
This is page 1
Printer: Opaque this

1

Improved Class Probability
Estimates from Decision Tree
Models

Dragos D. Margineantu
Thomas G. Dietterich
Department of Computer Science, Oregon State University
{tgd,margindr}@cs.orst.edu

Abstract

Decision tree models typically give good classification decisions
but poor probability estimates. In many applications, it is important
to have good probability estimates as well. This paper introduces
a new algorithm, Bagged Lazy Option Trees (B-LOTs), for con-
structing decision trees and compares it to an alternative, Bagged
Probability Estimation Trees (B-PETs). The quality of the class
probability estimates produced by the two methods is evaluated
in two ways. First, we compare the ability of the two methods to
make good classification decisions when the misclassification costs
are asymmetric. Second, we compare the absolute accuracy of the
estimates themselves. The experiments show that B-LOTs pro-
duce better decisions and more accurate probability estimates than
B-PETs.

1.1 Introduction

The problem of statistical supervised learning is to construct a classifier
f from a labeled training sample 〈xi, yi〉, where each xi is a vector of at-
tributes (predictor variables), and yi ∈ {1, . . . , K} is a class label. The
classifier should accept new data points x and predict the corresponding
class label y = f(x). We assume that the training sample consists of in-
dependent and identically distributed draws from an unknown underlying
distribution P(x, y).

There are two fundamental approaches to statistical learning of classi-
fiers. One approach is based on constructing a probabilistic model P̂(x, y)
of the data and then applying statistical inference methods to determine
the conditional class probability distribution P̂(y|x). The well-known Naive

2 1. Improved Class Probability Estimates from Decision Tree Models

Bayes algorithm is an example of this approach, where the joint distribu-
tion P̂(x, y) is represented by a mixture model: P̂(x, y) =

∑
y P̂(y)P̂(x|y)

with one component for each class. Using such a mixture model, the class
conditional distribution can be computed as

P̂(y|x) =
P̂(y)P̂(x|y)

∑
y′ P̂(y′)P̂(y′|x)

.

The second approach to constructing classifiers is based on a direct rep-
resentation of the classifier as a decision boundary. Decision tree methods
[4, 24], for example, represent the decision boundary by a tree of tests on
individual attribute values. For example, suppose that each x is a vector of
real-valued attributes x = (x1, . . . , xn) and y ∈ {1, 2}. Then a decision tree
takes the form of a nested if-then-else statement such as the following:

if x2 > 3 then
if x1 > 4 then

y = 1
else

y = 2
else if x3 > 2 then

y = 2
else

y = 1

Experience across many application problems suggests that the direct
decision-boundary approach usually gives more accurate classifiers than
the probability distribution approach. There seem to be two reasons for
this.

First, the probability distribution approach requires that we make as-
sumptions about the form of the probability distribution P(x, y) that
generated the data. These assumptions are almost always incorrect. Some-
times the assumptions are only slightly violated; in other cases, the
assumptions introduce major errors.

Second, and perhaps more important, the probabilistic modeling ap-
proach does not adapt the complexity of the model to the amount and
complexity of the data. In machine learning, there is always a tripartite
tradeoff operating between the amount of data, the complexity of the mod-
els that are fit to the data, and the error rate of the resulting fitted model
[17]. If the complexity of the models is held constant, then when there is
insufficient data, the fitted model will exhibit high variance. If there is more
than enough data (and the model assumptions are not completely correct),
then the model will exhibit significant bias. Decision-boundary algorithms
that dynamically adjust the complexity of the model to the amount and
complexity of the data—such as decision trees—provide a better way of
managing this three-way tradeoff.

1. Improved Class Probability Estimates from Decision Tree Models 3

However, decision boundary methods are designed only to make deci-
sions, not to produce estimates of the class probabilities P(y|x). In many
applications, it is essential to have these probability estimates. In partic-
ular, in cost-sensitive learning problems, such as medical diagnosis, fraud
detection, or computer intrusion detection, the cost of making a false pos-
itive error may be substantially different from the cost of making a false
negative error. Let C(j, k) be the cost of predicting that x belongs to class
j when in fact it belongs to class k. According to decision theory, we should
choose the class to minimize the expected cost:

y = argmin
j

∑

k

P(k|x)C(j, k). (1.1)

To carry out this computation, we need an estimate of the class
probabilities P(k|x). How can we obtain such estimates from decision trees?

