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1 Introduction

In recent papers on machine learning, the term ‘operationalization’ has been used to describe
the purpose of the learning process. In particular, explanation-based learning systems are said
to ‘operationalize’ the given target concept. Unfortunately, the exact meaning of this term has
varied from one paper to another, and frequently the term has been used without being precisely
defined. In general, the term ‘operational’ has encompassed many different aspects of problem
solving including correctness, efficiency, and effectiveness.

Although one might argue that a precise definition of the term is neither possible nor desirable,
this paper takes the opposite position. Without a precise definition of the goals of the learning
process, it is difficult to evaluate particular learning systems. The following sections identify several
different aspects of ‘operational’ and propose a collection of more specific terms, such as ‘testable’,
‘achievable’, and ‘efficient’, to clarify this all-too-vague term. These more precisely defined terms
can then be applied to evaluate current learning systems and guide future research.

2 A brief history of ‘operational’

The notion of ‘operational definitions’ was first articulated by Bridgman (1927) in his attempt
to clarify the status of theoretical terms in science. He took the position that one cannot know
the meaning of a theoretical term unless one has an executable (i.e., ‘operational’) procedure for
identifying instances of the term. This doctrine has been very influential in the social sciences,
particularly in psychology, where it has encouraged researchers to define carefully such terms as
‘intelligence’ and ‘psychosis’ by providing measurement procedures.1

1Interestingly, Bridgman’s ‘operationalism’ has been largely rejected by philosophers of science who have pointed
out that the operational definition of a theoretical term is often only an approximation to that more theoretical—and
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The term ‘operationalization’ entered the machine learning literature in a series of papers by
Hayes-Roth and Mostow (1979; 1981) where it was employed to describe the process by which
advice, such as “avoid taking points,” was translated into an efficient and executable plan of action
for approximately achieving the goal of winning at Hearts. This use of the term encompasses three
separable aspects: (a) effectiveness (i.e., the player could actually execute the ‘operational’ form
of the advice to achieve the goal during the game), (b) efficiency (i.e., the ‘operational’ form could
be applied efficiently), and (c) approximate correctness (i.e., the ‘operational’ advice often only
approximated the original goal). Only the effectiveness aspect corresponds to Bridgman’s original
use of ‘operational’.

More recently, the term ‘operationalization’ has been employed by Mitchell, Keller, and Kedar-
Cabelli to describe the process and the results of explanation-based learning (EBL) (Mitchell, Keller,
and Kedar-Cabelli, 1986; Keller, 1983, 1987, 1988). Keller (1983) and Mitchell, Keller, and Kedar-
Cabelli (1986) emphasize almost exclusively the efficiency aspect of operationalization. Keller
(1988), on the other hand, also raises the issue of approximate correctness and lays a foundation
for making the tradeoff between correctness and efficiency by explicitly considering the higher-
level goals of the agent. Finally, in his dissertation (Keller, 1987), the term ‘operational’ became
synonymous with ‘serving the goals of the agent’ (i.e., maximizing some utility measure that stresses
efficiency while maintaining effectiveness).

Each of these definitions captures different aspects of ‘operationality’. After introducing a few
basic definitions that capture several important relationships among agents, actions, and goals, the
paper reviews each of the major senses of ‘operational’, defining each of them precisely in terms
of the basic definitions. The paper then considers the process of ‘operationalization’ and provides
two different perspectives on this process. Finally, the paper concludes with some prescriptions for
future research in this area.

3 Agents and Goals

We take an agent to be a problem solving system that is embedded in some environment in which
it confronts problems that it attempts to solve. Let us define a problem to be a 3-tuple 〈G,E,R〉
consisting of a goal G, an environment E, and a set of resource constraints R. For example, in the
game of Hearts, the goal might be to win the game, the environment consists of the physical setting
of the players (i.e., each player cannot see the cards in the other players’ hands, cards can neither
be created nor destroyed, the rules of the game must be obeyed, etc.), and the resource constraints
state that the agent must take no more than 30 seconds to decide which card to play.2

In order to define various kinds of operationality, it is convenient to make the following defini-
tions.

