases, it may take
standard learning algorithms a long time to respond to the
change. In particular, standard methods such as Naive Bayes
would not realize thatiLearn is now predictive of negative
sentiment until it had seen as many negative examples as it
had previously seen positive examples. In the mean time,
the algorithm will make many prediction errors. One way to



avoid this problem is to avoid assigning too much weight to
any one feature.

When constructing classifiers over high-dimensional
data sets, we face problem of over-fitting. A common strat-
egy for addressing this issue is to first perform a feature se-
lection step. Standard feature selection methods [35] adopt
the batch approach and thus are inappropriate for online
learning. Some feature selection methods have been de-
signed for the online setting [14, 9], but they have two short-
comings. First, they assume an adversarial environment and
take a worse-case approach. Thus the performance is usually
suboptimal in the normal case. Second, they usually must
solve a difficult optimization problem that lacks a closed-
form solution. In this paper, we address the over-fitting
problem by applying regularization. We show that our al-
gorithms have feature selection ability and can improve over
non-regularized algorithms.

We say that an instance isactiveif it triggers an update.
Online learning algorithms typically set the initial weight
vector to the zero vector and do updates of the formwt+1 =
wt + τtytxt whereτt is the learning rate determined by the
learning algorithm. Thus,wt is a linear combination of the
active instances, and the newer active instances play the same
role as the older active instances. We show that for certain
kinds of regularized online learning, the updates have the
form wt+1 = 1

Zt
wt + τtytxt, whereZt ≥ 1. Thus, the

coefficients of those active instances appearing earlier shrink
and have less influence as additional instances are received.
Note that this is exactly the opposite of standard stochastic
gradient descent algorithms, which decreaseτ (usually as
1/t), and hence place more weight on older instances and
less weight on more recent ones [27].

3 Regularized Online Learning of Linear Classifiers

We investigate two kinds of regularization. The first employs
a penalty in the objective function, and the second one places
explicit norm requirement in the constraints.

3.1 Online Learning with a Regularized Objective. Let
α be a constant controlling the shrinkage rate. We can shrink
the norm of the weight vector towards zero by adding a
penalty in the objective function:

wt+1 = arg min
w∈Rn

1

2
‖w − wt‖2

2 +
α

2
‖w‖2

2(3.1)

subject toyt(w · xt) ≥ 1,

We denote the hinge loss [15] at iterationt asℓt. This gives
a simple closed-form update:

LEMMA 3.1. Problem 3.1 has the closed-form solution
wt+1 = 1

1+α
(wt + τtytxt), whereτt = ℓt+α

‖xt‖
2
2

.

Proof. The Lagrangian of the optimization problem in Prob-

lem 3.1 is

L(w, τ) =
1

2
‖w − wt‖2

2 +
α

2
‖w‖2

2 + τ(1 − yt(w · xt)),

(3.2)

whereτ ≥ 0 is the Lagrange multiplier. Differentiating this
Lagrangian with respect to the elements ofw and setting the
partial derivatives to zero gives

w =
1

1 + α
wt +

τ

1 + α
ytxt.(3.3)

Replacingw in Eq 3.2 with Eq 3.3, the Lagrangian becomes

L(τ ) =
1

2

∥

∥

∥

∥

τ

1 + α
ytxt −

α

1 + α
wt

∥

∥

∥

∥

2

2

+

α

2

∥

∥

∥

∥

τ

1 + α
ytxt +

1

1 + α
wt

∥

∥

∥

∥

2

2

+ τ (1 −
yt(wt · xt)

1 + α
−

τ ‖xt‖
2

2

1 + α
).

By setting the derivative of this with respect toτ to zero,
we obtain

1 − τ

1 + α
‖xt‖2

2 −
yt(wt · xt)

1 + α
= 0

⇒ τ =
1 − yt(wt · xt) + α

‖xt‖2
2

.

We will refer to this algorithm as theobjective-
regularized algorithm, because it places the regularization
in the objective function of the optimization problem. This
algorithm combines (a) largin margin fitting of the data (the
constraints) with (b) minimizing the change in the weights
(first term of the objective) with (c) minimizing the mag-
nitude of the weights (second term of the objective). The
first term of the objective could also be viewed as being
the “memory term”, since it seeks to remember the previous
weights, while the second term in the object can be viewed
as the “forgetting term”, since it serves to shrink the weights.
Hence, the algorithm can be viewed as balancing the compe-
tition between remembering and forgetting, as controlled by
α. Notice that in all cases, our algorithm must fit the most
recent training example with a functional margin of 1.

A few other online learning algorithms attempt to shrink
weights towards zero [16, 21]. These algorithms trade off
fitting the data against simplicity of the learned model. Their
updates do not directly ensure a large margin. Consequently,
their shrinking mechanisms have to sacrifice the fitting to the
training data. Experimental results show that our algorithm
gives much higher accuracy.

Since we are handling nonstationary problems, the best
hypothesis at each iteration might be changing. Let us define
the optimal algorithmto be one that performs the minimal
number of updates and does not update its hypothesis unless
our algorithm updates the hypothesis—that is, it may per-
form fewer updates by skipping some of the updates that our



algorithm makes. We will show that our regularized algo-
rithm is competitive with the optimal algorithm, as long as
the change between two consecutive optimal hypotheses is
not extremely dramatic.

Let u0, ..,uT ∈ R
n be the sequence of weight vectors

chosen by the optimal algorithm. We will specify thatu0 =
0, the zero vector. Letℓ∗t denote the loss ofut at iterationt.
Assume that the norm is bounded for each instancext, i.e.,
‖xt‖2 ≤ R. Let It be theactive setat iterationt for our
algorithm. An instancexi is in It iff i < t and it triggers an
update by our algorithm. The following theorem provides an
error bound of our algorithm.

THEOREM 3.1. Assume that there exists an optimal se-
quence of vectorsu0, ...,uT ∈ R

n such that‖ut‖2 = D,
ℓ∗t = 0 for all t, ‖ut − ut+1‖2 ≤ µ and µ satisfiesg =
1−α2

R2 − 2(1 + α)µβ − αD2

2+α
> 0. Givenmaxt ‖wt‖2 ≤ β,

the number of prediction mistakes made by the objective-
regularized algorithm is bounded bym ≤ D2

g
.

Proof. Let ∆t = ‖wt − ut‖2
2 − ‖wt+1 − ut+1‖2

2. We can
prove the bound by lower and upper bounding

∑

t ∆t. Since
w0 is a zero vector and the norm is non-negative,

∑

t ∆t =

‖w0 − u0‖2
2 − ‖wT − uT ‖2

2 ≤ ‖w0 − u0‖2
2 = D2.

Obviously,∆t 6= 0 only if t ∈ IT , whereIt is the active
set of our algorithm at iterationt. We will only consider this
case here. Letw′

t = wt + τtytxt, wt+1 = 1
1+α

w
′
t. ∆t can

be rewritten as

(‖wt − ut‖2
2 − ‖w′

t − ut‖2
2)

+(‖w′
t − ut‖2

2 − ‖w′
t − ut+1‖2

2)

+(‖w′
t − ut+1‖2

2 − ‖wt+1 − ut+1‖2
2) = δt + ψt + ǫt.

We will lower boundδt, ψt andǫt.
For δt, we have

δt = − 2τtytxt · (wt − ut) − ‖τtytxt‖2
2

≥2τtℓt − τ2
t ‖xt‖2

2 .

