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In many applications, an anomaly detection system presents the most anomalous data instance to a human

analyst, who then must determine whether the instance is truly of interest (e.g. a threat in a security set-

ting). Unfortunately, most anomaly detectors provide no explanation about why an instance was considered

anomalous, leaving the analyst with no guidance about where to begin the investigation. To address this

issue, we study the problems of computing and evaluating sequential feature explanations (SFEs) for anomaly

detectors. An SFE of an anomaly is a sequence of features, which are presented to the analyst one at a time

(in order) until the information contained in the highlighted features is enough for the analyst to make a

confident judgement about the anomaly. Since analyst effort is related to the amount of information that

they consider in an investigation, an explanation’s quality is related to the number of features that must be

revealed to attain confidence. In this paper, we first formulate the problem of optimizing SFEs for a particular

density-based anomaly detector. We then present both greedy algorithms and an optimal algorithm, based on

branch-and-bound search, for optimizing SFEs. Finally, we provide a large scale quantitative evaluation of

these algorithms using a novel framework for evaluating explanations. The results show that our algorithms

are quite effective and that our best greedy algorithm is competitive with optimal solutions.
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1 INTRODUCTION
Anomaly detection is the problem of identifying anomalies in a data set, where anomalies are those

points that are generated by a process that is distinct from the process generating “normal" points.

Statistical anomaly detectors address this problem by seeking statistical outliers in the data. In most

application, however, statistical outliers will not always correspond to the semantically-meaningful

anomalies. For example, in a computer security application, a user may be considered statistically

anomalous due to an unusually high amount of copying and printing activity, which may have a

benign explanation and hence is not a true anomaly interest. Because of this gap between statistics
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Fig. 1. The anomaly detection pipeline addressed by this paper (from left to right). The original data points
contain both normal points and anomalies. Here we consider anomalies in the semantic sense and the goal is
to detect the anomalies. First an anomaly detector is applied to identify a set of statistical outliers, which are
further analyzed by a human analyst in order to identify the true semantic anomalies. The false negatives
(missed true anomalies) of the overall system are composed of two types of true anomalies: 1) anomalies that
are considered to be statistically normal and are never presented to the human analyst, and 2) anomalies that
are statistical outliers, but misidentified by the human analyst as normal. The first type of false negatives can
only be avoided by changing the anomaly detector and are not the focus of this paper. The second type of
false negatives can be avoided by making it easier for analysts to detect true anomalies when presented with
them. The focus of this paper is to compute explanations of statistical outliers that reduce the effort required
to detect such true anomalies.

and semantics, an analyst typically investigates the statistical outliers in order to decide which

ones are likely to be true anomalies and deserve further action.

Given an outlier point, an analyst faces the problem of analyzing the data associated with that

point in order to make a judgement about whether it is an anomaly or not. Even when points are

described by just tens of features, this can be challenging, especially, when feature interactions are

critical to the judgement. In practice, the situation is often much worse with points being described

by thousands of features. In these cases, there is a significant risk that even when the anomaly

detector passes a true anomaly to the analyst, the analyst will not recognize the key properties

that make the point anomalous due to information overload. This means that, in effect, the missed

anomaly rate of the overall system is a combination of the miss rates of both the anomaly detector

and the analyst. Thus, one avenue for improving detection rates is to reduce the effort required by

an analyst to correctly identify anomalies, with the intended side-effect of reducing the analyst

miss rate. This anomaly detection pipeline is depicted in Figure 1.

In this paper, we consider reducing the analyst’s detection effort by providing them with explana-

tions about why points were judged to be anomalous by the detector. Given such an explanation, the

analyst can minimize effort by focusing the investigation on information related to the explanation.

Our first contribution is to introduce an intuitive and simple form of explanation, which we refer

to as sequential feature explanations (SFEs). Given a point judged to be an outlier by a detector, an

SFE for that point is an ordered sequence of features, where the order indicates the importance

with respect to causing a high outlier score. An SFE is presented to the analyst by incrementally

revealing the features one at a time, in order, until the analyst has acquired enough information to

make a decision about whether the point is an anomaly or not (e.g. in a security domain, threat or

non-threat). The investigative work of the analyst is roughly related to the number of features that

must be revealed. Hence, the goal for computing SFEs is to minimize the number of features that

must be revealed in order for the analyst to confidently identify true anomalies.
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Our second contribution is to formalize the problem of optimizing SFEs and to develop algorithms

for that problem. We develop both greedy algorithms and an optimal algorithm, based on branch-

and-bound search. These algorithms can be applied to any density-based anomaly detector given

that it is possible to (approximately) compute joint marginals of a detector’s density function, which

is an operation that is supported by most commonly-used densities.

Our third contribution is to formulate a quantitative evaluation methodology for evaluating

SFEs, allowing for the comparison of different SFE algorithms. The key idea of the approach is to

construct a simulated analyst for each anomaly detection benchmark using supervised learning

and ground truth about which points are anomalies. The simulated analyst can then be used to

evaluate the quality of SFEs with respect to the number of features that must be revealed to reach

a specified confidence level. While in concept a human analyst could be used in the evaluation

process, it is impractical to conduct a large number of such human-analyst experiments over a large

number of benchmarks. Hence, in this paper we focused on how to conduct large scale quantitative

evaluations—necessarily using simplified analyst models. To the best of our knowledge this is the

first methodology for quantitatively evaluating any type of anomaly explanation method.

Finally, our fourth contribution is to provide an empirical investigation of several methods for

computing SFEs. Our primary evaluations use a recently constructed set of anomaly detection

benchmarks derived from real-world supervised learning data. In addition we provide an evaluation

on the standard KDD-Cup benchmark. The investigation leads to a recommended method and

additional insights into the methods.

The remainder of the paper is organized as follows. Section 2 reviews relatedwork on explanations

for both supervised learning and anomaly detection. Next, Section 3 presents the anomaly-detection

framework used in this paper. Section 4 thenmore formally presents the concept of SFEs and possible

quality metrics. Section 5 formulates an optimal SFE computation method and then describes two

greedy SFE methods for computing SFEs. Section 7.2 shows a comparison between the optimal and

greedy methods in achieving the optimal objective value. Section 6 then introduces our quantitative

evaluation framework for SFEs and finally Section 7 presents experiments evaluating the introduced

methods within the framework.

2 RELATEDWORK
The problem of computing explanations for both supervised learning and unsupervised settings,

such as anomaly detection, has received relatively little attention. Related work in the area of

supervised classification aims to provide explanations about why a classifier predicted a particular

label for a particular instance. For example, a number of methods have been proposed to produce

explanations in the form of relevance scores for each feature, which indicate the relative importance

of a feature to the classification decision. Such scores have been computed by comparing the

difference between a classifier’s prediction score and the score when a feature is assumed to be

unobserved [12], or by considering the local gradient of the classifier’s prediction score with respect

to the features for a particular instance [1].

Other work has considered how to score features in a way that takes into account the joint

influence of feature subsets on the classification score, which usually requires approximations due

to the exponential number of such subsets [13, 14]. Since these methods are typically based on

the availability of a class-conditional probability function, they are not directly generalizable to

computing explanations for anomaly detectors. Our experiments, however, do evaluate a method,

called Dropout, which is inspired by the approach of [12].

The form of such feature-relevance explanations is similar in nature to our SFEs in that they

provide an ordering on features. However, prior work has not explicitly considered the concept of
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sequentially revealing features to an analyst, which is a key part of the SFE proposal for reducing

analyst effort.