Existing decision tree algorithms estimate P(k|x) separately in each leaf
of the decision tree by computing the proportion of training data points
belonging to class k that reach that leaf. There are three difficulties with
this. First, the decision tree was constructed using these same data points,
so the estimates tend to be too extreme (i.e., close to 0 or 1).

Second, as one proceeds from the root of the decision tree down to the
leaves, the training data is split into smaller and smaller subsets. The result
is that each class probability estimate is based on a small number of data
points, and hence, can be very inaccurate.

Third, each leaf of the decision tree corresponds to a region of the x space,
and this procedure assigns the same probability estimate to all points in
the region. To see why this is a problem, suppose we are estimating the
probability of heart disease (the class, y) given blood pressure (bp). Imagine
that there is a leaf of the tree that corresponds to bp > 160 and that out
of the 100 examples that reach this leaf, 90 have heart disease. Then the
class probability is estimated as P(heart disease|x) = 0.9. But suppose
that some of these data points include a mix of patients, some of whom
have blood pressure of 161 and others have blood pressure of 250. Surely
we want to predict a lower probability of heart disease for the patient with
161 than for the patient with 250.

From this review, it is clear that there is a need to develop improved
methods for estimating class probabilities from decision-boundary learning
algorithms. This paper presents and compares two methods for obtaining
class probability estimates from decision trees. The first method, bagged
probability estimation trees (B-PETs), was developed by Provost and
Domingos [23]. The second, bagged lazy option trees (B-LOTs), was devel-
oped by the authors by extending previous work of Buntine [7], Breiman
[5], Friedman, Kohavi, and Yun [16], and Kohavi and Kunz [21]. Other
tree-based methods that can be extended to produce probability estimates

4 1. Improved Class Probability Estimates from Decision Tree Models

include boosting [14, 15], random forests [6, 20, 12], and Bayesian CART
[9, 11].

We evaluate the quality of the probability estimates produced by these
two methods in two ways. First, we compare the predicted and true
probabilities on a synthetic data set. Second, we compare the average
misclassification costs of the two methods when applied to cost-sensitive
learning problems. We employ a new bootstrap-based statistical test to
determine which method (B-PET or B-LOT) gives lower expected misclas-
sification cost across 16 data sets taken from the Irvine repository [2]. The
results show that B-LOTs give more accurate probability estimates and
lower expected misclassification costs. However, B-PETs appear to provide
a better estimate of the relative class probabilities. Hence, if a way can be
found to calibrate these relative rankings, B-PETs might also be made to
provide good probability estimates. In either case, B-PETs and B-LOTs
give much better performance than a single decision tree.

The remainder of this paper is organized as follows. First, we review the
bagged probability estimation trees introduced by Provost and Domingos.
Next, we describe our new method, the bagged lazy option trees. Finally,
we present our experimental evaluations of the probability estimates and
discuss their significance.

1.2 Probability Estimation Trees

Provost and Domingos [23] have developed an interesting approach to ob-
taining class probabilities from decision trees. They start with Quinlan’s
popular C4.5 decision tree algorithm [24] and modify it in four ways.

First, they turn off the pruning phase of C4.5. Without pruning, C4.5
will continue growing the tree (and subdividing the training data) until
each leaf is pure (i.e., contains examples from only one class) or contains
only 2 examples.

Second, they turn off C4.5’s collapsing mechanism. At each internal node,
C4.5 invokes itself recursively to grow a decision subtree. When that recur-
sive call returns, C4.5 compares the error rate of resulting subtree (on the
training data) with the error rate that would be obtained by replacing that
subtree with a single leaf node. Hence, the effect of these first two changes
is to simplify C4.5 by removing all pruning procedures.

Third, they modify C4.5’s probability estimation mechanism so that in-
stead of simply estimating P̂(k|x) by the proportion of examples in the leaf
that belong to class k, it applies a Laplace correction as follows:

P̂(k|x) =
Nk + λk

N +
K∑

k=1

λk

(1.2)

1. Improved Class Probability Estimates from Decision Tree Models 5

where N is the total number of training examples that reach the leaf, Nk

is the number of examples from class k reaching the leaf, K is the number
of classes, and λk is the prior for class yk. In their experiments, they set
λk uniformly to 1.0 for all k = 1, . . . , K.