Let the relation
acts(Ag,G,E,R,A)

mean that when agent Ag is confronted with the problem determined by 〈G,E,R〉, the agent will
perform a sequence of actions A. The agent is given a complete description of G and perhaps of R

but not necessarily of E. Instead, the agent is embedded within E. Some of the actions A may,
therefore, be actions that gather information about the environment in order to achieve G. This
definition simply describes what the agent will do, which we can verify by observing the actions of

non-empirical—definition of the term. See, e.g., Suppe (1977) and Hempel (1952).
2In general, one can imagine combining the environment, the goal, and the resource constraints into a single, very

complex, goal description. We have chosen to separate these three components so that goals are simple statements
concerning the relationship between the agent’s actions and the environment.
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the agent. It says nothing, however, about whether the actions performed will achieve the goal (or
solve the problem).

Let the relation
achieves(Ag,G,E,R,A)

mean that if agent Ag performs actions A in environment E, then those actions achieve goal G

subject to the resource constraints R. This definition, in contrast to the preceding one, describes
only the relationship between an agent’s actions and a goal. It says nothing about whether the
problem-solving agent would choose to perform these actions when confronted with this goal.

Another peculiarity of this second definition is that it makes goal achievement an all-or-nothing
affair. It is often the case that degrees of satisfaction can be assigned to the achievement of goals.
This can be accomplished by employing the familiar notion of utility.

Let the statement
utility(Ag,G,E,R,A) = u

mean that the utility value of having agent Ag perform actions A with respect to problem 〈G,E,R〉
is u. To actions A that only achieve G approximately, the utility function can assign intermediate
values. Actions A that fully achieve G can be given high utility, and actions that fail to achieve G

can be given low (or even negative) utility.
In addition to capturing degrees of goal satisfaction, the utility function can also be employed

to assess the cost of the selected actions A by making it inversely proportional to the cost of A.
Indeed, the utility function even allows us to capture cases in which we prefer that one agent Ag1

rather than another agent Ag2 achieve the goal in question.
It is important to note that, while the ‘acts’ relation is objective (i.e., all observers would agree

on the actions that were taken by agent Ag when it was confronted with a problem 〈G,E,R〉), the
‘achieves’ and ‘utility’ relations are subjective. To apply these relations, there must exist another
agent called the “observer” (abbreviated Ao). In the case of ‘achieves’, Ao must decide whether the
actions performed by Ag solved the problem 〈G,E,R〉. In this case of ‘utility’, it is Ao who knows
and applies the utility function to evaluate the actions performed by Ag.

With these definitions introduced, let us review the alternative aspects of operationality found
in the machine learning literature.

4 Aspects of ‘Operational’

4.1 Achievable and Testable

One of the fundamental uses of ‘operational’ is to describe goals that can be directly carried out by
an agent. This is the sense in which an operational goal is directly achievable. The goal statement,
G, can be viewed as directly describing the appropriate action for the agent, Ag, to take. Let us
define this sense of ‘operational’ as follows:

A goal G is ‘achievable’ for an agent Ag in environment E under resource constraints R if (a)
when the agent is presented with the goal (and the resource constraints) it performs actions A and
(b) those actions achieve the goal within the resource constraints. Formally,

achievable(G,Ag,E,R) ≡ ∃ A acts(Ag,G,E,R,A) ∧ achieves(Ag,G,E,R,A).

The original sense of ‘operational’ as introduced by Bridgman applies not to goals but to
predicates in general. A predicate’s definition is operational if that definition can be applied by an
agent to test whether the predicate holds in some environment.
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We can define this ‘testable’ sense of ‘operational’ in terms of ‘achievable’ by defining a meta-
level goal, whether-P , whose purpose is to determine whether definition P holds. If the meta goal
is achievable, then the predicate definition P will be said to be ‘testable’.

testable(P,Ag,E,R) ≡ achievable(whether-P,Ag,E,R)

This definition reduces ‘testable’ to ‘achievable’. As we indicate below, making certain predi-
cates (e.g., operator selection heuristics) testable is one technique for making other goals achievable.