Prior work on feature-based explanations for anomaly detection has focused primarily on

computing explanations in the form of feature subsets. Such explanations are intended to specify

the subset of features that are jointly responsible for an object receiving a high anomaly score.

For example, Micenkova, et al. [11] computed a subset of features such that the projection of the

anomalous object onto the features shows the greatest deviation from normal instances. Some

authors have referred this explanation task as “outlying aspects mining" [6, 15]. For example, Duan

et al. developed a method called OAMiner [6], which finds the most outlying subspace where the

object of interest is ranked highest in terms of probability density measure. Vinh et al. proposed a

method called OARank [15], which gives a feature ranking based on their potentials contributing

toward outlyingness of a query point. One issue with these approaches is that the computation of

an explanation is independent of the anomaly detector being employed i.e. they donâĂŹt consider

the very anomaly detector that judged the instances as anomalous. Rather they generate pseudo-

training data and train a completely different model that has no information at all about the original

anomaly detector. This is contrary to the goal of trying to explain why a particular anomaly detector

judged a particular object to be anomalous. In contrast, the explanation approaches we consider in

this paper are sensitive to the particular anomaly detector.

Other work on computing feature-subset explanations [4] developed an anomaly detection system

called LODIwhich includes a specialized explanationmechanism for the particular anomaly detector.

A similar approach is considered by Dang, et al. [3], where the anomaly detection mechanism

directly searches for discriminative subspaces that can be used for the purpose of explanation. In

contrast, the explanation approaches we consider in this work can be instantiated for any anomaly

detection scheme based on density estimation, which includes a large fraction of existing detectors.

Existing approaches for evaluating explanation methods in both supervised and unsupervised

settings are typically quite limited in their scope. Often evaluations are limited to visualizations

or illustrations of several example explanations [1, 3] or to test whether a computed explanation

collectively conforms to some known concept in the data set [1], often for synthetically generated

data. Prior work has not yet proposed a larger scale quantitative evaluation methodology for

explanations, which is one of the main contributions of our work.

3 ANOMALY DETECTION FORMULATION
We consider anomaly detection problems defined over a set of N data points {x1, . . . ,xN }, where
each point xi is an n dimensional real-valued vector. The set contains a mixture of normal points
and anomaly points, where generally the normal points account for an overwhelming fraction of

the data. In most applications of anomaly detection, the anomaly points are generated by a distinct

process from that of the normal points, in particular, a process that is important to detect for the

particular application. For example, the data points may describe the usage behavior of all users of

a corporate computer network and the anomalies may correspond to insider threats.

Since N is typically large, manual search for anomalies through all points is generally not

practical. Statistical anomaly detectors address this issue by seeking to identify anomalies by

finding statistical outliers. The problem, however, is that not all outliers correspond to anomalies,

and in practice an analyst must examine the outliers to decide which ones are likely to be anomalies.

We say that an analyst detects an anomaly when he or she is presented with a potential anomaly

and is able to determine that there is enough evidence that the point is indeed an anomaly. The

success of this approach depends on the anomaly detector’s precision of identifying anomalies as

outliers, and also on the analysts’ ability to correctly detect anomalies. Without further assistance,

an analyst may need to consider information related to all n features of an anomaly point during
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analysis. In many cases, considering this information thoroughly will be impossible, increasing the

chance of not detecting anomalies, which can be costly in many domains.

4 SEQUENTIAL FEATURE EXPLANATIONS
In order to reduce the analyst’s effort toward detecting anomalies, we propose to provide the

analyst with sequential feature explanations (SFEs) that attempt to efficiently explain why a point

was considered to be an outlier. A length k SFE for a point is an ordered list of feature indices

E = (e1, . . . , ek ), where ei ∈ {1, . . . ,n}. The intention is that features that appear earlier in the

order are considered to be more important to the high outlier score of a point (e.g. xe1 is the most

important). We will use the notation Ei to denote the set of the first i feature indices of E. Also,
for any set of feature indices S and a data point x , we let xS denote the projection of x onto the

subspace specified by S .
Given an SFE E for a point x , the point is incrementally presented to the analyst by first presenting

only feature xE1 . If the analyst is able to make a judgement based on only that information then we

are finished with the point. Otherwise, the next feature is added to the information given to the

analyst, that is, the analyst now sees xE2 . The process of incrementally adding features to the set of

presented information continues until the analyst is able to make a decision. The process may also

terminate early because of time constraints; however, we don’t study that case in this paper.

For normal points, the incremental presentation of SFEs may not help the analyst more efficiently

exonerate the points. In contrast, for anomalies, it is reasonable to expect that an analyst would be

able to detect the anomalies by considering a much smaller amount of information than without

the SFE, which should reduce the chance of missed detections. To clarify further, we assume the

analyst has expertise to decide certainly whether an instance is anomaly from the entire set of

features if given enough time. However, the effort required to determine the anomaly may be large

if all the information is shown at the start. It is further assumed that if the minimal set of features

responsible for the anomaly are shown the effort may be reduced (they see the minimal feature

interactions). Hence, we assume that the amount of analyst effort is a monotonically increasing

function of the number of features considered. This motivates measuring the quality of a SFE for a

target by the number of features that must be revealed to an analyst for correct detection. More

formally, given an anomaly point x , an analyst a, and an SFE E for x , the minimum feature prefix,
denoted MFP(x ,a,E), is the minimum number of features that must be revealed to a, in the order

specified by E, for a to detect x as an anomaly. The analyst may very well consult other information

during an investigation. The hope is that the simple and good explanations will allow the analyst

to efficiently direct their attention to the key external information.

While MFP provides a quantitative measure of SFE quality, its definition requires access to an

analyst. This complicates the comparison of SFE computation methods in terms of MFP. Section 6

addresses this issue and describes an approach for conducting wide evaluations in terms of MFP.

5 EXPLANATION METHODS
We now consider methods for computing SFEs for anomaly detectors. Prior work on computing

explanations for anomaly detectors has either computed explanations that do not depend on the

particular anomaly detector used (e.g. [11]) or used methods that were specific to a particular

anomaly detector (e.g. [4]). We wish to avoid the former approach, since intuitively an explanation

should attempt to indicate why the particular detector being employed found a point to be an outlier.

Considering the latter approach, we seek more general methods that can be applied more widely
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across different detectors. Thus, here we consider explanation methods for the widely-studied class

of density-based detectors.1

Density-based detectors operate by estimating a probability density function f (x) (e.g. a Gaussian
mixture) over the entire set of N points and treating f as the density over normal points. This is

reasonable under the usual assumption that anomalies are very rare compared to normals. Points

are then ranked according to ascending values of f (x) so that the least normal objects according

to f are highest in the order. Our methods do not assume knowledge of the form of f , but do
require an interface to f that allows for joint marginal values to be computed. That is, for any

subset of feature indices S and point x , we require that we can compute f (xS ). For many choices of

f , such as mixtures of Gaussians, these joint marginals have simple closed forms. If no closed form

is available, then exact or approximate inference techniques (e.g., MCMC) may be employed.