The effect of the Laplace correction [18, 8, 3] is to shrink the probability
estimates toward 1/K. For example, a leaf containing two examples (both
from class k = 1) will estimate P̂(1|x) = (2+1)/(2+2) = 0.75 when K = 2
instead of 1.0.

Finally, they apply an ensemble method known as Bagging [5]. Bagging
constructs L decision trees and then averages their class probability es-
timates. Each decision tree is constructed by taking the original training
data S = {(xi, yi)}N

i=1 and constructing a bootstrap replicate data set S`

by drawing N data points uniformly with replacement from S [13]. This
training set S` is then given to the modified C4.5 procedure to produce a
decision tree T` and a probability estimator P̂`(y|x). The final probability
estimates are computed as

P̂(y|x) =
1
L

L∑

`=1

P̂`(y|x).

These modifications to C4.5 address two of the three causes of poor
probability estimates identified in the introduction. The Laplace correction
addresses the problem that the estimates in each leaf are based on small
amounts of data. The combination of no pruning and Bagging addresses the
problem that the probability estimates are constant throughout the region
of x space corresponding to a single leaf. The only problem unaddressed is
that the probability estimates are still based on the training data, which
was also employed to construct the decision trees.

We explored the possibility of using out-of-bag estimates to address this
last problem. The idea is to compute the estimates P̂`(y|x) by using the
data points that were not included in training set S` (i.e., the so-called “out-
of-bag” data points). Unfortunately, this did not work well, perhaps because
there are even fewer “out-of-bag” data points than there are “in-bag” data
points.

1.3 Lazy Option Trees

The decision tree literature contains many methods for improving over the
basic C4.5 system. We have combined two of these methods—lazy tree
growing and options—to obtain further improvements over B-PETs.

Standard decision tree algorithms can be viewed as being “eager”
algorithms—that is, once they have the training data, they grow the de-
cision tree. “Lazy” algorithms, in contrast, wait until the unlabeled test
data point xu is available before growing the decision tree. In this, they are

6 1. Improved Class Probability Estimates from Decision Tree Models

analogous to the nearest-neighbor classifier, which waits until xu is avail-
able and then bases its classification decision on the data points that are
nearest to xu according to some distance measure [19, 1, 10, 25]

The advantage of lazy learning is that it can focus on the neighbor-
hood around the test point xu. In the case of probability estimates, a lazy
learning algorithm can base its estimate P̂(y|xu) on the data points in the
neighborhood of xu and thereby side-step the problem that the probability
estimates in decision trees are constant within each leaf. The disadvantage
of lazy learning is that the amount of computer time required to classify
each data point can be significantly larger than for eager algorithms. This
makes lazy learning impractical for some applications.

Lazy learning in decision trees was explored by Friedman et al. [16]. In
their approach, which we imitate, a lazy tree actually consists of only a
single path from the root of the tree down to a leaf. This is the path that
will be taken by the test data point xu. Since the tree is only constructed
to classify this one point, there is no need to expand the other branches of
the tree. In addition, the choice of which attribute and value to test at each
node of the tree can be made focusing only on the one resulting branch.
In standard decision tree algorithms, the choice of splitting attribute and
value is based on the average improvement of all branches of the decision
tree. In some cases, the accuracy of one branch may actually be decreased
in order to obtain a large increase in the accuracy of the other branch. Lazy
trees do not need to make this compromise.

One risk of lazy trees is that the tests included in the decision tree are
satisfied only by the test point xu. To reduce this risk, we restrict the form
of the permitted tests. Let xm be the value of the mth attribute of the test
data point xu. We do not allow the test to directly refer to xm. The test
may have the form xj > θ, xj < θ, or sj 6= θ as long as θ 6= xm.

To estimate the class probabilities at the leaf of the lazy tree, we do not
apply a Laplace correction. Instead, we simply compute the proportion of
training examples belonging to class k.

The other technique that we have included in our approach is options
(see Buntine [7] and Kohavi and Kunz [21]). An option tree is a decision
tree in which a given internal node in the tree is split in multiple ways
(using multiple attribute-value tests, or “options”). The final probability
estimate is the average of the estimates produced by each of these options.