4.2 Efficient and Accurate

Within the machine learning literature, ‘operational’ often is synonymous with ‘efficient’. For ex-
ample, in explanation-based learning the goal concept is already achievable before learning starts
(for sufficiently generous resource constraints). The purpose of learning in such cases is to convert
the goal concept into a form that can be applied more efficiently. To capture this aspect of ‘opera-
tional’, we apply the notion of utility, as defined in Section 3. All that is required is to define the
utility function so that it assigns higher utility to actions of lower cost.

Historically, accuracy has not been an aspect of operationality. However, a common strategy
for making a goal more operational is to sacrifice some accuracy to gain efficiency (e.g., Keller,
1987). Hence, any formalization of ‘operational’ should be able to represent this tradeoff. This can
also be accomplished by defining an appropriate utility function. The function must simply assign
higher utility to actions A that more accurately achieve the goal G.

4.3 More Useful

Employing the notion of utility, we say that one goal G1 is ‘more useful’ than another goal G2 if the
actions performed by an agent in response to G1 are “better” (according to some utility function)
than the actions performed by another agent in response to G2. Following Keller (1988), we would
say that G1 is ‘more operational’ than G2.

Formally,

more-useful(G1, Ag1, E1, R1, G2, Ag2, E2, R2) ≡
acts(Ag1, G1, E1, R1, A1) ∧ acts(Ag2, G2, E2, R2, A2) ∧
utility(Ag1, G1, E1, R1, A1) > utility(Ag2, G2, E2, R2, A2).

In short, the utility function prefers the actions that agent Ag1 performs in environment E1

for goal G1 to the actions that agent Ag2 performs in environment E2 for goal G2. If the utility
function rewards accuracy and efficiency, then agent A1 must be solving its problem 〈G1, E1, R1〉
more accurately and more efficiently than Ag2 is solving its problem 〈G2, E2, R2〉.

There are a number of interesting special cases of this relationship. For example, if we require
that Ag1 = Ag2, E1 = E2, and R1 = R2, then more-useful(G1, Ag,E,R,G2 , Ag,E,R) says that
goal G1 can be achieved (by agent Ag) more efficiently and more accurately than goal G2. This
formulation captures an efficiency/accuracy tradeoff.

Another interesting case arises when G1 = G2 and R1 = R2. Under these conditions, more-
useful(G,Ag1, E1, R,G,Ag2, E2, R) asserts that agent Ag1 in environment E1 is more efficient and
more accurate than agent A2 in environment E2 at solving the same goal within the same resource
bounds.

This completes our discussion of the various definitions of ‘operational’. The reader should
notice that only two notions were required to capture all of these different definitions: ‘achievable’
and ‘more-useful’. In the next section, we discuss what it means to “operationalize” a goal according
to these two notions.
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5 Operationalization

5.1 Making Goals Achievable

There has always been a potential paradox surrounding the notion of ‘operationalization’ in the
sense of ‘making goals achievable’. If an agent accepts a goal, “operationalizes” it, and then executes
the operational version of the goal to achieve it, then the goal must already have been operational
for the agent, because it was already achievable by that agent.

The paradox can be resolved by making a distinction between the agent that is performing the
“operationalization”—call it agent Ag1—and the agent that will achieve the “operational” form
of the goal—call it agent Ag2. Suppose that Ag2 cannot achieve the goal as originally specified.
However, Ag1 is able to take the original goal G1 and reformulate it to produce goal G2, which Ag2

is able to achieve. The fact that Ag1 might itself have been able to achieve G1 is irrelevant. The
important thing to note is that the goal has been operationalized for Ag2.