It is worth noting that by considering SFE methods that depend on the anomaly detector being

used, the performance in terms of MFP will depend on the quality of the anomaly detector as well as

the SFE method. For example, consider a situation where the anomaly detector judges an anomaly

point x to be an outlier for reasons that are not semantically relevant to why x is an anomaly. The

SFE for x is not likely to help the analyst to more efficiently determine that x is an anomaly, since

the semantically critical features may appear late in the ordering. While this is a possibility, it is

out of the control of the SFE method. Thus, when designing SFE methods we will assume that

outlier judgements made on f are semantically meaningful with respect to the application. This

is a reasonable assumption since the SFE methods aim to explain the “reasoning” of the anomaly

detector, regardless of whether or not the anomaly detector is bad (e.g. a mismatch with what a

human judges as important). Note that, the SFE methods has no information to judge whether the

anomaly detector is bad or not, so making the above assumption is the only reasonable assumption

to make without further information. Addressing the mismatch between an anomaly detector and

the semantically interesting anomalies is a fundamental problem on its own (presumably requiring

some form of feedback from the analyst)

We now present the formulation of the SFE objective function and an exact method based on

branch-and-bound search along with our two main classes of greedy SFE methods which we refer

to as marginal methods and dropout methods.

5.1 SFE Objective Function
We model the SFE objective function from the perspective of an analyst. In particular, we view

the analyst as a Bayesian classifier that assumes normal points are generated according to f and

that anomalies have a uniform distribution u over the support of the feature space, which is a

reasonable assumption in the absence of prior knowledge about the anomaly distribution. Given a

point x , an SFE E, and a number of revealed features i , such an analyst would make the decision of

whether x is an anomaly or not by comparing the likelihood ratio

f (xEi )
u(xEi )

to some threshold. Since u

is assumed to be uniform, this is equivalent to comparing the joint marginal f (xEi ) to a threshold.

Intuitively this means that if our goal is to cause the analyst to quickly decide that x is an anomaly,

then we should choose an E that yields small values of f (xEi ), particularly for small i .
In order to formalize the above intuition into an objective function, we first need to more precisely

specify the thresholds used in the above analyst model. It is important to note that any choice of

threshold on f (xEi ) should depend on i , since larger values of i tend to lead to smaller density

values. For this purpose, we introduce the threshold function τi (E,α), where E is an SFE, i is an SFE

1
Our methods can actually be employed on the more general class of “score-based detectors" provided that scores can be

computed given any subset of features. For simplicity, we focus on density-based detectors in this paper, where the density

function is used to compute scores.
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index, and 0 < α < 1 is a percentile parameter. In particular, τi (E,α) is the α-percentile density
value in the set { f (xEi ) : x ∈ D}, where D is the set of all data instances. That is, a fraction α of

the data points will have marginal density f (xEi ) less than τi (E,α). If α is equal to the expected

rate of anomalies, then this is a natural way to model the analyst detection threshold. In practice,

we do not know the value of α and thus our approach below will assume a prior p(α), which in

turn implies a prior over thresholds given by τi (E,α). In our implementation, we use a discrete

distribution over α that assigns non-zero probability to reasonably small values.

Given the above threshold function, we can now formulate our SFE objective function. For this

purpose, given an instance x , SFE E, and percentile α , we define the Smallest Prefix (SP) of E as the

smallest number i of top features in E that would cause the analyst to detect x using threshold

τi (E,α), i.e.

SP(x ,E,α) =min{i : f (xEi ) < τi (E,α)} (1)

Note that if no value of i satisfies the inequality, then we define SP(x ,E,α) = n. Intuitively,
SP(x ,E,α) is the amount of the modeled analyst’s effort (i.e. the number of features) required to

detect x as an outlier when using SFE E and assuming threshold corresponding to α . Since we do
not know the true value of α , our final objective is the expected value of SP, denoted by ESP, with

respect to p(α), that is,

ESP(x ,E) =
∑
α

SP(x ,E,α)p(α) (2)

recalling that we are assuming p(α) is a discrete distribution. Given this objective function, we can

now specify the SFE optimization problem for a given instance x , which is to compute the SFE with

minimal ESP:

argmin

E
ESP(x ,E) (3)

To understand the computational complexity of this problem, consider the associated decision

problem SFE-Decide.

SFE-Decide: Does there exist an SFE E that satisfies
∑
α
SP(x ,E,α)p(α) ≤ t

This problem turns out to be computationally hard.

Theorem 5.1. SFE-Decide is NP-hard.

The proof is in Appendix A. This hardness result motivates us to consider two optimization

approaches described below. First, we consider greedy algorithms that are guaranteed to be efficient,

but without any guarantees with respect to optimality. Second, we design an anytime branch and

bound search, which is guaranteed to find optimal solutions if run long enough and also provides

bounds on the sub-optimality of the solution returned at any time. Our experiments will compare

both types of approaches.

5.2 Greedy Algorithms
5.2.1 Marginal Methods. A natural greedy approach to optimizing the above objective is to

greedily construct an E that attempts to minimize f (xEi ) as a function of i as quickly as possible.

This leads to our first SFE method, called sequential marginal (SeqMarg). The SeqMarg method

adds one feature to the k-length SFE E = (e1, . . . , ek ) at a time, at each step adding the feature that

minimizes the joint marginal density with the previously-selected features. This gives a nice way

to stop if the analyst can decide whether x is anomaly just from the first k features, otherwise we
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need to keep adding a feature at each iteration. More formally, SeqMarg computes the following

explanation:

SeqMarg: ei = arg min

j ∈Ei−1
f (xEi−1 ,x j )

where S is the complement of set S . SeqMarg requires O(kn) joint marginal computations in order

to compute an explanation of length k . Note that due to the inherent greediness of SeqMarg, xEi
may not necessarily be the optimal set of i features for minimizing f . Rather, if the goal were to
optimize for a particular value of i , we would need to consider all O(ni ) feature subsets of size i .
However, our problem formulation does not provide us with a target value of i , and thus SeqMarg

offers a more tractable approach that focuses on minimizing f as quickly as possible in a greedy

manner.

It is worth noting that if our objective function were submodular, then SeqMarg would provide an

approximation guarantee [10]. However, our objective function f (xE ) is not a submodular function

of the set E. Intuitively, a submodular function is one that exhibits diminishing returns, meaning

that if E ′ ⊆ E then adding an item to E ′
will improve the objective at least as much as adding the

item to E. Unless we place strict restrictions on f this is not the case in general, due to interactions

between features. For example, consider a density f for which the feature values of xi and x j are
very rare when considered together, but common individually. If we let E ′ = {k} and E = {k, i},
then it is easy to design f so that adding j to E results in a larger drop in the marginal f value than

adding j to E ′
. Because, adding j to E would cause more rarity than adding j to E ′

even though

E ′
is a subset of E. Indeed using this type of construction it is easy to construct examples where

SeqMarg can be arbitrarily far from optimal. However, in practice we find that it tends to work

very well across a wide range of problems.

In addition to SeqMarg we also consider a computationally cheaper alternative, called independent
marginal (IndMarg), which only requires the computation of individual marginals f (xi ). This
approach simply selects an explanation E for x by sorting the features in increasing order of

f (xi ). This only requires O(n) marginal computations for computing an explanation of any length.

IndMarg offers a computationally cheaper alternative to SeqMarg, but fails to capture joint feature

interactions. For example, SeqMarg will select ei in a way that optimizes the joint value when

combined with previous features Ei−1. Instead, IndMarg ignores interactions with previously-

selected features. Thus, IndMarg serves as a baseline for understanding the importance of accounting

for joint feature interactions when computing explanations.