Plugging the definition ofτt and consideringℓt ≥ 1 get

δt ≥
2ℓ2t + 2ℓtα

‖xt‖2
2

− ℓ2t + 2ℓtα+ α2

‖xt‖2
2

≥ 1 − α2

R2
.(3.4)

Forψt, we have

ψt = − 2w′
t · (ut − ut+1)

≥− 2 ‖w′
t‖2 ‖ut − ut+1‖2 ≥ −2(1 + α)µβ.(3.5)

For ǫt, we have

ǫt =(1 − 1

(1 + α)2
) ‖w′

t‖
2
2 − 2(1 − 1

1 + α
)w′

t · ut+1.

Using the fact that‖u− v‖2
2 ≥ 0 which is equivalent to

‖u‖2
2 − 2u · v ≥ −‖v‖2

2, we get

(1 − 1

(1 + α)2
) ‖w′

t‖
2
2 − 2(1 − 1

1 + α
)w′

t · ut+1

≥−
1 − 1

1+α

1 + 1
1+α

‖ut+1‖2
2 = − αD2

2 + α
.(3.6)

Using Eq 3.4, 3.5 and 3.6, we obtain

T
∑

t=1

∆t ≥ m

(

1 − α2

R2
− 2(1 + α)µβ − αD2

2 + α

)

.

Applying
∑

t ∆t ≤ D2 gives

m

(

1 − α2

R2
− 2(1 + α)µβ − αD2

2 + α

)

≤ D2.(3.7)

Sinceg = 1−α2

R2 − 2(1 + α)µβ − αD2

2+α
> 0, we get the

result in the theorem.

Note that the error bound increases asµ (the bound on
the size of the optimal weight changes) increases. This con-
firms the intuition that a learning problem with dramatically
changing concepts is difficult, even for a regularized online
learning algorithm.

3.2 Online Learning with a Norm Constraint. The
objective-regularized algorithm keeps shrinking the weights
even when the weights have become quite small. This could
hurt prediction accuracy. We can instead only shrink the
weights when they get too large by enforcing a norm con-
straint:

wt+1 = arg min
w∈Rn

1

2
‖w − wt‖2

2(3.8)

subject toyt(w · xt) ≥ 1 and ‖w‖2 ≤ β.

This leads to the following simple closed-form update:

LEMMA 3.2. Problem 3.8 has the closed-form solu-
tion wt+1 = 1

Zt
(wt + τtytxt), where Zt =

max

{

1,

√

‖wt‖
2
2
‖xt‖

2
2
−(wt·xt)

2

β2‖xt‖
2
2
−1

}

, τt = ℓt+Zt−1
‖xt‖

2
2

.

A detailed proof is presented in the Appendix. We
will refer to this algorithm as theL2-norm constrained
algorithm , because it places an L2 norm constraint on the
weight vector. This algorithm performs the normal passive-
aggressive update until the norm ofwt exceedsβ. It then
shrinks the weights enough to ensure that theβ constraint is
satisfied. Our experiments show that this approach is slightly
more accurate than the objective-regularized algorithm.

It is easy to show that both the objective-regularized
and the L2 norm constrained algorithms are rotationally



invariant. LetM = {M ∈ R
n×n|MM ′ = M ′M =

I, |M | = 1} be the class of rotational matrices, whereI
is the identity matrix. Given a learning algorithmL, we
say it is rotational invariant [25] if for any training setS,
rotational matrixM ∈ M, and test examplex, we have
L[S, x] = L[MS,Mx], whereL[S, x] is the predicted label
of x resulting from usingL to train onS.

LEMMA 3.3. The learning algorithm solving Problem 3.1
and the algorithm solving Problem 3.8 are rotationally in-
variant.

Proof. We focus on the Problem 3.1. The proof can be
similarly applied to Problem 3.8. We show that ifL trained
with S outputsw, thenL trained withMS outputs the
weight vectorMw by induction on the size ofS.

LetL[S] denote the weight vector returned byL trained
with S.

When |S| = 0, both weight vectors are zero vectors.
Thus, the claim is true and the score functions will be the
same since they always return 0.

Assume when|S| = k, L[MS] = ML[S]. Now,
consider|S| = k + 1. Let S = S′ ∪ {xk+1} andMS =
(MS′) ∪ {Mxk+1}. We knowL[MS′] = ML[S′], since
the size ofS′ is k. Since we are using the linear product as
the score function, forL trained withMS′ we have the score
forMxk+1: L[MS′] · (Mxk+1) = (ML[S′]) · (Mxk+1) =
L[S′] (MM)xk+1 = L[S′] · xk+1. Thus the prediction of
Mxk+1 given byLwithMS′ is the same with the prediction
of xk+1 given byL with S′.

If there is no need to update the weights, we obvi-
ously haveL[MS] = ML[S]. If we need to update the
weights, the update will beL[MS] = 1

1+α
(L[MS′] +

τ ′tyt (Mxk+1)), whereτ ′t = ℓ′+α
‖Mxk+1‖

2 = ℓ+α
‖xk+1‖

2 = τt.

ThusL[MS] = M 1
1+α

(L[S′] + τtyt (xk+1)) = ML[S].
In summary,L[MS] = ML[S] given any data set.

Since we are using the linear product as the score function,
we always haveL[S, x] = L[MS,Mx].

Ng [25] shows that rotationally invariant algorithms
can require a large number of training instances to learn a
simple model when there are many irrelevant features. In
such situations, learning algorithms with L1 regularization
usually learn more quickly. Thus, it is worth exploring the
following L1 norm constrained learning algorithm:

wt+1 = arg min
w∈Rn

1

2
‖w − wt‖2

2(3.9)

subject toyt(w · xt) ≥ 1 and ‖w‖1 ≤ β.

This can be transformed into a quadratic programming
problem and solved with an off-the-shelf quadratic program-
ming package. Since the L1 norm constraint is still convex, it
is guaranteed to find the global optimum. There is a disconti-
nuity in the gradient of L1 with respect towi atwi = 0. This

tends to force a subset of weights to be exactly zero [33], so
that the learned weight vector is sparse.

The following theorem provides an error bound for the
online learning algorithms with L2 or L1 norm constraints:

THEOREM 3.2. Assume that there exists an optimal se-
quence of vectorsu0, ...,uT ∈ R

n such that‖ut‖2 =
D ≤ β, ℓ∗t = 0 for all t, ‖ut − ut+1‖2 ≤ µ and µ sat-
isfies 1

R2 − 2µβ > 0, then the number of errors made by
the algorithm with the L2 norm constraint is bounded by
m ≤ R2D2

1−2µβR2 . Similarly, if there exists an optimal vector se-
quence such that‖ut‖1 = D ≤ β and‖ut − ut+1‖∞ ≤ µ,
then the number of errors made by the algorithm with the L1
norm constraint is bounded bym ≤ R2D2

1−2µβR2 .

Proof. We concentrate on the L2 norm case. The proof can
be applied to the L1 case similarly. Let∆t = ‖wt − ut‖2

2 −
‖wt+1 − ut+1‖2

2. We can prove the bound by lower and
upper bounding

∑

t ∆t. We know
∑

t ∆t ≤ D2.
We now lower bound∆t. We let∆t = (‖wt − ut‖2

2 −
‖wt+1 − ut‖2

2) + (‖wt+1 − ut‖2
2 − ‖wt+1 − ut+1‖2

2) =
γt + χt.