For example, consider the LEX system (Mitchell, Utgoff, and Banerji, 1983), which seeks to
operationalize such concepts as “states in which applying operator OP3 can eventually lead to a
solution” (abbreviated “whether-useful-OP3”). Let agent Ag1 be the entire LEX system (particu-
larly the problem solver, generalizer, and critic), and let agent Ag2 be the part of LEX that decides
whether a given operator should be applied. This agent Ag2 works by consulting a knowledge
base of heuristic rules that examine the current state and determine which operators are ‘useful’.
Before learning occurs, the goal ‘whether-useful-OP3’ is not testable by Ag2, because it has no
heuristic rule for OP3. During the operationalization process, Ag1 converts the original definition
of ‘whether-useful-OP3’ (stated in terms of an exhaustive search for a solution) into a heuristic
rule, which it then gives to Ag2. Because heuristic rules are directly executable by Ag2, the goal
‘whether-useful-OP3’ is now achievable by Ag2.

In general, operationalization can involve more than just reformulating the goal. Because
achievable(Ag,G,E,R) has four arguments, any of those arguments can be changed. Another
way of viewing LEX is that, rather than reformulating G, it is changing the agent Ag2 so that
the original goal is now achievable for Ag2. One can also imagine situations in which agent Ag1

changes the environment or the resource constraints available to agent Ag2. In general, the task
of an operationalizing agent is to search the space of agents, environments, goal formulations, and
resource constraints in order to find a combination that can achieve the original goal.

5.2 Making Goals More Useful

In the discussion of operationalization thus far, we have only considered the process of making a
goal ‘achievable’. By looking at the ‘more-useful’ predicate, we can expand the discussion to include
cases where the operationalizing agent chooses an efficient, but approximate statement of the goal
over an inefficient, but exact goal statement. We can also describe cases where the operationalizing
agent replaces one approximation by a better one while keeping the overall computational cost
constant.

The task of the operationalizing agent Ag1 in this case is to search the space of agents Ag2,
environments E2, goal formulations G2, and resource constraints R2 in order to find a combination
that maximizes utility. To capture approximate satisfaction of a goal, the utility is measured
relative to the original goal, G1. In other words, the goal of the operationalizer is to maximize

utility(Ag2, G1, E2, R2, A)

subject to the constraint that
acts(Ag2, G2, E2, R2, A).
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Agent Ag1 can introduce approximation either by giving Ag2 a goal G2 that only approximates
the original goal G1 or by setting G2 = G1 but having Ag2 perform a set of actions A that only
approximately achieves G2.

In Mostow’s (1981; 1983) Hearts system, FOO, the original goal of “avoid taking points” (G1)
is approximated by the reformulated goal “play low cards in the suit led” (G2). In a particular
game (i.e., a particular environment E1 = E2), this strategy will not achieve G1, but it will tend
to minimize the number of points taken and thereby maximize utility.3

As a side note, there are some situations in which it is possible to “operationalize” one goal by
“operationalizing” another goal. In LEX, for example, the overall goal of the system is to solve
integration problems. The task of the learning subsystem in LEX is to “operationalize” this goal—
that is, to reduce the cost of achieving it. It accomplishes this by “operationalizing” goals such
as ‘whether-useful-OP3’, in the sense of converting them into testable form, so that they can be
applied as search heuristics during problem solving.

5.3 Operationalization Over an Ensemble

So far, we have only considered problem solving and operationalization with respect to a partic-
ular goal, environment, and resource combination. In general, however, an operationalizing agent
Ag1 may be interested in the effectiveness of problem solving over some collection or ensemble of
problems. To formalize this situation, let Π be a collection of problems. Each problem π ∈ Π has
the form 〈Gi, Ei, Ri〉.

Again we can distinguish two cases, depending on whether we focus on the ‘achievable’ or
‘more-useful’ aspects of ‘operational’.

If the measure of success is based on ‘achievable’, then the task of the operationalizing agent, Ag1

is to search the space of problem solving agents for an agent Ag2 for which the largest proportion
of Π is achievable. Formally, let the set S be the set of all problems in Π that are solved by Ag2:

S = {〈Gi, Ei, Ri〉 ∈ Π | achievable(Ag2, Gi, Ei, Ri)}.

The task of Ag1 is to find an Ag2 that maximizes |S|. We call this maximizing the ‘breadth’ of the
problem solver.