5.2.2 Dropout Methods. The next two methods are inspired by the work of Robnik-Sikonja and

Kononenko [12] on computing feature-relevance explanations for supervised classifiers. In their

work, the relevance score for a feature is the difference between the classification score when the

feature is provided to the classifier and the classification when the feature is omitted (“dropped

out”). The analogous approach for anomaly detection is to score features according to the change in

the density value when the feature is included and when the feature is not included, or marginalized

out. This yields the first dropout method, referred to as independent dropout (IndDO): given a point

x , each feature is assigned a score of f (x − xi ) − f (x), where we abuse notation and denote the

removal of xi from x by x − xi . Intuitively, features with larger scores are ones that make the point

appear most normal when removed. The SFE E is then obtained by sorting features in decreasing

order of score.

We can also define a sequential version of dropout, by following the same recipe we considered

for IndMarg versus SeqMarg. Let the sequential dropout (SeqDO) be defined as follows:

SeqDO: ei = arg max

j ∈E1:i−1

f (xEi − x j )
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This approach requires the same number of marginal computations as SeqMarg. This algorithm can

be viewed as a dual of SeqMarg in that it measures the contribution of feature sets according to how

much more normal a point looks after their removal, whereas SeqMarg measures how abnormal a

point looks with only those features included.

ALGORITHM 1: Branch and Bound Search

Input: x ∈ Rd : input instance, d : dimension, MAX: maximum number of nodes to explore

Output: SFE for x
root := CreateEmptyNode(x) // Creates node with empty feature list.

Q .Insert(root)
BestNode := root
NodesExplored := 0

while Q .NotEmpty() AND NodesExplored < MAX do
NodesExplored := NodesExplored + 1
node := Q .GetSmallestUpperBoundNode() // Expand node with best upper bound.

if node .LB < bestNode .UB then
for f ∈ (1 : d) AND f < node .RankedFeatureList do

child := copy(node)
child .AppendFeature(f )
child .UpdateBounds()
if BestNode .UB > child .UB then

BestNode := child
end
Q .Insert(child)

end
end

end
return BestNode .RankedFeatureList

5.3 Branch and Bound Search
We now develop an optimal algorithm for optimizing ESP based on branch and bound search. This

algorithm will search through the exponentially large space of SFEs, while attempting to soundly

prune as much of the space from consideration as possible. Ideally, the pruning will result in finding

the optimal SFE very quickly, though in the worst case the procedure may need to enumerate an

exponentially large set of SFEs. This worst case behavior is unavoidable under standard complexity

assumptions due to the NP-Hardness of the optimization problem. Importantly, our branch and

bound procedure can be run in an “anytime" mode, where it can be terminated at any point to

return the best solution found so far.

The branch and bound search operates over a rooted tree, where a node at depth i is labeled
by a length i feature sequence Ei , which represents a partial SFE. Since there will be a one-to-one

correspondence between tree nodes and feature subsequences, we will abuse notation and refer to

nodes by the corresponding sequences. The root of the tree is the null sequence E0 and the leaves

of the tree are complete SFEs (length n sequences). The children of a node Ei at depth i are all of
the length i + 1 subsequences that extend Ei by one feature that is not already in Ei . Based on this

search space definition, the descendant leaves of a node Ei , denoted by l(Ei ), are all SFEs that have
Ei as a prefix.
The key idea of branch and bound search is to view each node Ei as representing the set of

possible solutions l(Ei ) and to compute upper and lower bounds on the objective value for those
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possible solutions. In particular, the upper (lower) bound computed for a node Ei , denoted byU (Ei )
(L(Ei )), are values that bound the ESP of any SFE in l(Ei ) from above (below). Given these bounds,

we can prune away a node Ei and all of its descendants if its lower bound L(Ei ) is greater than the

upper boundU (E ′) of some other node E ′
already considered during the search. This is a sound

pruning strategy since it must be the case that l(E ′) contains an SFE whose ESP is at least as good

as the best SFE in l(Ei ) (recall that smaller ESP is better). Below we specify the search strategy for

expanding nodes, followed by a description of the lower and upper bound computations. Pseudo

code for the overall search is given in Algorithm 1.

Search Strategy. The search iteratively expands a set of fringe nodes, which is initialized to the

single root node E0 (null sequence). This set of nodes is maintained in a priority queue in Algorithm

1. At any point in the search, we maintain the upper bound for each fringe node as well as the best

(smallest) upper boundU ∗
discovered so far during the search. Each iteration begins by selecting

the fringe node E with the smallest upper bound and then computing the corresponding lower

bound L(E). If L(E) ≥ U ∗
then we remove/prune E from the set of fringe nodes, which effectively

prunes all SFEs in l(E) from consideration. If L(E) < U ∗
then it is possible that an SFE in l(E) is

optimal and we expand E by adding all of its children to the set of fringe nodes and removing E.
The upper bound for each newly added child is computed and the iteration proceeds. Importantly,

as described below, our upper bound computation produces an SFE that achieves the upper bound

value. Thus, at any point our search also keeps track of the best such SFE discovered so far.

The algorithm terminates and returns the best SFE found so far when a specified limit on the

number of expanded nodes is reached. The algorithm will also terminate if it finds an SFE S whose

ESP value is at least as good as the lower bound of any fringe node. In that case, S is guaranteed

to be an optimal SFE. The algorithm will always terminate in finite time since there are a finite

number of SFEs and each iteration expands a new node of the search tree.

Upper Bound Computation.We compute the upper bound for a node Ei by running the greedy
sequential marginal algorithm (Section 5.2) starting with Ei in order to select the remaining features

of a complete SFE. The ESP (Equation 2) computed for the resulting SFE is taken to be the upper

bound since the optimal SFE under Ei will be no worse (smaller ESPs are better).

Lower Bound Computation. The lower bound for node Ei must bound the ESP of any SFE in

the set l(Ei ). Our first step to such a bound is based on expanding the definition of ESP according

to (2) and interchanging the order of minimization over SFEs and summation/expectation over α
values.

min

E∈l (Ei )
ESP(x ,E) = min

E∈l (Ei )

∑
α

SP(x ,E,α)p(α) ≥
∑
α

min

Eα ∈l (Ei )
SP(x ,Eα ,α)p(α) (4)

The inequality follows due to the fact that the right-hand-side of the inequality minimizes the

SP for each value of α , rather than constraining the SFE to be the same for each value of α as

in the original optimization problem. Unfortunately, finding the optimal Eα for each term of the

right-hand-side is still computationally intractable due to the need to enumerate over SFEs in l(Ei ).
Thus, we instead compute an efficiently computable lower bound for each such term by restricting

our attention to only the feature sequences in Ei . In particular, consider a single term

tα = min

Eα ∈l (Ei )
SP(x ,Eα ,α) (5)

noting that Ei is a prefix of all SFEs under consideration. If tα = j ≤ i then there is a j ≤ i such that

f (xEj ) < τj (Ei ,α) and we can easily compute this value by considering each j ≤ i . If, on the other

hand, tα > i then there will not be any j ≤ i such that f (xEj ) < τj (E,α), which we can easily test.

In this case, we can lower bound the value of tα by i. Putting this all together, we use the following
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lower bound on each term:

tα ≥ t̂α = min({j : j ≤ i, f (xEj ) < τj (E,α)} ∪ {i}) (6)

and we compute the overall lower bound as

∑
α t̂αp(α).

It is important to note that our overall search procedure is guaranteed to do no worse than

SeqMarg. This is because, the upper bound computation for the root node exactly corresponds to

running SeqMarg starting from the empty sequence. Thus, the best SFE maintained by the search

will always be at least as good as that produced by SeqMarg.