Our lazy option tree algorithm selects in each node the best bt tests with
the highest accuracy (where accuracy is measured by the reduction in the
estimated entropy of the class variable H(y) from the parent to the child).
To avoid redundancy in the tree, we check for and remove a particular
pattern of tests (called the “cousin rule”). Let U and V be two tests (e.g.,
xj > θ for some j and θ). Suppose that node A has two options. One option
tests U and leads to child node B; the other option tests V and leads to
child C. Now suppose that B chooses V as an option. Then we do not

1. Improved Class Probability Estimates from Decision Tree Models 7

permit node C to choose U as an option, because this would create two
identical paths (where U and V were true) in the option tree.

One final detail requires mention. Before choosing the options at a node,
our algorithm assigns weights to the examples in each class in order to
balance the weighted class frequencies.

Table 1.1 sketches the lazy option tree learning algorithm, and Figure 1.1
shows an example of a tree induced by the lazy option tree algorithm.

Table 1.1. The lazy option tree learning algorithm.

LazyOptionTree(S,xu,MaxTests,MinG,MinLeaf)
Input: Training data S = {(xi, yi)}N

i=1, Unlabeled test example xu,
Maximum number of tests in a node MaxTests,
Minimum gain for a test MinG,
Minimum number of examples in a leaf MinLeaf ,

for k = 1 to K do
assign weights w such that

∑
i|yi=k

wi = 1

choose a set of T tests of the form xj > θ, xj < θ, or xj 6= θ such that
T < MaxTests
if best test has gain g, each test has a gain > MinG · g,
at least MinLeaf examples satisfy the test, and

the set of tests contains no tests ruled out by the cousin rule
if no such tests exist then terminate with leaf node
else call LazyOptionTree on elements of S that satisfy the test

end LazyOptionTree

The options represent an alternative to the averaging mechanism of Bag-
ging for improving the probability estimates of the decision trees. The
advantage of the options mechanism is that tests having an information gain
almost as high as the best test will be performed, while they might never be
performed in decision trees, lazy trees, or even bagged trees. This increases
the diversity of the ensemble and leads to better probability estimates.

Nonetheless, we found experimentally that the probability estimates can
be further improved by employing bagging in addition to options. This
completes our bagged lazy option trees (B-LOTs) algorithm.

1.4 Parameter Settings

To apply the B-PET method, the user must specify only two parameters:
the minimum number of examples MinLeaf permitted in each leaf of the
tree, and the number of iterations L of bagging. To apply B-LOTs, the
user must set MinLeaf , L, and also two more parameters: MaxTests—
the maximum number of tests that are allowed in a node—and MinG—the
gain proportion (0.0 < MinG < 1.0), a number indicating the minimum

8 1. Improved Class Probability Estimates from Decision Tree Models

fr > 2temp > 101.2

YES

YES

YES

! = YES
weight loss

YES

medical test
perform

medical test
do not perform

medical test
perform

fr > 2

(.7, .3)

 (.9, .1) (.4, .6)

Figure 1.1. Example of a tree built by the lazy option tree algorithm for a spe-
cific unlabeled instance 〈fr = 6, weight loss = NO, blood pressure = HIGH,
body temperature = 101.5〉. The task is to decide whether a patient is suspect of
having AIDS, and therefore whether to perform an HIV test (fr stands for the
frequency of recurrent infections per month, temp is the body temperature). The
numbers in the leaves indicate the proportion of training examples that reach
that leaf. Each leaf computes a probability estimate based on those numbers.
These estimates are then averaged to produce the final estimates. The labels of
the leaves indicate the decision in the case of 0/1 loss.

gain for a test in order to be selected. MinG is the proportion out of the
gain of the best test achieved within that node (e.g., if the best test in a
node has a gain on g, we will discard all tests that have a gain of less than
MinG · g, within that same node).

1.5 Experiment 1: Probability Estimates on
Synthetic Data

Figure 1.2 shows two one-dimensional gaussian distributions corresponding
to P(x|y = 1) and P(x|y = 2). Let P(y = 1) = P(y = 2) = 0.5 be the
probability of generating examples from classes 1 and 2, respectively. We
constructed this synthetic problem so that we could measure the accuracy
of the probability estimates produced by B-PETs and B-LOTs. We drew
1000 training examples from this joint distribution to form our training
set S, which we then fed to the B-PET and B-LOT algorithms with the
following parameter settings: MinLeaf = 2, L = 30, MaxTests = 3, and
MinG = 0.2.