Forχt, we haveχt = −2wt+1 · (ut − ut+1) ≥ −2µβ.
It is obvious that‖u‖1 =

∑

i |ui| ≥ |∑i ui|. Thus

‖(wt+1 − wt)xt‖1 ≥ |yt(wt+1 − wt) · xt| ≥ 1.(3.10)

Applying Holder’s inequality, we have

‖(wt+1 − wt)xt‖1 ≤ ‖wt+1 − wt‖2 ‖xt‖2(3.11)

‖wt+1 − wt‖2 ≥ 1

‖xt‖2

≥ 1

R
.(3.12)

Let PS(w) denote the projection ofw onto the convex
set S. We know for anyu ∈ S, we have‖w − u‖2

2 −
‖PS(w) − u‖2

2 ≥ ‖w − PS(w)‖2
2 [3].

We note thatwt+1 is a projection ofwt onto the convex
setS = {w ∈ R

n|loss(w, (yt,xt)) = 0 and ‖w‖2 ≤ β}
for the L2 norm constrained algorithm. Sinceut ∈ S,

γt ≥ ‖wt − wt+1‖2
2 ≥ 1

R2
.(3.13)

Thus, we have

∑

i∈IT

(

1

R2
− 2µβ

)

≤ D2(3.14)

m ≤ R2D2

1 − 2µβR2
.(3.15)

Hence, we obtain the result in the theorem.

Since ‖ut − ut+1‖∞ ≤ ‖ut − ut+1‖2, the error
bounds suggest that the L1 algorithm can tolerate more fluc-
tuations of the best hypotheses than the L2 algorithm.



3.3 Regularization and Dynamic Environments.Our
regularized algorithms have some characteristics especially
desirable in dynamic environments.

The algorithms regularized with L2 norm automatically
shrink the influence of the old observations and put more
weight on the recent ones. LetIt denote the active set
at iterationt. Based on Lemma 3.1, the learned decision
function of the objective-regularized algorithm at timet can
be rewritten as

ft(x) = sign

(

∑

i∈It

τiyi

(1 + α)|It−Ii|
xi · x

)

,(3.16)

where|It − Ii| is the number of active examples (and hence,
the number of weight updates) from timei+ 1 up to timet.

Similarly, for the L2-norm constrained algorithm, we
can rewrite the learned decision function at timet based on
Lemma 3.2 as

ft(x) = sign

(

∑

i∈It

τiyi
∏

j∈(It−Ii)
Zj

xi · x
)

.(3.17)

These forms are interestingly similar to the Forgetron al-
gorithm [8], an online kernel-based learning algorithm. The
Forgetron performs the standard percetron update but con-
trols the number of support vectors by removing the oldest
support vector when the size of the support vector set is too
large. Since removing a support vector may significantly
change the hypothesis, it tries to “shrink” the weight of old
support vectors. It multiplies the weights byφt ∈ (0, 1] in
each iteration. Our L2-regularized algorithms automatically
shrink the weights of those support vectors and, hence, “for-
get” the old support vectors. This is critically important for
handling non-stationary online learning problems.

Note also that these forms only involve inner products
between training examplesxi and the new input examplex.
This suggests that the method can be extended to non-linear
decision boundaries by applying the kernel trick to replace
the inner product with a functionK(·, ·) that satisfies the
Mercer conditions.

Theorem 3.2 also explains why it is important to shrink
the norm of the weight vector towards zero and not to
assign too much weight to any single feature in a dynamic
environment. In order to be competitive with the optimal
sequence of vectors, the norm of the learned vector has to
satisfy 1

R2 − 2µβ > 0, or β < 1
2µR2 . When the change

between two consecutive optimal hypotheses becomes more
dramatic (i.e.,µ becomes larger), the valid value ofβ
becomes even smaller. In such cases, we need to keep
the norm of the weight vector small so that the learned
hypothesis can adapt to the new environment quickly.

In Theorem 3.1, since we usually setα quite small, we
can approximateg with 1

R2 − 2µβ by ignoringα. This ex-
pression then matches the requirement in Theorem 3.2. Thus

by analogy, when the optimal hypotheses change dramati-
cally (i.e., whenµ is large), we need to shrink the norm of
our learned model more aggressively (keepβ small) for the
norm-penalized algorithms.

We cannot setα extremely large or setβ extremely
small, since we must ensure that the correct label can receive
a positive score by a given margin. Thus the norm of the
weight vector cannot be too small. But when possible, we
should keep the norm of the learned weight vector small
in order to improve the prediction precision in dynamic
environments. To see this, note that the error boundR2D2

1−2µβR2

in Theorem 3.2 is directly proportional toβ, the norm of the
weight vector. Ensuring a smallerβ will lead to a smaller
guaranteed error bound.

3.4 The Feature Selection Effect of Regularized Online
Learning. Regularized online learning methods force many
feature weights to be small. We now show that we can
remove these features with small weights without hurting
the accuracy too much. Assume that features are sorted in
ascending order according to the absolute values of their
weights. Suppose we remove the firstk features so that
∑k

i=1 w
2
i < σ and

∑k+1
i=1 w

2
i ≥ σ. As long asσ is small, the

number of errors will still be close to the original regularized
method. For the objective-regularized algorithm, we have
the following error bound:

THEOREM 3.3. Assume that there exists an optimal se-
quence of weight vectorsu0, ...,uT ∈ R

n such that‖ut‖2 =
D, ℓ∗t = 0 for all t, ‖ut − ut+1‖2 ≤ µ and µ satisfies

h = 1−α2

R2 − 2(1 + α)µβ − αD2

2+α
− 2

√
σD > 0. Given

maxt ‖wt‖2 ≤ β, then the number of prediction mistakes
made by the objective-regularized algorithm which removes
small weights is bounded bym ≤ D2

h
.

Proof. Let ∆t = ‖wt − ut‖2
2 − ‖wt+1 − ut+1‖2

2. We can
prove the bound by lower and upper bounding

∑

t ∆t. As
the above, we know

∑

t ∆t ≤ D2.
Let w′

t = wt + τtytxt, w′′
t = 1

1+α
w

′
t. We define vector

vt ∈ R
n as

vti =

{

w
′′
t i if

∑i
j=1 w

′′
t
2
j < σ

0 otherwise.
(3.18)

Thenwt+1 = w
′′
t − vt. ∆t can be rewritten as

(‖wt − ut‖2
2 − ‖w′

t − ut‖2
2)

+ (‖w′
t − ut‖2

2 − ‖w′
t − ut+1‖2

2)

+ (‖w′
t − ut+1‖2

2 − ‖w′′
t − ut+1‖2

2)

+ (‖w′′
t − ut+1‖2

2 − ‖wt+1 − ut+1‖2
2) = δt + ψt + ǫt + ρt.



We have already proved the lower bounds forδt, ψt and
ǫt above. Forρt, we have

ρt =2vt · w′′
t − 2vt · ut+1 − ‖vt‖2

2 .

It is obvious thatvt ·w′′
t = ‖vt‖2

2, thus we have

ρt = ‖vt‖2
2 − 2vt · ut+1 ≥ −2vt · ut+1.(3.19)

Applying the Cauchy-Schwarz inequality, we get

ρt ≥− 2 ‖vt‖2 ‖ut+1‖2 ≥ −2
√
σD.(3.20)

Using Eqs. 3.4, 3.6 and 3.20, we obtain

T
∑

t=0

∆t ≥m
(

1 − α2

R2
− 2(1 + α)µβ − αD2

2 + α
− 2

√
σD

)

.

Since
∑

t ∆t ≤ D2, we have

m

(

1 − α2

R2
− 2(1 + α)µβ − αD2

2 + α
− 2

√
σD

)

≤ D2.