6 FRAMEWORK FOR EVALUATING EXPLANATIONS
There are at least two challenges involved in evaluating anomaly-explanation methods. First, com-

pared to supervised learning, the area of anomaly detection has many fewer established benchmark

data sets, particularly benchmarks based on real-world data. Second, given a benchmark data set, it

is not immediately clear how to quantitatively evaluate explanations, since the benchmarks do not

come with either ground truth explanations or analysts.

Here we describe an evaluation framework that addresses both issues. We address the first issue

by drawing on recent work on constructing large numbers of anomaly detection benchmarks

based on real-world data. We address the second issue by using supervised learning to construct a

simulated analyst that can be applied to quantitatively evaluate our explanations in terms of MFP.

Below we expand on both of these points.

6.1 Anomaly Detection Benchmarks
Recent work [7] described amethodology for systematically creating anomaly detection benchmarks

from supervised learning benchmarks (either classification or regression). Given the huge number

of real-world supervised learning benchmarks, this allows for a corresponding huge number and

diverse set of anomaly detection benchmarks. Further, these benchmarks can be created to have

controllable and measurable properties, such as anomaly frequency and “clusteredness" of the

normal and anomalous points. We briefly sketch the main idea. Given a supervised classification

data set, called the mother set, the approach selects one or more of the classes to represent the

anomaly class, with different choices giving rise to different properties of the anomaly class. The

union of the other classes represents the normal class. Individual anomaly detection benchmarks

are then created by sampling the normal and anomaly points at specified proportions.

Table 1 gives a summary of the benchmarks from Emmott et al. [7] used in our experiments.

For example, the UCI data set shuttle was used as a mother set to create 1600 distinct anomaly

detection benchmarks. The number of points in the shuttle benchmarks range from 3570 to 9847.

The number of anomalies ranges from 8 to 984.

6.2 Simulated Analyst
We consider modeling an analyst as a conditional distribution of the normal class given a sub-

set of features from a data point. More formally we model the analyst as a function A(x , S) =
P(normal | xS ), which returns the probability that point x is normal considering only the features

specified by the set S . We describe how we obtain this function in our experiments below. Given

this function, a point x , and an SFE E for x , we can generate an analyst certainty curve that plots the
analyst’s certainty after revealing i features, that is, A(x ,Ei ) versus i . Figure 2 shows an example of

three analyst curves from our experiments using our simulated analysts on a benchmark computed

from the UCI Abalone dataset. Each curve corresponds to a different anomaly in the data set using

explanations computed by SeqMarg. We see that the different anomalies lead to different rates at

which the analyst becomes certain of the anomaly, that is, certain that the point is not normal.

ACM Trans. Knowl. Discov. Data., Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:12 Siddiqui et al.

●

●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

b(
y 

=
 N

or
m

al
 | 

X
E

1.
..X

E
k)

3 1 5 2 6 7 4
Feature Ordering for X

●

●
● ●

● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

b(
y 

=
 N

or
m

al
 | 

X
E

1.
..X

E
k)

6 1 3 7 5 2 4
Feature Ordering for X

● ●
● ●

● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

b(
y 

=
 N

or
m

al
 | 

X
E

1.
..X

E
k)

7 6 5 3 4 1 2
Feature Ordering for X

Fig. 2. Analyst Certainty Curves. These are example curves generated using our simulated analyst on
anomalies from the Abalone benchmark using SFEs produced by SeqMarg. The x-axis shows the index of
the feature revealed at each step and the y-axis shows the analyst certainty about the anomalies being
normal. The leftmost curve shows an example of where the analyst gradually becomes certain that the point is
anomalous, while the middle curve shows more rapidly growing certainty. The rightmost curve is an example
of where the analyst is certain of the anomaly after the first feature is revealed and remains certain.

Recall that our proposed quality metric MFP(x ,a,E) measures the number of features that must

be revealed to analyst a according to SFE E in order for a to detect an anomaly x . Evaluating this
metric requires that we define the conditions under which the analyst detects x . We model this by

associating an analyst with a detection threshold τ ∈ [0, 0.5] and saying that a detection occurs

if A(x ,Ei ) ≤ τ , that is, the probability of normality becomes small enough. We will denote this

analyst by a(τ ). Given an a(τ ) we can then compute the MFP for any anomaly point by recording

the number of features required for the analyst certainty curve to first drop below τ .
Of course, there is no a priori basis for selecting a value of τ . Thus, in our experiments, we consider

a discrete distribution over values for τ , P(τ ), which models a range of reasonable thresholds.

Given this distribution, we report the expected MFP—the expected value of MFP(x ,a(τ ),E)—as the
quantitative measure of SFE E for anomaly x . In our experiments we define P(τ ) to be uniform

over the values 0.1, 0.2, and 0.3, noting that our results are consistent across a variety of reasonable

choices for this distribution.

It remains to specify how we obtain the analyst function A(x , S). Since our anomaly detection

benchmarks are each derived from amother classification data set [7], we can construct a training set

over those points for the anomaly and normal classes. Basically, a mother training set is a conversion

from some well known classification and regression datasets by following some reasonable criteria

described in [7]. An anomaly detection benchmark is then created by sub sampling instances

that satisfy some criteria such as difficulty level, anomaly rate etc. Hence, the mother training

set actually contains all the information for that particular dataset. Given this training set, one

approach to obtaining the analyst would be to learn a generative model, or joint distribution

P(normal,x), which could be used to compute A(x , S) by marginalizing out features not included

in s . However, such generative models tend to be much less accurate in practice compared to

discriminative models. On the other hand, learning a discriminative model P(normal | x) does not
directly support computing the probability for arbitrary subsets of x as we require. While heuristics

have been proposed for this purpose (e.g. Robnik-Sikonja and Kononenko [12]) we have found

them to be unreliable when applied widely. Thus, in this work we follow a brute-force approach.

We simply pre-learn an individual discriminative model for each possible subset of features up to a

maximum size k . Evaluating A(x , S) then simply requires evaluating the model associated with the

subset S .
When the number of features or number of data points is very large, it may not be possible to

pre-learn all possible subsets. In such cases, one option is to learn and cache models on the fly as
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Table 1. Summary of the benchmark datasets

Mother Set

Original

Problem

Type

# of

Features

# of

Benchmarks

# of Points per

Benchmark

(range)

# of Anomaly

per Benchmark

(range)

magic.gamma Binary 10 1600 600 - 6180 5 - 618

skin Binary 3 1200 10 - 9323 1 - 932

shuttle Multiclass 9 1600 3570 - 9847 8 - 984

yeast Multiclass 8 1600 70 - 1000 1 - 97

abalone Regression 7 1600 580 - 2095 1 - 209

concrete Regression 8 1200 190 - 1000 1 - 51

landsat Multiclass 36 1600 561 - 5102 4 - 510

particle Binary 50 400 371 - 8563 7 - 857

they are needed during evaluation (each model would be learned only once). We used this approach

for the KDD-Cup results reported in our experiments.

In all of our experiments, we use the Regularized Random Forests (RRFs) [5] as the classifier for

the analyst model. The RRF model was selected for two primary reasons. First, RRFs are well-known

to provide high accuracies that are competitive with the state-of-the-art across a wide range of

classification problems [8]. Second, RRFs are relatively efficient to train, which is important to our

study, since we must train one RRF for each possible subset of features (up to some maximum size).

We trained RRFs composed of 500 trees using 10-fold cross-validation in order to tune the RRF

regularization parameters.