Figures 1.3 and 1.4 show scatter plots of the predicted and true proba-
bility values for the two methods. Perfect probability estimates would lie
on the diagonal line shown in the plots. The scatter plot for the B-PETs
shows that the points increase almost monotonically (with some errors),
which indicates that the B-PETs have produced a good relative ranking of
the test points. However, the absolute values of the probability estimates all

1. Improved Class Probability Estimates from Decision Tree Models 9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -2 0 2 4 6 8 10 12

Class 1
Class 2

Figure 1.2. One-dimensional artificial data set

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

B
-P

E
T

 e
st

im
at

e
of

 P
(

C
la

ss
1

| x
)

true class probability P(Class1 | x)

B-PET

Figure 1.3. Scatterplot of B-PET probability estimates versus true probability
values for 1000 test points

10 1. Improved Class Probability Estimates from Decision Tree Models

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

B
-L

O
T

 e
st

im
at

e
of

 P
(

C
la

ss
1

| x
)

true class probability P(Class1 | x)

B-LOT

Figure 1.4. Scatterplot of B-LOT probability estimates versus true probability
values for 1000 test points

lie in the range from 0.3 to 0.7, and the monotonic behavior is significantly
non-linear. This behavior is partly a consequence of the Laplace shrinkage
toward 0.5—however, if we remove the Laplace correction, the monotonic
behavior of the curve is significantly degraded.

The plot for the B-LOTs, on the other hand, shows that the predicted
probabilities cluster around the ideal diagonal and span the entire range
from 0 to 1. However, individual points whose true probabilities are nearly
identical can have predicted probabilities that differ by more than 0.2.

If this behavior holds in real domains, it would have two consequences.
First, the B-PET estimates will not work well if they are plugged directly in
to equation 1.1. This is because the given cost matrix C will determine an
absolute probability threshold θ such that xu should be classified as class 1
if P̂(y|xu) > θ, and the absolute values of the B-PET predictions are poor.
Consider, for example, if C dictates that θ = 0.2. In such cases, all examples
would be classified into class 1, with, presumably, high misclassification
costs. In contrast, the B-LOT estimates will work quite well in equation 1.1,
because they are well-calibrated. However, there will be several misclassified
points, because of the variance in the estimates.

In 2-class problems, it is not necessary to use equation 1.1. Instead,
cross-validation methods can be employed to determine experimentally a
threshold that minimizes the expected misclassification cost on hold-out
data points. In such cases, the B-PET method may work well unless the

1. Improved Class Probability Estimates from Decision Tree Models 11

threshold happens to land exactly on one of the values for which the plot
in Figure 1.3 is flat. Note that there are several such values, particularly at
the more extreme probability values (which could be important if the mis-
classification costs are highly asymmetrical). For problems with more than
2 classes, cross-validation is difficult to employ, because separate thresholds
must be determined for each pair of classes. Setting so many thresholds by
cross-validation requires very large hold-out sets.

1.6 Experiment 2: Misclassification Errors on
Benchmark Data Sets

A more realistic way of comparing B-PETs and B-LOTs is to evaluate
their performance on a range of benchmark data sets drawn from real
problems. We chose sixteen data sets from the UC Irvine ML repository [2]
for this study. Unfortunately, most of the UC Irvine data sets do not have
associated cost matrices C. Hence, we decided to generate cost matrices at
random according to some cost matrix models.

Table 1.2 describes eight cost models, M1 through M8. The second col-
umn of the table describes how the misclassification costs were generated
for the off-diagonal elements of C. In most cases, the costs are drawn from
a uniform distribution over some interval. However, for models M5 and M6,
the costs are distributed according to the class frequencies. In model M5,
rare classes are given higher misclassification costs. This is characteristic
of medical and fraud detection problems where a failure to detect a rare
event (a serious disease or a fraudulent transaction) has a much higher cost
than the failure to recognize a common event. In model M6, rare classes
are given lower costs, to see if this makes any difference. The third column
of Table 1.2 specifies how the diagonal elements of C are generated. Only
models M7 and M8 have non-zero diagonal values.