On the other hand, if the measure of success is based on maximizing utility, then another degree
of freedom is introduced. We have already seen how the utility measure might permit Ag1 to trade
accuracy for efficiency. Over an ensemble of problems, Ag1 could trade accuracy and efficiency on
some problems for greater total accuracy and efficiency over the entire ensemble. In other words,
the task of Ag1 is to find an agent Ag2 that maximizes

∑

〈Gi,Ei,Ri〉∈Π

utility(Ag2, Gi, Ei, Ri, Ai)

where Ai is determined by
acts(Ag2, Gi, Ei, Ri, Ai).

This strategy is pursued in MetaLEX (Keller, 1987), where Ag2 is modified so that it solves
most problems very efficiently (and correctly) but loses its ability to solve other problems entirely.
Over the ensemble, its performance has improved (at least for the utility functions considered in
Keller, 1987).

3The semantics of ‘avoid’ are troublesome here. We have interpreted G1 to mean “take no points”. By choosing
a utility function that assigns higher utility to taking fewer points, we capture the connotation that Ag1 should “do
its best” to avoid taking points.
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Finally, it is often the case that some problems in the ensemble are more likely to occur than
others. To formalize this, let P be a probability distribution over Π that encodes the likelihood
that agent Ag2 will encounter each of the individual problems within Π. Now the task of Ag1 is to
maximize either the expected size of S or the expected utility over Π.4 This permits Ag1 to allow
poor performance on the unlikely problems in order to obtain very good performance on the more
common problems.

6 Discussion

The history of ‘operationalization’ in machine learning has been marked by the progressive iden-
tification of additional factors that must be considered in assessing the quality of problem solving
performance. The initial papers by Mostow and Hayes-Roth stressed primarily the “directly exe-
cutable” nature of ‘operational’ statements, and thus remained quite close to Bridgman’s original
definition. Subsequent researchers have emphasized additional components of operationality: ef-
ficiency, approximation, and overall utility. There are three important points to note about this
progression.

First, the term ‘operational’ has now become misleading, because it has lost its original machine
learning (and historical) meaning. Consequently, an important goal of this paper is to suggest more
precise terms that can take its place. Instead of the phrase “‘operationalizing a goal,” we advocate
the phrase “improving a problem solver.” When discussing the improvement of a problem solver,
it is important to define what “improvement” means (in terms of a utility function) and to identify
what agent is performing the improvement.

Second, as the definitions of ‘achievable’ and ‘utility’ show, there is no limit to the factors that
can conceivably be considered in assessing the quality of a problem solver. Because the environment
is always included as one of the arguments to these predicates, any aspect of the environment can
potentially influence ‘operationality’. Hence, there is no point in publishing claims of the form “X
is an important factor in determining operationality.”5

Future research in this area should focus on the relationship between changes to problem solving
agents and the resulting changes in utility functions. In other words, for the ‘adapting’ agent, Ag1

to succeed, it must have some knowledge of the utility function being employed to assess problem
solving performance. Furthermore, it must be able to reason with the utility function and select
a set of changes to Ag2 that will increase utility. A nice example of this appears in Keller (1987,
p. 110) Table 3-2, where he shows the relationship between his TRUIFY and FALSIFY operators
and changes in such performance measures as efficiency, breadth, and accuracy. Examples of more
detailed analysis include Minton (1988) and Tambe & Newell (1988), who have attempted to identify
the conditions under which chunking increases utility. An area that is largely unexplored concerns
identifying situations in which changes to the environment yield significant utility improvements.

These remarks reinforce Keller’s observations that information about the utility of achieving a
set of goals must be made explicit to an operationalizing agent if we (and it) are to make progress
in the understanding and construction of agents that can autonomously operationalize a wide range
of goals.

4Of course, we could estimate the expected size of S as the expected utility over Π by employing a utility function
that assigns no utility to unachievable problems.

5This was crisply articulated by Sridhar Mahadevan during the 1988 AAAI Spring Symposium on Explanation-
Based Learning, when he asked the audience if there were any factors that could not influence operationality. No
answers were forthcoming.
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