It is worth noting that our evaluation framework is potentially sensitive to the choice of analyst

model, since different models will have different biases. It was beyond the practical scope of this

first study to replicate all experiments using a qualitatively different model.

7 EMPIRICAL EVALUATION
We now present our empirical evaluation on anomaly detection benchmarks from Emmott et al. [7]

and the commonly used KDDCup anomaly detection benchmark.

7.1 Anomaly Detector
For all of our experiments, we have chosen to use the Ensemble Gaussian Mixture Model (EGMM)

as the anomaly detector. This detector was first described in Emmott et al. [7] and was shown

to be a competitive density-based approach across a wide range of benchmarks. EGMM is based

on learning a density function f (x) represented as an ensemble of Gaussian mixture models

(GMMs). The approach independently learns M GMM models by training each one using the

Expectation-Maximization (EM) procedure on bootstrap replicates of the data set. Then it discards

the low-likelihood GMMs (if any) and retains others based on a pre-specified threshold. The number

of components of the GMMs is varied across the ensemble. In our experiments, the ensembles

included 45 GMMs, 15 each using 3, 4, and 5 components. The final EGMM density f (x) is simply a

uniform mixture of the densities of the retained GMMs. The EGMM approach addresses at least

two pitfalls of using single GMM models. First, EM training can sometimes produce poor models

due to bad local optima. Second, it is difficult to select the best number of components to use for a

single model. EGMM gains robustness by performing model averaging over the variations.

One advantage of using the EGMM model is that it is straightforward to derive closed forms

for the marginal density computations required by our explanation methods. In particular, the
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Fig. 3. The bars show the Expected Smallest Prefix (ESP) achieved by different methods averaged across top
10% highly ranked ground truth anomalies in all the benchmarks. 95% confidence intervals are also shown.

overall EGMM density f can be viewed as a single large GMM model containing a mixture of all

components across the ensemble. Since individual Gaussians have simple closed forms for marginal

densities [2], we can easily obtain closed forms for the mixture. It is worth noting that closed

forms can also be derived for EGMM marginals when the data points are transformed by linear

projections to reduce dimensionality (e.g. principle component analysis).

Another point to note that we didn’t consider discrete valued features directly, primarily because

we used anomaly detectors that expected numeric features. However, our approaches are only

dependent on the marginal distributions of the original density f . If f is a joint distribution over

both continuous and discrete variables, and we can get any marginal of f on demand our methods

apply directly without modification.

7.2 Empirical Comparison of Greedy vs. BaB
Before presenting our full evaluation, we first compare the performance of greedy versus BaB

(Branch and Bound from Section 5) with respect to optimizing ESP (Equation 3). For this experiment,

we need to specify two parameters: the number of nodes to expand for BaB and a distribution over

percentile values α (1 to 100) used to define ESP. We assign the number of nodes to expand as

100 (hence calling the method BaB.100), and choose an uniform prior probability over the first 10

values of α and others as 0 i.e. P(α) =

{
1/10 if 1 ≤ α ≤ 10

0 otherwise

. The idea is to put higher emphasis

on the low percentiles values as they should convey more accurate signals than others. Finally, we

compute the best ESP (BaB.100) and the optimal ESP (BaB.complete) for each of the highly ranked

anomaly points and average across the datasets respectively.

Similarly, we compute the ESP of equation 2 using the SFEs obtained from the greedy methods

(SeqMarg, IndMarg SeqDrop and IndDrop) of Section 5.2. The average of these ESPs are then plotted

along with the ESPs of the BaB methods in Figure 3. We first observe that BaB.complete and BaB.100

achieve nearly identical results. This shows that a relatively small amount of search is needed by

our BaB procedure to achieve nearly optimal ESP. Thus in our full evaluation (Section 7.3) we

will focus on the computationally cheaper BaB.100 as the representative BaB method. Second, we

observe that the greedy sequential Marginal (SeqMarg) method achieved very close ESP to the

BaB methods with the exception of the Yeast and Shuttle benchmarks. The other greedy methods

perform significantly worse than the BaB methods more frequently. This shows that SeqMarg could

be expected to be a computationally efficient and effective alternative to BaB for optimizing ESP.
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7.3 Evaluation on Benchmark Data Sets
We run our evaluation on anomaly detection benchmarks, from Emmott et al. [7], derived from

seven UCI mother sets. A summary of the benchmarks are given in Table 1. There are over 10,000

benchmarks in total, which contain a number of points ranging from 10 to 9847 and a number of

anomalies ranging from 1 to 984. An EGMM model was fit for each of the benchmarks to serve

as the anomaly detector, and RRF models were trained for each mother set on all possible feature

subsets. For this first part of our evaluation, we have chosen to focus on benchmarks with relatively

small dimensionality in order to allow for a large scale study, which requires training large numbers

of EGMM models (over 10,000) and RRF analyst models. All data from these experiments, including

the analysts’ models, will be made publicly available.

We evaluated seven methods for computing SFEs. These included the five methods from Section

5: SeqMarg, IndMarg, SeqDO, IndDO and BaB.100 (branch-and-bound restricted to 100 nodes

exploration). In addition, we evaluated a random explanation method. In the case of random, we

report the average performance across 100 randomly generated SFEs. Finally, in order to provide

a lower-bound on attainable performance (lower MFP is better) we consider an optimal oracle

method, OptOracle. This method is allowed access to the simulated analyst and for each number of

features i computes the optimal feature subset of size i . More formally, for each value of i , OptOracle
finds the feature subset Si that minimizes the analyst’s conditional probability P(normal | xSi ).
The MFP achieved by OptOracle for an anomaly x , given a particular analyst threshold τ (recall

Section 6), is the minimum value of i such that P(normal | xSi ) < τ . Note that OptOracle is not
constrained to produce “sequential explanations"—rather, OptOracle can produce an Si that does
not necessarily contain Si−1. This gives OptOracle an additional advantage compared to the other

methods which are constrained to produce SFEs. Clearly, OptOracle represents an optimistic bound

on the performance of any SFE method that is evaluated with respect to the simulated analyst.

For each of the 10,000 benchmarks, we used the corresponding EGMM model to rank the points.

For the true anomaly points ranked in the top 10%, we computed SFEs using each of the six methods.

This choice is an attempt to model the fact that, in actual operation, only highly ranked anomalies

will be presented to the expert. Note that, developing and evaluating explanation methods that

target false positives is certainly an interesting direction, but is a large enough problem to warrant

an entire study. In that case, the objective is presumably one of exoneration, where the goal for

the explanation system is to accurately determine when revealing additional features of an SFE is

unlikely to raise further suspicion according to its model. This requires new developments and

new approaches for evaluation. Finally, the expected MFP was computed for each SFE using a

distribution over analyst thresholds that was uniform over the values 0.1, 0.2, and 0.3. For each

mother set, we then report the average MFP across the anomalies derived from that mother set.

These average MFPs are shown in Figure 4 along with 95% confidence intervals.

We first note that our observations below are not sensitive to the choice of focusing on anomalies

in the top 10%. Indeed, we have also compiled results for other percentage points, including using

all anomalies. The main observations are qualitatively similar across all of these choices.