For each cost model we generated twenty-five cost matrices and per-
formed ten-fold cross validation. This gives us 25 (matrices) × 8 (models)
× 10 (folds) = 2000 runs of the B-PET and B-LOT procedures for each
data set. For each of these 2000 runs, we applied a statistical test, BDelta-
Cost, to determine whether the B-PETs and the B-LOTs had statistically
significant different expected misclassification costs.

BDeltaCost is a bootstrap test developed by the authors [22] for com-
paring the cost of two classifiers γ1 and γ2. It works by first constructing
a generalized confusion matrix M . The contents of cell M(i1, i2, j) is the
number of (test set) examples for which γ1 predicted that they belong to
class i1, γ2 predicted that they belong to class i2, and their true class was
j. BDeltaCost then constructs a three-dimensional cost matrix ∆ such
that ∆(i1, i2, j) = C(i1, j)−C(i2, j). In other words, the value of ∆(i1, i2, j)
is the amount by which the cost of classifier γ1 is greater than the cost of

12 1. Improved Class Probability Estimates from Decision Tree Models

Table 1.2. The cost models used for the experiments. Unif[a, b] indicates a uniform
distribution over the [a, b] interval. P (i) represents the prior probability of class
i.

Cost C(i, j) C(i, i)
Model i 6= j

M1 Unif[0,10] 0
M2 Unif[0, 100] 0
M3 Unif[0,1000] 0
M4 Unif[0,10000] 0
M5 Unif[0, 1000 × P (i)/P (j)] 0
M6 Unif[0, 1000 × P (j)/P (i)] 0
M7 Unif[0,10000] Unif[0,1000]
M8 Unif[0, 100] Unif[0, 10]

classifier γ2 when γ1 predicts class i1, γ2 predicts class i2, and the true
class is j. Given M and ∆, the difference in the costs of γ1 and γ2 can be
computed by taking the “dot product”:

M · ∆ =
∑

i1,i2,j

M(i1, i2, j)∆(i1, i2, j).

BDeltaCost computes a confidence interval for M · ∆ and rejects the
null hypothesis that M · ∆ = 0 if this confidence interval does not include
zero. The confidence interval is constructed as follows. Normalize M by
dividing by the number of test examples N , so that M ’s elements sum to
1. Treating M as a multinomial distribution, draw 1000 simulated confusion
matrices M̃u by drawing N triples (i1, i2, j) according to this distribution.
Compute the cost c̃u of each simulated confusion matrix (by computing M̃u·
∆), sort these costs, and choose the 25th and 976th elements to construct
the confidence interval.

The barchart in Figure 1.5 shows the results of the 2000 test runs for
each data set. It plots the number of wins for B-LOTs, ties, and wins for B-
PETs computed by BDeltaCost with a significance level of α = 0.05 (i.e.,
95% confidence). For all tasks except the lung-cancer domain, the number
of wins for the B-LOTs is noticeably larger than the number of B-PET
wins. In the case of nine domains (audiology, abalone, iris, lymphography,
segmentation, soybean, voting-records, wine and zoo), the B-LOTs were the
clear winner. These results suggest that the B-LOTs give better probability
estimates in these application domains.

1.7 Concluding Remarks

Decision-boundary methods—as exemplified by decision tree learning
algorithms—have proven to be very robust in many applications of ma-
chine learning. However, unlike probabilistic models, they do not provide
estimates of P(y|x). Such probability estimates are essential for applica-

1. Improved Class Probability Estimates from Decision Tree Models 13

� ��� ���� ���� ����

a udio

a ba lo ne

bc y

g la ss

he pa titis

ir is

live r

lung

lym pho

se g m e nt

so na r

s o ybe a n

ve hic le

vo ting

w ine

zo o

Figure 1.5. Barchart comparing the performance of B-LOTs and B-PETs for six-
teen UCI data sets. White bars represent the number of ties, black bars represent
the number of wins of B-PETs, and the grey bars represent the number of wins
of B-LOTs computed by the BDeltaCost test.

tions that involve asymmetric loss functions. This paper has addressed
the question of whether techniques can be found to compute good class
probability estimates from decision trees.

The paper has introduced the bagged lazy option tree (B-LOT) method
and compared it to the bagged probability estimate tree (B-PET) method.
The results show experimentally that B-LOTs produce better-calibrated
probability estimates and that these give lower expected misclassification
cost across 16 benchmark datasets. However, the experiment with synthetic

14 1. Improved Class Probability Estimates from Decision Tree Models

data showed that B-PETs do a very good job of predicting the relative
probabilities of data points. So it may be possible to convert the B-PET
estimates into more accurate probability estimates.