Sinceh = 1−α2

R2 − 2(1 + α)µβ − αD2

2+α
− 2

√
σD > 0,

we obtain the result in the theorem.

Similarly, for the algorithms with norm constraints, we
obtain the following error bound:

THEOREM 3.4. Assume that there exists an optimal se-
quence of weight vectorsu0, ...,uT ∈ R

n such that‖ut‖2 =
D ≤ β, ℓ∗t = 0 for all t, ‖ut − ut+1‖2 ≤ µ andµ satisfies
q = 1

R2 −2µβ−2
√
σD > 0, then the number of errors made

by the algorithm with the L2 norm constraint is bounded by
m ≤ D2

q
. Similarly, if there exists an optimal weight vector

sequence such that‖ut‖1 = D and‖ut − ut+1‖∞ ≤ µ, the
number of errors made by the algorithm with the L1 norm
constraint is bounded bym ≤ D2

q
.

Proof. Let ∆t = ‖wt − ut‖2
2 − ‖wt+1 − ut+1‖2

2. We can
prove the bound by lower and upper bounding

∑

t ∆t. As
the above, we know

∑

t ∆t ≤ D2.
Obviously,∆t 6= 0 only if t ∈ IT . We will only con-

sider this case here. Letw′
t be the solution of Problem 3.8.

We define the vectorvt ∈ R
n as

vti =

{

w
′
ti if

∑i
j=1 w

′
t
2
j < σ

0 otherwise.
(3.21)

Thenwt+1 = w
′
t − vt. ∆t can be rewritten as

(‖wt − ut‖2
2 − ‖w′

t − ut‖2
2)(3.22)

+ (‖w′
t − ut‖2

2 − ‖w′
t − ut+1‖2

2)(3.23)

+ (‖w′
t − ut+1‖2

2 − ‖wt+1 − ut+1‖2
2).(3.24)
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Figure 2: Non-stationary class probabilities employed in the
experiments.

We have previously shown thatχt +γt ≥ 1
R2 −2µβ and

that‖w′
t − ut+1‖2

2 − ‖wt+1 − ut+1‖2
2 ≥ −2

√
σD. Thus,

∆t ≥
1

R2
− 2µβ − 2

√
σD.(3.25)

Since we know 1
R2 − 2µβ − 2

√
σD > 0, we obtain the

result in the theorem.

This theorem shows that removing those small-weight
features slightly increases the error bounds by subtracting
2
√
σ ‖u‖2 from the denominator. Given a smallσ, ignoring

the features with small weights has little influence on the
prediction accuracy. Our experimental results show that the
accuracy is not hurt even when we remove more than half
of the features. This feature selection effect can also explain
the superior performance of regularized online learning: our
algorithms drive many feature weights towards zero. The
algorithms tend to learn a model with a sparse parameter
vector when the feature space is large.

4 Experimental Results

We evaluate our algorithms with three data sets.

4.1 Data sets.We tested our algorithms on one image
data set, USPS, and two text data sets, 20NewsGroups and
SRAA1. For all text documents, we removed the header
and converted the remainder into a 0/1 vector of indicator
variables for each word (without stemming or a stoplist).
To make the experiments more realistic and dynamic, we
defined a non-stationary process for generating the data
sequence. In each data set, we chose four classes (P1, P2,
N1, N2). We defined the union of P1 and P2 to be the
positive class and the union of N1 and N2 to be the negative

1Available at http://www.cs.umass.edu/˜mccallum/data/sraa.tar.gz



class. Then we defined four phases for the data sequence (see
Figure 2). In Phase 1, the probability of class P1 decreases
from 0.7 to 0.5 and the probability of N1 increases from 0.3
to 0.5. In Phase 2, the probability of P1 decreases from 0.5
to 0.3, P2 increases from 0 to 0.2, and N1 is fixed at 0.5.
In Phase 3, P2 is fixed at 0.5, N1 decreases from 0.2 to 0,
and N2 increases from 0.3 to 0.5. In Phase 4, P2 decreases
from 0.5 to 0.3 and N2 increases from 0.5 to 0.7. Classes not
mentioned have probability 0.

For the USPS set, we sampled 500 instances (without
replacement) in each phase and defined P1 to be the digit
“3”, P2 to be “7”, N1 to be “8”, and N2 to be “9”. For
the 20NewsGroups and SRAA data sets, we sampled 800
instances (without replacement) in each phase. For 20News-
Groups, P1 is “Baseball”, P2 is “Hockey”, N1 is “Auto”, and
N2 is “Motorcycle”. For SRAA, P1 is “RealAutos”, P2 is
“RealAviation”, N1 is “SimulatedAuto”, and N2 is “Simu-
latedAviation”. There are 256 features in the USPS data,
8354 features in the 20NewsGroups data, and 9610 features
in the SRAA data.

4.2 Approach. We applied our algorithms to the gener-
ated data sequence as follows. We used the first half of the
data to select the regularization parameter and then trained
the model on the first half. We then measured online perfor-
mance using the second half of the data. Since the second
half corresponds to phases 3 and 4, this approach means that
the initial model (learned in phases 1 and 2) performs very
badly initially, because of the discontinuous shift in class
probabilities at the start of phase 3. The results are simi-
lar if the regularization parameters are tuned on the second
half of the data. All results are averaged over 40 trials.

4.3 Comparison with Other Online Learning Methods.
We compare our algorithms with the Bayesian Perceptron
algorithm [32, 4] (which approximates the posterior with
a Gaussian), the linear NORMA algorithm [21] (which
is another regularized online learning algorithm), and the
passive-aggressive algorithm [6] (which is a state-of-the-
art online learning algorithm). The results are shown in
Figure 1.

Of the five methods evaluated, our objective-regularized
and L2-norm constrained algorithms are clearly superior on
the USPS and 20NewsGroups data sets. On SRAA, our
algorithms are able to adapt very rapidly to the nonstationary
change in class probabilities at the start of Phase 3. However,
by the end of Phase 4, the Bayesian Perceptron algorithm has
caught up and surpassed our methods.

We consider each of the methods in more detail. The
worst method appears to be the NORMA algorithm. Al-
though in theory, NORMA can quickly adjust its hypothe-
sis, in our experiments, it adjusts more slowly than all of
the other algorithms. NORMA is consistently the worst per-

former, although PA is tied with it on SRAA during the early
part of Phase 3.

The Passive-Aggressive algorithm is the next worse per-
former. On USPS and 20NewsGroups, it starts out adapting
more rapidly than NORMA and the Bayesian Perceptron, but
then its performance fails to improve as rapidly as the other
methods.

The Bayesian Perceptron algorithm initially adapts
more slowly to the non-stationary change at the start of Phase
3 than our algorithms. However, by the end of Phase 4, its ac-
curacy approaches that of our algorithms, and in the case of
SRAA, it eventually becomes more accurate than our meth-
ods. This may show that our algorithms are more strongly
designed for non-stationary distributions and suffer some-
what when the distribution is fairly stable for a sufficiently
long time. The Bayesian Perceptron algorithm requires more
CPU time and memory, partly because it must maintain a co-
variance matrix. When the feature space is extremely large,
the Bayesian Perceptron algorithm will become infeasible.