Comparison to Random and OptOracle. We observe in Figure 4 that all of the SFE methods

outperform random explanations and often do so by a large margin. Comparing to OptOracle

we see that, for three benchmarks—concrete, yeast, and wine—the lower bound provided by

OptOracle is significantly better than our best SFE method. This gap could be due to either: 1)

suboptimal SFE computations, 2) a poor match between the anomaly detector’s notion of outlier

versus the analyst’s notion of anomaly, or 3) the fact that OptOracle is not constrained to output

sequential explanations. We will investigate this further below (Section 7.4).
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For the remaining four mother sets, we see that the marginal methods are quite close to the

lower bound of OptOracle, though there is still some room for improvement. Finally, it is worth

noting that OptOracle is able to achieve MFPs of close to 1 for most of the mother sets. Thus, on

average, for these data sets, a single feature is sufficient to allow for correct analyst detections.

Comparison to Branch and Bound. We now compare the greedy methods to BaB.100, which

as described above attempts to optimize ESP as a surrogate for the true, but unknown, MFP objective.

Figure 4 shows the performance of these methods and interestingly we see that the best greedy

method significantly outperforms BaB.100 on the Yeast and Shuttle benchmarks. A potential reason

for this is due to a mismatch between the ranking of points by the anomaly detector and the ranking

of points by the simulated analysts. That is, the mismatch between statistical outliers and semantic

anomalies. Since BaB.100 works harder than the greedy methods to optimize the ESP objective, the

impact of this mismatch can be amplified. This hypothesis is supported by Figure 3 where we see

that Yeast and Shuttle are the two benchmarks where BaB.100 has a significantly better ESP than

the greedy methods. We investigate the issue further in Section 7.4.

Independent versus Sequential. It is reasonable to expect that the sequential version of the

marginal and dropout methods will outperform the independent versions. This is because the
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sequential versions attempt to account more aggressively for feature interaction when computing

SFEs, which requires additional computation time. However, we see that overall there is very little

difference in performance between the independent and sequential methods. That is, SeqMarg and

IndMarg (as well as SeqDO and IndDO) achieve nearly identical performance. The only exception

is in magic.gamma where there a small, but statistically significant, advantage (according to a

paired t-test) of SeqMarg over IndMarg. One possible explanation for these results is that feature

interactions are not critical in these domains for detecting anomalies. This explanation is supported

by the fact that OptOracle is able to achieve average MFPs close to one.

Marginal versus Dropout. Recall that the marginal and dropout methods are dual approaches.

Marginal evaluates a set of features in terms of how abnormal those features alone make a point

appear, while dropout evaluates a set by the increase in normality score when the features are

removed. We see that overall the marginal methods are never significantly worse than dropout and

significantly better on abalone, magic.gamma, shuttle, and skin. The difference is particularly

large on shuttle, where the marginal methods are close to OptOracle and the dropout methods

are closer to random.

One possible explanation is that we have observed that often dropout will produce a “weaker

signal" compared to marginal when making early decisions. For example, when considering single

features, the differences in scores produced by dropout for those features are often much smaller

than the differences produced by marginal. This can make dropout less robust for early decisions,

which are the most important ones for achieving small MFP scores. Recall, that the dropout method

was inspired by prior work on explanations for supervised learning. The results here suggest that

it is worth investigating adaptations of marginal to the supervised setting.

7.4 Comparing Methods with Oracle Detectors
Since the SFE methods make their decisions based on the anomaly detector’s density function f ,
the results above reflect both the SFE methods and the quality of the detector. Here we attempt

to factor out the performance of the SFE methods themselves by supplying the methods with an

oracle anomaly detector. To do this we simply replace the use of f with the simulated analyst’s

conditional probability function P(normal | xS ), which we can compute for any feature subset S .
For example, the first feature selected by SeqMarg is the xi that minimizes P(normal | xi ). Note
that this is also the first feature that would be selected by OptOracle. Unlike OptOracle, however,

SeqMarg is sequentially constrained and will select the second feature as the one that works best

when combined with the first selected feature.

Figure 5 shows results for all methods using the oracle detectors. We use a ‘*’ to indicate that a

method is using an oracle detector, for example, SeqMarg* is the oracle version of SeqMarg.

Comparison to OptOracle. The primary observation is that SeqMarg* performs nearly identi-

cally to OptOracle in all but one domain. Any difference between SeqMarg* and OptOracle would

reflect the loss in performance due to requiring sequential explanations, which is required for

OptOracle, and/or the greedy optimization. For these data sets, there is little to no loss. This is

good news, since the motivation for considering sequential explanations is to reduce the analyst’s

effort. In particular, the sequential constraint means that the analyst is shown an incrementally

growing set of information. Rather, without the constraint, OptOracle could potentially show

completely different sets of features from step to step, which is arguably less desirable from a

usability perspective.

Comparison to Branch and Bound. The performance of BaB.100 is significantly improved in

comparison with greedy methods when using the oracle detectors. This provides evidence that

the primary reason for the poor performances of BaB.100 above was the mismatch between the

anomaly detector ranking of points and that of the analyst. However, we still see that BaB.100 is
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Fig. 6. Performance of different explanation methods on some high dimensional benchmark datasets. 95%
confidence intervals are also shown.

usually slightly outperformed by the best greedy method SeqMarg and significantly outperformed

on Yeast. A likely reason for this is that BaB.100 is optimizing a surrogate objective ESP, rather than

the true objective MFP. When there is a disparity between these objectives, then more aggressive

optimization can be counter productive. Note that in Section 7.2, we did validate that BaB.100 does

optimize its surrogate objective effectively compared to the greedy methods.

Independent versus Sequential. Here, we see that SeqMarg* is often outperforming IndMarg*

and sometimes by significant amounts. This is in contrast to the results obtained when using EGMM

as the anomaly detector. This observation indicates that reasoning about feature interactions, as

done by SeqMarg*, can be important with higher quality anomaly detection models. This leaves

an open question of whether we will be able to observe this advantage when using non-oracle

anomaly detection models on realistic benchmarks.

Dropout versus Marginal. The marginal methods show consistently better performance when

using oracle detectors. The performance gap is quite large in several of the benchmarks. This

provides evidence that the marginal approach is generally a better way of computing SFEs. Again

we hypothesize that this is due to the “weak signal" during early decisions observed for the dropout

method.

7.5 Evaluation on high dimensional Datasets
We now consider the effectiveness of the proposed methods on lager dimensional datasets. For

large dimensions, computing the analyst models by learning one model for each feature subset (as

done above) is computationally prohibitive due to exponential number of feature subsets. However,

most such subsets are not useful for evaluation, especially those that contain many features, since,

in practice it is rare for anomalous behavior to be a result of large numbers of interacting features.

In addition, larger subsets are not easy to consume and process by human analysts. Hence, We

focus on evaluating SFEs involving only the top k ≤ 10 features instead of all d features.

As a representative of large dimensional datasets, we choose three datasets: landsat, particle

and KDDcup99 having dimension 36, 55 and 45 respectively. Even after imposing the constraint

of SFE computation for k ≤ 10 features, the restricted BaB method (BaB.100) took hours to finish

and sometimes exceeded memory limit. The reason is that at each node expansion during branch
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and bound search we need to calculate the upper bound of the node, which requires the costly

operation of marginalizing the model due to large number of parameters and also computing the

density for all the instances. Hence, we limit this method to run for up to 15 minutes (hence calling

it BaB.15) and use the best SFE found after the time limit is reached.

For the KDDcup99 intrusion detection benchmark [9], we use k = 10 and consider a subset

of the data containing instances involving http service only. The resulting benchmark contains

approximately 620K points with approximately 4K anomaly points representing network intrusions.