Based on the results from this paper, for applications where lazy learning
is practical, bagged lazy option trees can be recommended as the best
known approach to obtaining good class probability estimates and making
good cost-sensitive classification decisions.

References

[1] B. K. Bhattacharya, G. T. Toussaint, and R. S. Poulsen. The application
of Voronoi diagrams to non-parametric decision rules. In Proceedings of the
16th Symposium on Computer Science and Statistics: The Interface, pages
97–108, 1987.

[2] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998.

[3] J. P. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. E. Brodley. Pruning
decision trees with misclassification costs. In C. Nedellec and C. Rouveirol,
editors, Lecture Notes in Artificial Intelligence. Machine Learning: ECML-
98, Tenth European Conference on Machine Learning, volume 1398, pages
131–136, Berlin, 1998. Springer Verlag.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth International Group, 1984.

[5] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[6] Leo Breiman. Random forests. Technical report, Department of Statistics,
University of California, Berkeley, CA, 1999.

[7] W. L. Buntine. A theory of learning classification rules. PhD thesis,
University of Technology, School of Computing Science, Sydney, Australia,
1990.

[8] B. Cestnik. Estimating probabilities: A crucial task in machine learning.
In L. C. Aiello, editor, Proceedings of the Ninthe European Conference on
Artificial Intelligence, pages 147–149. Pitman Publishing, 1990.

[9] H. Chipman, E. George, and R. McCulloch. Bayesian CART model search
(with discussion). Journal of the American Statistical Association, 93:935–
960, 1998.

[10] B. V. Dasarathy, editor. Nearest neighbor (NN) norms: NN pattern clas-
sification techniques. IEEE Computer Society Press, Los Alamitos, CA,
1991.

[11] D. G. T. Denison, B. K. Mallick, and A. F. M. Smith. A Bayesian CART
algorithm. Biometrika, 85:363–377, 1998.

[12] Thomas G. Dietterich. An experimental comparison of three meth-
ods for constructing ensembles of decision trees: Bagging, boosting, and
randomization. Machine Learning, 40(2):1, 2000.

1. Improved Class Probability Estimates from Decision Tree Models 15

[13] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap.
Chapman and Hall, New York, NY, 1993.

[14] Yoav Freund and Robert E. Schapire. Experiments with a new boosting
algorithm. In Proc. 13th International Conference on Machine Learning,
pages 148–146. Morgan Kaufmann, 1996.

[15] Jerome H. Friedman, Trevor Hastie, and Rob Tibshirani. Additive logistic
regression: A statistical view of boosting. Annals of Statistics, 28(2):337–
407, 2000.

[16] Jerome H. Friedman, Ron Kohavi, and Yeogirl Yun. Lazy decision trees. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence,
pages 717–724, San Francisco, CA, 1996. AAAI Press/MIT Press.

[17] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the
bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

[18] I. J. Good. The estimation of probabilities: An essay on modern Bayesian
methods. MIT Press, Cambridge, MA, 1965.

[19] P. E. Hart. The condensed nearest neighbor rule. IEEE Transactions on
Information Theory, 14:515–516, 1968.

[20] Tin Kam Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(8):832–844, 1998.

[21] Ron Kohavi and Clayton Kunz. Option decision trees with majority votes.
In Proc. 14th International Conference on Machine Learning, pages 161–169.
Morgan Kaufmann, 1997.

[22] D. D. Margineantu and T. G. Dietterich. Bootstrap methods for the
cost-sensitive evaluation of classifiers. In Proceedings of the Seventeenth
International Conference on Machine Learning, San Francisco, CA, 2000.
Morgan Kaufmann.

[23] Foster Provost and Pedro Domingos. Well-trained PETs: Improving proba-
bility estimation trees. Technical Report IS-00-04, Stern School of Business,
New York University, 2000.

[24] J. R. Quinlan. C4.5: Programs for Empirical Learning. Morgan Kaufmann,
San Francisco, CA, 1993.

[25] Dietrich Wettschereck. A Study of Distance-Based Machine Learning Al-
gorithms. PhD thesis, Department of Computer Science, Oregon State
University, Corvallis, Oregon, 1994.