The experiments show that both the L1-norm con-
strained algorithm and the L2-norm constrained algorithm
give similar performance. A possible reason for this is that
the number of irrelevant features is within an order of magni-
tude of the number of informative features in these problems.
As we will show below, more than half of the features are in-
formative in the USPS problem. For the text problems, there
are several times more meaningless features than informa-
tive features, but the number of informative features is still
quite large. Previous work suggests that L1 regularization
works best when a small number of features play moderate-
sized effects in classification, while L2 regularization isquite
competitive when a large number of features play small ef-
fects in classification [33]. One future direction would be to
consider the elastic net approach, which employs a mix of
L1 and L2 regularization [36].

One advantage of the L2-constrained method is that it
is more efficient than the L1-constrained method. However,
recent work has shown that L1-constrained methods can be
made very fast [36, 11]. In our implementation, we used the
current weight vector as the initial value when solving the
quadratic programming problem to compute the update. This
makes the update quite efficient. For example, it took less
than 10 minutes to process all 3200 20NewsGroups instances
on a Linux machine (AMD64 2.6Ghz CPU, 2G memory). As
a comparison, the objective-regularizedalgorithm took about
16 seconds to process all 3200 20NewsGroups instances.

Feature Selection Power. Next we investigate the
feature selection power of our algorithms and compare this
to two other feature selection methods. For our methods,
we did the following. We chose a set of possible values for
σ and ran each algorithm with each value. In each run at
each time step, we sorted the weights by their magnitudes
and removed features until the sum of the absolute values of



the weights exceededσ. We computed the average number
of non-zero weights per iteration and the overall error rate
over the testing sequence. Features were “removed” only
for purposes of predicting the label on the new example.
The algorithm continued using the entire weight vector to
perform its weight updates.

The other two feature selection methods that we ex-
plored were information gain [35] and a game-theoretic
method. When updating the model, we first perform fea-
ture selection and then carry out the model update. Informa-
tion gain is a pair-wise feature selection method that is very
effective in aggressive term removal without losing classifi-
cation accuracy in stationary environments [35]. It simply
computes the mutual information between each feature and
the class label:I(xj ; y). It then chooses thek features with
highest mutual information.

We also devised a game-theoretic feature selection al-
gorithm that tries to maximize accuracy in the worst case.
Online learning faces a dynamic, sometimes even adversar-
ial environment [14, 9]. We treat feature selection as a two-
person game [12]. Let the learner be the row player and the
environment be the column player. The game can be thought
as this: given an observationx, the row player chooses a fea-
turexi and probabilistically determinesy[i], the label ofx
based only on featurexi. Simultaneously, the column player
chooses a featurexj and probabilistically determines the la-
bel y[j]. If they predict the same label, then the row player
gets reward 1, otherwise 0. We want to design a reward ma-
trix M so that each elementM(i, j) is proportional to the
likelihood thaty[i] = y[j] when the row player selects fea-
turexi and the column player selects featurexj . There could
be many choices. We chose the mutual information between
xi andxj : M [i, j] := I(xi;xj). Letu be the learner’s selec-
tion strategy andv be the environment’s strategy, our goal is
then to find a strategy that can maximize the reward in the
worst case:

max
u

min
v

(uMv)(4.26)

subject to∀i ui ∈ {0, 1}, ∀j vj ∈ {0, 1},
∑

i

ui =
∑

j

vj = k,

wherek is the number of selected features. We then select
those features withui = 1. In practice, we can relax
the integer requirement and replace the constraint∀i ui ∈
{0, 1}, ∀j vj ∈ {0, 1} with constraint∀i 0 ≤ ui ≤
1, ∀j 0 ≤ vj ≤ 1. The problem can be converted into
a linear programming problem and solved efficiently. We
then select thek features with the largestui.

The feature selection results are plotted in Figure 3. In
most cases, the regularized methods significantly outperform
other feature selection methods, especially for the USPS
problem in which most features are informative. Informa-

tion gain does not realize that the data is changing and con-
tinues to select features aggressively based on overall mutual
information. Its performance is extremely bad when we se-
lect only a small number of features. Information gain shows
improvement only for the 20NewsGroups problem, which is
relatively easy to predict.

On USPS, the game-theoretic method selects better
feature sets than information gain. However, the game-
theoretic method is too inefficient to run on 20NewsGroups
or SRAA because of the large number of features in these
domains.

The L1-norm constrained method does not perform as
well as the L2-norm method. This is probably because the
L1-norm method is more likely to put more weight on a
smaller number of informative features. Once these features
are removed, its performance is severely damaged. Although
it shows slightly better performance when we allow many
features, it becomes unstable and its accuracy is much worse
than the L2 constrained method when the number of selected
features is small. The accuracy of the L2-constrained method
is not hurt even when we remove most of the features. This
suggests that this method has the ability to learn a sparse
model that still performs well.

4.4 Adapting to a Changing Environment. For online
learning, the learned model is determined by theactive set.
The regularized methods naturally reduce the influence of
the old active instances and pay more attention to the more
recent ones. In Figure 4, we compare the final learned
models for the USPS problem. We plot the learned models
as follows: each feature corresponds to its position in the
image, and the gray scale is proportional to its absolute
weight. To compute the information gain figure, we apply
the information gain criterion to the entire data sequence
and compute the information gain of each feature. For
the Passive-Aggressive (PA) algorithm, we plot the absolute
weights of the features at the end of Phase 4. At the end of
Phase 4, each algorithm should be just predicting whether
a digit is “7” or “9”. The images suggest that this is what
the regularized algorithms (and to a lesser extent, PA) are
doing. The information gain method does not appear to
be focused on this task. We can also see that the L1-
constrained method has more aggressively put larger weights
on a smaller number of features. The PA algorithm still puts
large weights on some features that can discriminate “3” and
“8” (from Phases 1 and 2).

5 Application to Activity Recognition

We applied a variation of our regularized online learning
algorithms to do activity recognition in an intelligent activity
management system, the TaskTracer system [10, 30, 29].



Figure 5: The screenshot of Task Selector, an application that
is located at the right bottom of the desktop.

5.1 The TaskTracer System and Its Activity Recogni-
tion Problem The TaskTracer system is an intelligent activ-
ity management system that helps knowledge workers man-
age their work based on two assumptions: (a) the user’s work
can be organized as a set of ongoing activities such as “Write
TaskTracer Paper” or “Take CS534 Class”, (b) each activity
is associated with a set ofresources. “Resource” is an um-
brella term for documents, folders, email messages, email
contacts, web pages and so on. TaskTracer collects events
generated by the user’s computer-visible behavior, includ-
ing events from MS Office, Internet Explorer, Windows Ex-
plorer, and the Windows XP operating system. The user can
declare a “current activity” (via a “Task Selector” user inter-
face, see Figure 5), and TaskTracer records all resources as
they are accessed and associates them with the current de-
clared activity. TaskTracer then configures the desktop in
various ways to support the user. For example, it supplies an
application called the Task Explorer, which presents a uni-
fied view of all of the resources associated with the current
activity and makes it easy to open those resources in the ap-
propriate application. It also predicts which folder the user
is most likely to access and modifies the Open/Save dialog
box to use that folder as the default folder. If desired, it can
restore the desktop to the state it was in when the user last
worked on an activity, and so on.

To get the right resource-activity associations, the user
must remember to indicate the current declared activity each
time the activity changes. If the user forgets to do this,
then resources become associated with incorrect activities,
and TaskTracer becomes less useful. For this reason, we
sought to supplement the user’s manual activity declaration
with an activity predictor that attempts to predict the current
activity of the user. If the predictor is sufficiently accurate,
its predictions could be applied to associate resources with
activities, to propose correct folders for files and email, and
to remind the user to update the current declared activity.