We again employed EGMM as the anomaly detector. It was infeasible to train a simulated analyst

on all feature subsets, thus we followed the adaptive approach described Section 6 where only

the subset of models required during the evaluation process was learned and cached. Overall this

resulted in approximately 7.5K RFF models being trained. In this domain, the EGMM model was

quite effective and ranked all anomalies very close to the top of the ranked list. Thus, we evaluate

on all anomalies in this domain.

The results for KDDcup99 are shown in Figure 6. It is clear that the marginal methods are

significantly better than the dropout methods. In particular, both SeqMarg and IndMarg achieve

an average MFP close to one, which is the smallest possible. This indicates that the combination

of EGMM and marginal explanations is very effective in this domain. In particular, the simulated

analyst only needed to be shown a single feature on average in order to correctly detect the

anomalies.

For landsat and particle datasets we use k = 6 and evaluate with respect to anomalies ranked

in the top 10%. The result is shown in Figure 6. The IndDO and SeqDO are similar for both of

the datasets. SeqMarg is better than IndMarg in both cases, also SeqMarg is much better than the

IndDO and SeqDO. SeqMarg performs equal to or better than the BaB method. For the BaB method,

31% and 70% of the anomaly points from landsat and particle dataset respectively are solved for

the optimal ESP value within the 15 minute time limit. Although, majority of the anomaly points

in particle dataset reached optimal solution, the performance is slightly worse than sequential

marginal. This could happen due to the reason already discussed in Section 7.3. Overall, the relative

performance of the dropout and marginal methods are very similar to the relative performance

observed earlier. The marginal methods tend to outperform the dropout methods.

We again hypothesize that the much weaker performance of the dropout methods is due to the

“weak signal" they provide for early decisions. This problem is only amplified in the context of

larger numbers of features, as is the case for the KDDCup data.

8 MAIN OBSERVATIONS AND RECOMMENDATION
The main observations from the above experiments can be summarized as follows.

• All of the introduced SFE methods significantly outperformed randomly generated SFEs.

• The marginal methods were generally no worse and sometime significantly better than the

dropout methods.

• When using the EGMM anomaly detector, we observed little to no difference between the

performance of sequential versus independent methods.

• When using the oracle anomaly detector, SeqMarg significantly outperformed IndMarg,

which suggests that in general sequential methods can outperform independent methods.

• While the BaB methods were more effective at optimizing ESP in many cases, this did not

translate to outperforming the best greedy method with respect to MFP.

Overall, based on our results, SeqMarg is the recommended method for computing SFEs, among

the methods we studied.
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9 SUMMARY AND FUTUREWORK
This paper introduced the concept of sequential feature explanations (SFEs) for anomaly detection.

The main motivation was to reduce the amount of effort of an analyst that is required to correctly

detect anomalies. We described several methods for computing SFEs and introduced a new frame-

work that allows for large-scale quantitative evaluation of explanation methods. To the best of

our knowledge this is the first such large scale evaluation of explanation methods for anomaly

detection. Our experiments indicated that, overall, the Sequential Marginal method for computing

SFEs is the preferred method among those introduced in this paper.

An interesting point of future work will be to explore this framework for a wider range of

anomaly detection models and simulated-analyst models. This could include comparing the relative

effectiveness of our generic approaches for computing SFEs and approaches that are specifically

designed for particular anomaly detectors. One surprising observation from our results is that our

more computationally intensive branch-and-bound approach never outperformed our best greedy

approach in actual evaluations. We hypothesized that this was due to the potential mismatches

between: 1) the anomaly detector and analyst model, and 2) the optimization objective, ESP, and

the evaluation metric, MFP. Optimizing more aggressively in light of these mismatches appears

to be counter productive. An interesting point of future work will be to investigate alternative

optimization objects and to better understand the surprising effectiveness of the greedy sequential

marginal method.

Another important direction for future work will be to conduct qualitative evaluations using

human subjects. This is a challenging direction due to the need to find subject matter experts in a

domain that are available to take part in evaluation trials. Alternatively, human studies could be

conducted using synthetic benchmarks that are constructed in a way that regular human subjects

could be easily taught the domain properties and used as the experts. While this second approach

is less realistic it would allow for a wider scale evaluation that could produce quantitative results

in addition to the qualitative observations.

A NP-HARDNESS OF SFE-DECIDE

We now prove that the decision problem, SFE-Decide, which corresponds to the optimization

problem in Equation 3, is NP-hard.

Proof. To prove that SFE-Decide is NP-hard, we reduce the well known NP-Complete problem

Vertex Cover to SFE-Decide.

Vertex Cover: Does there exist a vertex cover of size ≤ k in graph G = (V, E)

SFE-Decide: Does there exist an SFE E for instance x and density f that satisfies∑
α

min{i : f (xEi ) < τ (Ei ,α)}p(α) ≤ t .

Reduction. The basic idea of the reduction is to encode the graph G = (V, E) into the instance

x as a vertex-edge incidence matrix. We view x as a |V| dimensional feature vector with each

feature denoted by xi . Each feature is an |E | bit integers where bit j of feature i , denoted by xi j , is
defined as:

xi j =

{
1 i f vertex Vi is incident on edдe Ej

0 otherwise
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Since, x is integer valued, we construct the marginal distribution function f (xs ) as a discrete

distribution (or probability function) as follows:

f (xs ) =


1

C i f
∑
j
I(
∑
i ∈s

xi j > 0) < |E |

0 otherwise

Here, C is a normalizing constant and I is an indicator function. Intuitively, f (xs ) is defined to be a

uniform distribution over all possible values of xs that correspond to a vertex cover of the graph.

To see this, note that the summation

∑
j I(

∑
i ∈s xi j > 0) is computing the number of edges covered

by the set of vertices in s . We say a value of xs is valid if this summation exactly equals the number

of edges.

Continuing the reduction we set t = k , τ (s,α) = 1

C and

p(α) =

{
1 i f α = α0

0 otherwise

where α0 is a constant. Now, we observe that by the construction of p(α) as a deterministic

distribution, SFE-Decide no longer involves a summation over α and can be simplified to the

following problem:

Does there exist an SFE E satisfyingmin{i : f (xEi ) <
1

C } ≤ t

Now, we first show that a vertex cover of size ≤ k in G → existence of an SFE E satisfying

min{i : f (xEi ) <
1

C } ≤ t . Suppose, |s | ≤ k is the set of vertices forming the vertex cover in G.
Then, by construction

∑
j I(

∑
i ∈s xi j > 0) = |E | i.e. f (xs ) = 0. We can now construct an SFE E by

setting the prefix Ei = s and filling rest of the features arbitrarily with the remaining features. Its

easy to see that such an SFE E satisfiesmin{i : f (xEi ) <
1

C } ≤ t since |Ei | ≤ t . Hence, E is an SFE

corresponding to the vertex cover s .
We now prove the other direction: existence of an SFE E satisfying min{i : f (xEi ) <

1

C } ≤ t

→ existence of a vertex cover of size ≤ k in G. Since min{i : f (xEi ) <
1

C } ≤ t , the inequality

f (xEi ) <
1

C is satisfied for some i ≤ t . Since, t = k , we have a feature subset Ei such that |Ei | ≤ k .

Now, we show that Ei is also a vertex cover in G. Since f (xEi ) <
1

C we have f (x ,Ei ) = 0 i.e.∑
j I(

∑
p∈Ei xpj > 0) = |E |. Hence, for each j the indicator function is true, which implies edge Ej

is covered by some vertex in Ei . Hence, Ei is a vertex cover in G corresponding to SFE E with

|Ei | ≤ k . □
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