We have previously developed two machine learning
methods for detecting activity switches and predicting the
current activity of the user [31, 30]. A significant drawback
of both of these learning methods is that they employed a
batch SVM algorithm [19, 5]. This must store all of the train-
ing examples and reprocess all of them when retraining is re-
quired. SVM training time is roughly quadratic in the num-

ber of examples, so the longer TaskTracer is used, the slower
the training becomes. Furthermore, activity prediction isa
multi-class prediction problem over a potentially large num-
ber of classes. For example, our busiest user worked on
299 different activities during a four-month period. To per-
form multi-class learning with SVMs, we employed the one-
versus-rest approach. If there areK classes, then this re-
quires learningK classifiers. If there areN examples per
class, then the total running time is roughlyO(N2K3). This
is not practical in an interactive, desktop setting.

Another drawback with the previous learning methods
is that they are slow to respond to the user’s feedback. In
many cases, when the user provides feedback, the algorithm
only takes a small step in the right direction, so the user must
repeatedly provide feedback until enough steps have been
taken to fix the error. This behavior has been reported to be
extremely annoying.

Our regularized online learning methods can address the
above problems. Thus we redesigned the activity predictor
to apply our new methods.

5.2 System DesignAs indicated above, TaskTracer mon-
itors various desktop events (Open, Close, Save, SaveAs,
Change Window Focus and so on). Everys seconds (default
s=60) or when the user declares an activity switch, it com-
putes an information vectorXt describing the time interval
t since the last information vector was computed. This in-
formation vector is then mapped into feature vectors by two
functions: FA : (Xt, yj) → Rk andFS : (Xt) → Rm.
The first functionFA computesactivity-specificfeatures for
a specified activityyj ; the second functionFS computes
switch-specific features. The activity-specific features in-
clude

• Strength of association of the active resource with ac-
tivity yj : if the user has explicitly declared that the ac-
tive resource belongs toyj (e.g., by drag-and-drop in
TaskExplorer), the current activity is likely to beyj. If
the active resource was implicitly associated withyj for
some duration (which happens whenyj is the declared
activity and then the resource is visited), this is a weaker
indication that the current activity isyj.

• Percentage of open resources associated with activity
yj: if most open resources are associated withyj , it is
likely thatyj is the current activity.

• Importance of window title wordx to activityyj. Given
the bag of wordsΩ from the window title, we compute
a variant of TF-IDF [6] for each wordx and activityyj:

TF(x,Ω) · log
|S|

DF(x,S)
. Here,S is the set of all feature

vectors not labeled asyj , TF(x,Ω) is the number of
timesx appears inΩ and DF(x, S) is the number of
feature vectors containingx that are not labeledyj .



These activity-specific features are intended to predict
whetheryj is the current activity. The switch-specific fea-
tures predict the likelihood of a switch. They include

• Number of resources closed in the lasts seconds: if the
user is switching activities, many open resources will
often be closed.

• Percentage of open resources that have been accessed in
the lasts seconds: if the user is still actively accessing
open resources, it is unlikely there is an activity switch.

• The time since the user’s last explicit activity switch:
immediately after an explicit switch, it is unlikely the
user will switch again. But as time passes, the likeli-
hood of an undeclared switch increases.

To detect an activity switch, we adopt a sliding window
approach: at timet, we use two information vectors (Xt−1

andXt) to score every pair of activities for time intervals
t − 1 and t. Given an activity pair〈yt−1, yt〉, the scoring
functiong is defined as

g(〈yt−1, yt〉) = Λ1 · FA(Xt−1, yt−1) + Λ1 · FA(Xt, yt)

− I[yt−1 6= yt] (Λ2 · FS(Xt−1) + Λ3 ·FS(Xt)) ,

whereΛ = 〈Λ1,Λ2,Λ3〉 ∈ R
n is a set of weights to be

learned by the system,I[p] = 1 if p is true and0 otherwise,
and the dot (·) means inner product. The first two terms ofg
measure the likelihood thatyt−1 andyt are the activities at
time t − 1 andt (respectively). The third term measures the
likelihood that there is no activity switch from timet−1 to t.
Thus, the third component ofg serves as a “switch penalty”
whenyt−1 6= yt.

We search for the〈ŷ1, ŷ2〉 that maximizes the score
function g. If ŷ2 is different from the current declared
activity and the score is larger than a specified threshold, then
a switch prediction is made.

5.3 Efficient Learning Algorithm. We employ a soft-
margin variant of the L2-regularized objective algorithm.All
of the algorithms previously discussed in this paper are “hard
margin” algorithms that ensure that each new example is
correctly classified with a functional margin of 1. This is
appropriate for non-stationary learning problems, but it may
not be a good approach when there are likely to be errors
in the training data. Specifically, in the TaskTracer setting,
the user can easily mislabel an activity switch. Hence, our
algorithm needs to be robust to such label errors.

To achieve this, we follow the standard soft-margin
approach by introducing a slack variableξ in the constraint
and penalizing it in the objective function:

Λt+1 = arg min
Λ∈Rn

1

2
‖Λ − Λt‖2

2 + Cξ2 +
α

2
‖Λ‖2

2

subject tog(〈y1, y2〉) − g(〈ŷ1, ŷ2〉) ≥ 1 − ξ.(5.27)

The second term in the objective function,Cξ2, serves
to encourageξ to be small. Ideally,ξ = 0, so that this
enforces the condition that the functional margin (between
correct and incorrect scores) should be 1. The constant
parameterC controls the tradeoff between taking small steps
(the first term) and fitting the data (drivingξ to zero).

Like our other algorithms, this has a closed-form so-
lution, so it can be computed in time linear in the num-
ber of features and the number of classes. We now de-
rive the closed-form update rule for this modified version
of our algorithms. First, let us expand theg terms. Define
Zt =

〈

Z
1
t ,Z

2
t ,Z

3
t

〉

where

Z
1
t =FA(Xt−1, y1) + FA(Xt, y2)

− FA(Xt−1, ŷ1) − FA(Xt, ŷ2)

Z
2
t =(I[ŷ1 6= ŷ2] − I[y1 6= y2])FS(Xt−1)

Z
3
t =(I[ŷ1 6= ŷ2] − I[y1 6= y2])FS(Xt).

Plugging this into the above optimization problem allows us
to rewrite the inequality constraint as the following simple
form:

Λ · Zt ≥ 1 − ξ.

We can then derive the following result:

LEMMA 5.1. The optimization problem (5.27) has the
closed-form solution

(5.28) Λt+1 :=
1

1 + α
(Λt + τtZt),

where

(5.29) τt =
1 − Λt · Zt + α

‖Zt‖2
2 + 1+α

2C

.

A detailed proof is presented in the Appendix. The
update rule (5.28) can be viewed as shrinking the cur-
rent weight vectorΛT and then adding in the incorrectly-
classified training example with a step size ofτt/(1 + α).
The step size is determined (in the numerator of (5.29)) by
the size of the error(1 − Λt · Zt) and (in the denominator)
by the squared length of the feature vector and a correction
term involvingα andC.

The time to compute this update is linear in the number
of features. Furthermore, the cost does not increase with the
number of classes, because the update involves comparing
only the predicted and correct classes.

It is worth asking how much accuracy is lost in order
to obtain such an efficient online algorithm compared to a
batch algorithm (or, more generally, to the best possible al-
gorithm). By extending existing results from computational
learning theory, we can provide a partial answer to this ques-
tion. Let us assume that the length of each vectorZt is no
more than some fixed valueR:

‖Zt‖2 ≤ R.
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Figure 6: Precision of different learning methods as a func-
tion of the recall, created by varying the alarm threshold.

This is easily satisfied if every feature has a fixed range of
values. Suppose there is some other algorithm that computes
a better weight vectoru ∈ R

n. Let ℓ∗t = max{0, 1 − u ·
Zt} denote the hinge loss ofu at iterationt. With these
definitions, we can obtain a result that compares the accuracy
of the online algorithm afterT examples to the total hinge
loss of the weight vectoru afterT examples:

THEOREM 5.1. Assume that there exists a vectoru ∈ R
n

which satisfiesh = 1−α2

R2+ 1+α

2C

− α
2+α

‖u‖2
2 > 0. Givenα < 1,

the number of prediction mistakes made by our algorithm is
bounded bym ≤ 1

h
‖u‖2

2 + 2C
h(1+α)

∑T
t=0(ℓ

∗
t )

2.

A detailed proof is presented in the Appendix. This
theorem tells us that the number of mistakes made by our
online algorithm is bounded by the sum of (a) the squared
hinge loss of the ideal weight vectoru multiplied by a
constant term and (b) the squared Euclidean norm ofu

divided byh. This bound is not particularly tight, but it does
suggest that as long asu is not too large, the online algorithm
will only make a constant factor more errors than the ideal
(batch) weight vector.

Theoretical analysis can provide one more insight into
the relationship betweenC and how often the user makes
mistaken feedbacks. Since usuallyR2 ≫ 1+α

2C
, we can treat

h as approximately independent ofC. When the user makes
many feedback errors (i.e.,

∑T
t=0(ℓ

∗
t )

2 is large), we should
setC to be small to allow a large slack valueξ. As C
becomes smaller, 2C

h(1+α)

∑T
t=0(ℓ

∗
t )

2 becomes smaller, too.
Thus we will have a smaller guaranteed error bound.

5.4 Experimental Results on Real Desktop User Data.
We deployed TaskTracer on Windows machines in our re-
search group and collected data from one regular user who

was fairly careful about declaring switches. This data set
records 4 months of daily work, which involved 299 distinct
activities, 65,049 instances (i.e., information vectors), and
3,657 activity switches.

To evaluate the learning algorithm described in Sec-
tion 5.3, we make the assumption that these activity switches
are all correct, and we perform the following simulation. The
data is ordered according to time. Suppose the user forgets to
declare every fourth switch. We feed the instances to the on-
line algorithm and ask it to make predictions. A switch pre-
diction is treated as correct if the predicted activity is correct
and if the predicted time of the switch is within 5 minutes of
the real switch point. When a prediction is made, our simula-
tion provides the correct time and activity as feedback. When
the user declares an activity switch, the simulation also gen-
erates training instances [29].

The online algorithm parameters were set based on
experiments with non-TaskTracer benchmark sets. We set
C = 10 (which is a value widely used in the literature) and
α = 0.001 (which gave good results on the benchmark data
sets).

Performance is measured byprecisionandrecall. Pre-
cision is the number of switches correctly predicted divided
by the total number of switch predictions, and Recall is the
number of switches correctly predicted divided by the total
number of undeclared switches. We obtain different preci-
sion and recall values by varying the score confidence thresh-
old required to make a prediction.

The results comparing our online learning approach
with the batch training methods are plotted in Figures 6.
The batch training methods adopt a large margin approach
[34] to train the weight vectorΛ. This method creates
a positive example for the correct label and a negative
example the the incorrect label. It then trains the weight
vector using all available examples with the linear kernel
[5]. To reduce repeated incorrect predictions, we also
evaluated the batch training method configured so that it
does not raise any new alarms for at least the first 10
minutes after the most recent switch alarm. Our online
approach gives competitive performances compared to the
batch approaches. The non-silent batch approach only takes
a small step in the right direction after the user provides
feedback. So it is likely that it will make the same mistake
in the next iteration. The user has to repeatedly provide
feedback so that enough steps are taken to fix the error. Our
online learning approach outperforms this in most cases. If
we force the batch predictor to keep silent after a switch
alarm, the batch predictor can avoid many repeated mistakes.
In this configuration during the silent period, the batch
predictor treats repeated prediction as an error. Hence, by
the time the silent period is over, it has probably fixed the
error by gaining enough training examples.

Compared to the batch approaches, the online learning



approach is much more efficient. On an ordinary PC, it
only took 4 minutes to make predictions for the 65,049 in-
stances (0.0037 seconds/instance) while the non-silent batch
approach needed more than 37 hours (more than 2 sec-
onds/instance), a speedup factor of more than 500 fold.

6 Conclusions And Further Work

An important challenge for online learning is to achieve high
accuracy while also adapting rapidly to changes in the envi-
ronment. This paper presented three efficient online algo-
rithms that combine large margin training with regulariza-
tion methods that enable rapid adaptation to nonstationary
environments. Each algorithm comes with theoretical guar-
antees in the form of online error bounds with respect to an
optimal online algorithm. The algorithms have some inter-
esting characteristics that make them especially appropriate
in dynamic environments. First, they shrink the weights to-
wards zero, which makes it easier to adapt the weights when
the environment suddenly changes. Second, the algorithms
naturally shrink the influence of the old instances and put
more weight on the more recent ones. Third, the methods
learn a sparse model that ignores or down-weights irrelevant
features. Finally, we have successfully applied a soft-margin
version of our algorithms to activity recognition in the Task-
Tracer system [29].

There are two promising directions for future work.
First, we noted that the learned weight vector of our L2-
regularized methods is a linear combination of the active
instances. It would be interesting to employ the kernel trick
here by replacing the inner product with a kernel satisfying
the Mercer conditions and compare our algorithms with the
Forgetron algorithm [8]. The Forgetron is an online kernel-
based learning algorithm that controls the number of support
vectors by removing the oldest support vector when the
number of support vectors exceeds a fixed quota. Since
removing a support vector may significantly change the
hypothesis, the Forgetron aggressively “shrinks” the weight
of old support vectors. Our L2-regularized online algorithms
naturally shrink the weights of those support vectors, and
we could also control the number of support vectors by
removing the oldest one.

Our current algorithms assume that the system will
always receive the correct label immediately after making
a prediction. However, in many cases there can be a delay
between the time a prediction is made and the time feedback
is received. For example, in TaskTracer, sometimes there is
no feedback at all after the system makes a switch alarm,
because the user is too busy and does not notice the alarm.
Currently TaskTracer does nothing when this happens, and
the system assumes that its prediction was incorrect. But
an alternative would be to assume the prediction is correct
and automatically change TaskTracer’s “current activity”.
This situation can be thought as a bandit setting [1, 20]. It

would be very interesting to design a bandit version of our
algorithms.
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Appendix – Detailed Proof of the Theorems

Proof of Lemma 3.2

Proof. The Lagrangian of Problem 3.8 is

L(w, τ) =
1

2
‖w − wt‖2

2

+ τ(1 − yt(w · xt)) + λ(‖w‖2
2 − β2),

where τ ≥ 0 and λ ≥ 0 are the Lagrange multipliers.
Differentiating this Lagrangian with respect to the elements
of w and setting the partial derivative to zero gives

w =
1

1 + 2λ
(wt + τytxt).(6.30)

We letZ = 1 + 2λ. The KKT conditions require constraint
1 − yt(w · xt) ≤ 0 to be active, which leads to

τ =
Z − yt(wt · xt)

‖xt‖2
2

.(6.31)

The KKT conditions requireλ(‖w‖2
2−β2) = 0. We discuss

two cases here. First, ifλ = 0, then we getτ = 1−yt(wt·xt)

‖xt‖
2
2

from Equation 6.31.
Second, if ‖w‖2

2 − β2 = 0. We replaceτ with
Z−yt(wt·xt)

‖xt‖
2
2

and get

‖wt‖2
2 +

2Zyt(wt · xt) − 2(wt · xt)
2

‖xt‖2
2

+
Z2 − 2Zyt(wt · xt) + (wt · xt)

2

‖xt‖2
2

= β2Z2

(β2 ‖xt‖2
2 − 1)Z2 = ‖wt‖2

2 ‖xt‖2
2 − (wt · xt)

2.

This can be possible only ifβ2 ‖xt‖2
2 − 1 ≤

‖wt‖2
2 ‖xt‖2

2 − (wt · xt)
2 sinceZ = 1 + 2λ ≥ 1. In this

case, we getZ =

√

‖wt‖
2
2
‖xt‖

2
2
−(wt·xt)

2

β2‖xt‖
2
2
−1

. If β2 ‖xt‖2
2 − 1 >

‖wt‖2
2 ‖xt‖2

2 − (wt · xt)
2, this corresponds to the first case,

λ = 0. We can easily show that constraint‖w‖2
2 ≤ β2 is

always feasible and inactive if it is true:

‖w‖2
2 =

‖wt‖2
2 ‖xt‖2

2 − (wt · xt)
2 + 1

‖xt‖2
2

<
β2 ‖xt‖2

2 − 1 + 1

‖xt‖2
2

= β2.



Since both our objective function and constraint func-
tions are convex, we know our solution is globally optimal.
Combining the above two cases, we conclude the proof.

Proof of Lemma 5.1

Proof. The Lagrangian of the optimization problem in (3.1)
is

L(Λ, ξ, τ) =
1

2
‖Λ − Λt‖2

2 + Cξ2 +
α

2
‖Λ‖2

2

+τ(1 − Λ · Zt − ξ),(6.32)

whereτ ≥ 0 is the Lagrange multiplier. Differentiating this
Lagrangian with respect to the elements ofΛ and setting the
partial derivative to zero gives

Λ =
1

1 + α
Λt +

τ

1 + α
Zt.(6.33)

Differentiating the Lagrangian with respect toξ and setting
the partial derivative to zero gives

ξ =
τ

2C
.(6.34)

Expressingξ as above and replacingΛ in Eq 6.32 with
Eq 6.33, the Lagrangian becomes

L(τ) =
1

2

∥

∥

∥

∥

τ

1 + α
Zt −

α

1 + α
Λt

∥

∥

∥

∥

2

2

+
τ2

4C

+
α

2

∥

∥

∥

∥

τ

1 + α
Zt +

1

1 + α
Λt

∥

∥

∥

∥

2

2

+ τ

(

1 − Λt · Zt

1 + α
− τ ‖Zt‖2

2

1 + α
− τ

2C

)

.

By setting the derivative of the above to zero, we get

1 − τ

2C
− τ

1 + α
‖Zt‖2

2 −
(Λt · Zt)

1 + α
= 0(6.35)

⇒ τ =
1 − (Λt · Zt) + α

‖Zt‖2
2 + 1+α

2C

.(6.36)

Combining Eq 6.33 and Eq 6.36 completes the proof.

Proof of Theorem 5.1

Proof. Let ∆t = ‖Λt − u‖2
2 − ‖Λt+1 − u‖2

2. We can prove
the bound by lower and upper bounding

∑

t ∆t.
Since Λ0 is a zero vector and the norm is always

non-negative,
∑

t ∆t = ‖Λ0 − u‖2
2 − ‖ΛT − u‖2

2 ≤
‖Λ0 − u‖2

2 = ‖u‖2
2.

Obviously, ∆t 6= 0 only if t ∈ IT . We will only
consider this case here. LetΛ′

t = Λt+τtZt, Λt+1 = 1
1+α

Λ′
t.

∆t can be rewritten as

(‖Λt − u‖2
2 − ‖Λ′

t − u‖2
2) + (‖Λ′

t − u‖2
2 − ‖Λt+1 − u‖2

2)

= δt + ǫt.
(6.37)

We will lower bound bothδt andǫt. Letψ2 = (1 + α)/2C.
For δt, we have

δt = ‖Λt − u‖2
2 − ‖Λt + τtZt − u‖2

2(6.38)

= ‖Λt − u‖2
2 − ‖Λt − u‖2

2

− 2τtZt · (Λt − u) − ‖τtZt‖2
2(6.39)

≥2τtℓt − 2τtℓ
∗
t − τ2

t ‖Zt‖2
2(6.40)

≥2τtℓt − 2τtℓ
∗
t − τ2

t ‖Zt‖2
2 − (ψτt − ℓ∗t /ψ)2(6.41)

=2τtℓt − τ2
t (‖Zt‖2

2 + ψ2) − (ℓ∗t )
2/ψ2.(6.42)

We get Eq 6.41 because(ψτt − ℓ∗t /ψ)2 ≥ 0. Plugging
the definition ofτt and consideringℓt ≥ 1, we get

δt ≥
ℓ2t − α2

‖Zt‖2
2 + 1+α

2C

− 2C

1 + α
(ℓ∗t )

2(6.43)

≥ 1 − α2

R2 + 1+α
2C

− 2C

1 + α
(ℓ∗t )

2.(6.44)

For ǫt, we have

ǫt =(1 − 1

(1 + α)2
) ‖Λ′

t‖
2
2 − 2(1 − 1

1 + α
)Λ′

t · u.(6.45)

Using the fact that‖u − v‖2
2 ≥ 0 which equals to

‖u‖2
2 − 2u · v ≥ −‖v‖2

2, we get

(1 − 1

(1 + α)2
) ‖Λ′

t‖
2
2 − 2(1 − 1

1 + α
)Λ′

t · u(6.46)

≥−
1 − 1

1+α

1 + 1
1+α

‖u‖2
2 = − α

2 + α
‖u‖2

2 .(6.47)

Using Eq 6.44 and 6.47, we get

T
∑

t=0

∆t =
∑

t∈IT

∆t

(6.48)

≥
∑

t∈IT

(

(
1 − α2

R2 + 1+α
2C

− 2C

1 + α
(ℓ∗t )

2) − α

2 + α
‖u‖2

2

)

(6.49)

= m(
1 − α2

R2 + 1+α
2C

− α

2 + α
‖u‖2

2) −
∑

t∈It

2C

1 + α
(ℓ∗t )

2

(6.50)

≥ m(
1 − α2

R2 + 1+α
2C

− α

2 + α
‖u‖2

2) −
2C

1 + α

T
∑

t=0

(ℓ∗t )
2.

(6.51)

Since
∑

t ∆t ≤ ‖u‖2
2, we have



m(
1 − α2

R2 + 1+α
2C

− α

2 + α
‖u‖2

2) −
2C

1 + α

T
∑

t=0

(ℓ∗t )
2 ≤ ‖u‖2

2 .

(6.52)

Sinceh = 1−α2

R2+ 1+α

2C

− α
2+α

‖u‖2
2 > 0, we get the result

in the theorem.
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Figure 1: Cumulative error rate of different online methodsas a function of the number of instances.
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Figure 4: The learned models. The lighter color indicates larger absolute value of the weights.


