
The Test Incorporation Hypothesis and the Weak Methods

James S� Bennett

Teknowledge� Inc�

���� Embarcadero Road

Palo Alto� California �	
�


Thomas G� Dietterich�

Department of Computer Science

Oregon State University

Corvallis� Oregon ��

�

Abstract�

Test incorporations are program transformations that improve the performance
of generate�and�test procedures by moving information out of the �test� and
into the �generator�� The test information is said to be �incorporated� into the
generator so that items produced by the generator are guaranteed to satisfy the
incorporated test� This article proposes and investigates the hypothesis that a
general theory of AI methods can be constructed using only test incorporations�
Starting from an initial generate�and�test algorithm� we attempt to derive the
weak methods of heuristic search� hill climbing� and avoiding duplicates via a
series of test incorporations� The derivations show that test incorporations are
very powerful but that occasionally other program reformulations are required�
Nevertheless� we conclude that test incorporation provides a good foundation
upon which to construct a general theory of methods�

Submitted to AAAI���� Philadelphia� PA

aThe authors have chosen to list their names in alphabetical order�



The Test Incorporation Hypothesis and the Weak Methods

� Background and Introduction

In his 	
���� article on ill�structured problems� Allen Newell presented the vision of a comprehensive
theory of AI problem�solving methods in which all methods could be seen as improvements on the
fundamental method of generate and test� His main goal in pursuing such a theory was to identify
and clarify the relationship between the generality of a method
its breadth of application to a
range of problems
and its power
its e�ciency in solving those problems� Such a theory would be
valuable for many reasons� First� it might provide us with a general theory of compilation
that
is� a theory of how ine�cient problem�solving methods can be converted into more e�cient ones�
Second� it might be able to guide us toward the discovery of methods that are simultaneously
general and e�cient� In short� such a theory might enable us to construct a theory of intelligence�

In the years since Newell�s article appeared� few researchers have taken up the quest for his
theory of methods� In this paper we investigate one idea that might provide the seed for such
a theory
test incorporation� Test incorporation is the process of improving a generate�and�test
procedure by moving information out of the �test� and incorporating it into the �generator�� In
a �naive� generate�and�test procedure� the generator merely generates data objects that represent
possible solutions to a problem� The �test� contains all of the knowledge necessary to recognize
whether one of these data objects is in fact a solution� Test incorporation improves the naive
generate�and�test procedure by modifying the generator so that the candidate solutions it generates
are guaranteed to satisfy some portion of the �test�� To obtain the most e�cient procedures� this
process of test incorporation can 	in some cases� be continued until there is no �test� left
it has
all been incorporated into the generator� Everything the generator produces is guaranteed to be a
solution to the problem�

Examples of test incorporation can be found throughout computer science� Consider the prob�
lem of solving the equation x�� � 
�� A naive generate�and�test procedure would generate possible
integer values for x and test them by substituting them into the equation� A more clever approach
applies an algebraic transformation to reformulate the equation 	i�e�� the test� so that it can be
incorporated into the generator� In this case� we obtain the trivial generator that generates only
the value �� It is guaranteed to satisfy the test� so there is no need to even check it�

Some excellent work has been done on identifying particular kinds of test incorporations and
building systems to perform them� Tappel�s 	
���� paper on algorithm design applied test incor�
poration to synthesize e�cient combinatorial algorithms� Mostow 	
���� demonstrated how to im�
prove a heuristic search procedure by incorporating information extracted from the goal statement
	i�e�� the �test��� Analyses of appropriate methods for interleaving tests and generators has been
done by Simon and Kadane 	
���� and Smith and Genesereth 	
����� Douglas Smith 	
���� shows
how to improve generate�and�test algorithms through the use of �sub�space generators�� Amarel
	
���� 
���� 
���� discusses methods for reformulating problem solvers so that e�ciency�producing
transformations can be applied�

Part of the attractiveness of generate�and�test problem solvers and of test incorporation is the
ease with which they yield to a knowledge�level analysis 	Newell� 
��
�� In a naive generate�and�
test procedure� virtually all of the knowledge resides in the �test�� The generator merely knows how
to generate the elements of some search space� Test incorporation can be understood as moving
knowledge from the test to the generator�

Another attractive aspect of the test incorporation paradigm is that it has a direct relationship
to the tradeo� between generality and power� A naive generate�and�test procedure is very general
in the sense that it can easily be modi�ed to solve a di�erent problem� if the generator is su�ciently






broad� we need only change the test� Hence� the naive generator of integers that we used to solve
x � � � 
� could also be applied to solve x� � �x� � 
�x � �� As the knowledge in the test is
incorporated into the generator� this �exibility is lost� As �exibility is lost� however� power is gained�
After incorporation� the test will be invoked less often
useless work 	of evaluating non�solutions�
will be avoided�

To summarize� the notion of test incorporation appears to be a good point of departure for
constructing a theory of methods that can explain both how knowledge becomes �compiled� into
programs and how �exibility is lost because of this compilation process� The purpose of this paper
is to pursue what we call the test incorporation hypothesis�

Test incorporation hypothesis� All methods can be derived via a series of test
incorporations from a naive generate�and�test method�

In this paper� we explore this hypothesis by focusing on the weak methods 	e�g�� hill climbing�
heuristic search� etc��� since these are the methods most closely related to generate�and�test� If the
test incorporation hypothesis is correct� then� at the very least� it should be possible to derive all
of the weak methods via test incorporations from the method of generate�and�test�

The remainder of this paper presents derivations for several of the weak methods� These deriva�
tions demonstrate that the test incorporation hypothesis fails to hold for all of the weak methods�
However� the nature of the failure suggests that a general theory of methods can still be obtained
by augmenting test incorporation with other program transformations that reformulate the test
without altering the generator�

� Previous analysis of the weak methods

The weak methods have recently been the target of an alternative analysis by Laird and Newell
	
���a� 
���b�� They seek to develop an architecture in which the di�erent weak methods can be
expressed as a set of very closely related computer programs� They have developed a core computer
program 	the �universal weak method� or UWM� and a set of program extensions called �method
increments�� Each weak method can be obtained by combining the core computer program with
one or more of the method increments� Hence� their analysis provides one possible approach to
generating the weak methods�

The core program and the method increments are represented as sets of production rules in the
SOAR architecture 	Laird� 
����� The program and the method increments are combined simply
by forming the union of the sets of production rules� This modularity is obtained by constraining
the production rules to interact only by expressing �preferences� for the future actions of the
architecture�

Does the universal weak method provide the generative theory of methods that we are searching
for� The answer is no� The UWM and the SOAR architecture do not provide us with a set of
operators that can be applied to convert weaker problem solvers into more powerful ones� Instead�
they only provide us with an architecture for merging method increments� It is up to us to develop
method increments that can combine with the UWM to yield powerful composite methods� Even
this strategy cannot be pursued inde�nitely� To quote Laird and Newell 	p� ���� �At some point�
� � � the form of automatic assimilation required by a universal weak method fails as the knowledge
about the task environment becomes su�ciently complex� We do not know where such a boundary
lies � � � ��

Recent work by Laird� Rosenbloom� and Newell 	in press� has extended the SOAR architecture
to include chunking
a general mechanism for strengthening any search method that employs sub�
goaling� Chunking can be viewed as a simple kind of test incorporation in which knowledge made

�



explicit during the processing of a subgoal is incorporated into the generator of future problem
solving actions�

� Notation and architectural assumptions

In order to describe our derivations of the weak methods� we need a notation for procedures� We
will employ data �ow diagrams containing four kinds of components� generators� tests� functions�
and memories� These are connected by data �ow links that carry single data items� There is no
global scheduling� Each component executes as soon as it receives data items on all of its inputs�
As it executes� the component can decide whether or not to consume each of these input data
items� Since each data��ow link can hold only one data element at any time� this can be used to
synchronize parallel processes� Brie�y� each of the four components operates as follows�

A generator� in its simplest form� has no inputs and only one output� It generates elements
over some domain and places them on its output� Except as noted below� we make no assumptions
about the internal operation of our generators� They can best be modeled as doing random sampling
with replacement from some domain set� Consequently� they do not generate the domain set in any
particular order� and they do not produce any �stop signal� to indicate that they have exhausted
the domain set� If a generator has an input� then each time an item arrives on that input� it may
cause the set being generated to change� Some generators have a termination input that causes
them to cease execution�

A test is a �lter or switch� It has one input and one or more outputs� In the usual case� the
test has two outputs� �success� and �failure�� For each input data item� it determines whether the
input satis�es some condition T 	x�� and if it does� it is sent out the �success� output� otherwise� it
is sent out the �failure� output� 	In this paper� only success outputs are shown��

A function has one or more inputs and one output� It computes its output as some function 	in
the mathematical sense� of its inputs�

A memory has two inputs and one output� One of the inputs causes data to be stored in the
memory� The other input requests that data be retrieved and sent out the output� We also employ
cumulative memories in which each input is added to a growing set of elements� The entire set of
elements is produced in response to a retrieval request�

None of these components should be regarded as primitive� Each generator� test� function� and
memory may in fact be constructed as a combination of more primitive generators� tests� functions�
and memories� This regress terminates in the underlying hardware� which we will ignore in this
paper�

Aside from the given inputs� there are no other inputs from the environment� In this paper� we
do not discuss interaction with an external environment�

� The Naive Generate�and�Test Methods

Our goal is to derive the weak methods via a series of test incorporations applied to a single
�naive� generate�and�test procedure� However� it is not possible to develop a single generate�and�
test procedure than can solve all problems� Instead� there appear to be three broad classes of
problems� each with its own �naive� generate�and�test method� The three problem classes are 	a�
�nd one problems� in which the goal is to �nd a single data item that is a solution to the problem�
	b� �nd all problems� in which the goal is to �nd all legal solutions to the problem� and 	c� �nd

best problems� in which the goal is to �nd the best solution according to some optimality criterion�

�



G �c �T
c

Figure 
� Naive generate�and�test method for �nd one problems

G �S �T
S

Figure �� Naive generate�and�test method for �nd all problems

For each of these classes� we want to construct a naive generate�and�test procedure that satis�es
the following four properties� First� it must have the form of a single generator connected to a single
test� Second� the generator should only produce candidates that could constitute entire solutions to
the problem� Third� the only knowledge in the generator should be knowledge of how to generate
elements from the domain set� Fourth� the only knowledge in the test should be knowledge of how
to recognize legal solutions�

There are two reasons for stating these criteria� First� we want to limit the complexity of the
naive generate�and�test procedure� If there were no constraints placed on the procedure 	i�e�� if
other components were permitted�� our test incorporation hypothesis could be trivially satis�ed�
Second� we want to preserve the knowledge level analysis of the generate�and�test procedure by 	a�
placing limits on the communication between the generator and the test and 	b� keeping the control
of the procedure very simple� Communication must be limited� because it permits knowledge to �ow
between the test and the generator� thus defeating the knowledge level analysis� Control must also
be kept simple� because complex control can itself embody signi�cant amounts of knowledge� We
want a generate�and�test problem solver that is so simple that as soon as the generator produces
a solution acceptable to the test� the procedure can halt� All additional complexity should be
introduced as the result of test incorporations�

For �nd one problems� it is easy to �nd a naive generate�and�test procedure that satis�es
the properties given above� Figure 
 shows a data �ow diagram for �nd one generate�and�test
procedures� The generator produces candidate solutions until the test is satis�ed� The paradigmatic
example of a �nd one problem is the task of opening a combination safe� If the safe is well designed�
the only way to open it is to generate and test all possible combinations until one succeeds� The
generator in such situations is the person trying to open the safe� and the test is the safe itself�

To construct naive generate�and�test procedures for the other two classes of problems� we must
convert them into �nd one problems� Figure � shows the �ow diagram for �nd all problems� Each
time the generator runs� it produces a set of candidate solutions� The test must determine 	a�
whether each member of the set is indeed a solution 	Tsol� and 	b� whether the set contains all
possible solutions 	Tdone�� If such a set of all legal solutions is produced� the test will place it on its
success output and the problem solver will halt� This procedure satis�es all three of our properties�

We have not found it possible to construct a �nd best method that satis�es all four of the
properties mentioned above� We have had to compromise on property two
namely� that each
item produced by the generator could serve as the complete solution to the problem� For �nd best

problems� the complete solution is simply a single element from the solution space� Suppose we
used the generator from Figure 
 to generate the individual elements in the space� In that case� the

�



G �hc�Si �T
hc� Si �Ffirst

c

Figure �� Naive generate�and�test method for �nd best problems

test would need to generate for itself all of the other items in the solution space and check to see if
the generated item was the optimum� But such a test knows too much
it knows how to generate
the entire space as well as how to recognize a solution� There is no need for a separate generator�

To resolve this problem� we have chosen to let the generator provide the test with some informa�
tion in addition to the candidate �best� item� Figure � shows our naive �nd best procedure� The
generator produces ordered pairs of the form hc� Si where c is a candidate for the best solution� and
S is a set of candidates that the generator is proposing as the set of all possible solutions� The test
must determine 	a� whether each member of S is indeed a solution 	Tsol�� 	b� whether S contains
all possible solutions to the problem 	Tdone�� and 	c� whether c is the best solution in S 	Tbest��
When a candidate solution satis�es all three of these tests� then the c portion of the ordered pair
is produced as the answer� This is the purpose of the selector function Ffirst in the �gure�

� Derivation of the Weak Methods

Having described the naive generate�and�test methods for each problem class� we can now derive
the various weak methods familiar to researchers in arti�cial intelligence� Space limits prevent us
from showing derivations for all of the weak methods� Instead� we show 	a� how to obtain the
familiar weak methods for �nd all and �nd best problems� 	b� how to derive heuristic search� 	c�
how to combine heuristic search with the �nd best method to yield simple hill climbing� and 	d�
how to derive the weak method of generate�and�test avoiding duplicates�

��� Deriving the standard �nd all and �nd best weak methods

The naive methods described in the previous section are somewhat unorthodox� The standard ap�
proach to solving �nd all and �nd best problems is to accumulate individual solutions in a memory�
and� in the case of �nd best problems� keep track of the best solution generated� In this section� we
show how these more familiar procedures can be derived through a series of incorporations applied
to the naive methods of the previous section�

All incorporations require some ability to analyze the internal structure of the generator and the
test� In our naive �nd all method� the test can be subdivided into two subtests Tsol 	which identi�es
legal solutions� and Tdone 	which determines when all solutions have been found�� The generator�
which in Figure � produces entire sets of candidate solutions� usually contains a subgenerator 	Gel�
that generates individual elements from the domain� When these substructures are available� it
is possible to rearrange the problem solver and incorporate Tsol into the generator� The results
are shown in Figure �� Elements generated by Gel are immediately �ltered by Tsol� This vastly
improves the procedure� Next these solutions are accumulated in a memory� Msols� As each element
enters Msols� it also causes Msols to produce as output all of the solutions that have accumulated to
this point� This set S of elements is passed to Tdone� This gives us the familiar method for �nding
all the solutions to a problem� which we will call Gall�

To obtain the familiar �nd best procedure� we �rst divide the test into three subtests� Tsol�

�



�

Msols
� �el

Tsol�el
Gel

S
Tdone

Figure �� The �nd all procedure after incorporating Tsol

Gall
�S

�

Geach
�

S

c
Fpair

�

hc�Si

Tbest
hc� Si� c

Ffirst
�

Figure �� The �nd best method after incorporating Tsol and Tdone

Tdone� and Tbest� Then we incorporate Tsol and Tdone into the generator to yield Gall as described
above� When Gall produces the set S of all possible solutions� S is passed to Geach� This generator
takes a set as an input and generates each of its elements in turn� These elements and the original
set are both passed to the function Fpair� which constructs the ordered pairs that are output by
the modi�ed generator� These ordered pairs� since they already satisfy Tsol and Tdone� need only
be checked by Tbest to �nd the best solution� The resulting procedure is shown in Figure ��

This �nd best procedure is still quite ine�cient� because it doesn�t take any advantage of the
internal structure of Tbest� For some optimization problems� however� this is the best that can be
done� Consider� for example� the problem of �nding the point in a set of points in n dimensional
space that is nearest the center�of�mass of the set� The computation of the center�of�mass can be
performed incrementally� However� the problem of �nding the point nearest to this center�of�mass
requires explicit storage of the S set 	Msols� and some 	possibly clever� enumeration of this set
analogous to Geach�

For many optimization problems� however� the internal structure of Tbest involves the repeated
application of a comparative test� Tbetter� Tbetter determines whether one candidate solution is
better than another� If Tbetter is available� we can incorporate it immediately after Tsol� Figure �
shows this improved version of the �nd best method� Gall is expanded to show Tsol� Msols� and
Tdone� The memory Mbsf stores the best solution that we have seen so far� Fgate is a simple function
that passes c through unchanged� The output of Tdone acts as a gating signal to release c� We have
not shown all of the fetch signals going into Msols and Mbsf �

This incorporation is an example of the �nite di�erencing transformation studied by Paige
	Paige and Koenig� 
����� One form of �nite di�erencing converts a function F 	S� over a set S
into a new function F �	el�� where el is a new element being added to S� In Figure �� the combination
of Geach� Fpair� Tbest� and Ffirst can be viewed as a function for computing the best element of S�
In Figure �� the combination of Tbetter and Mbsf constitutes the �nite di�erence of this function
with respect to the changes in S that occur at Msols�

One further incorporation can be performed to eliminate Tdone� Many generators over �nite
sets produce the elements systematically in such a way that it is easy to tell when the generator has
produced all possible elements� Hence� the generator can signal when Tdone is satis�ed� Figure �

�



Gel
� �

�

el
Tsol

Fgate
�

�
�c c

Tbetter Mbsf

el

�

�

S
Msols Tdone

bestsofar

�c

Figure �� Improved �nd best method incorporating Tbetter

Gel �

done

el� �Tsol
el
�

Tbetter �Mbest

c �Fgate

c �c

bestsofar

Figure �� Find best method exploiting the done signal from Gel

shows the �nd best procedure with this incorporation performed�
These incorporations demonstrate the power of test incorporation and lend support to the test

incorporation hypotheses� Each of the standard �nd best and �nd all methods was obtained via a
series of test incorporations applied to a naive generate�and�test method�

��� Derivation of Heuristic Search

So far� we have only considered generators� such as Gel� that generate whole solution candidates�
However� virtually all AI search methods work by incrementally constructing and evaluating partial
solutions� Game�playing programs� for example� do not generate entire games and then test to see
if they have won� Instead� they generate a sequence of moves by analyzing the board position at
each stage in the game and selecting moves from that position that appear promising� Hence� in
order to derive the weak method of heuristic search� we must examine the internal structure of the
generator� Gel� and �nd opportunities there for incorporating tests�

Figure � shows the internal structure of an incremental path�extending generator similar to one
employed by Mostow 	
���a�� Mpath is a cumulative memory for the set of partial paths that have
already been generated� Each trip around the loop� the generator Gpath starts generating all of
the elements in Mpath until one of them satis�es the path test Tpath� While Gpath and Tpath are
selecting a path� Gstep and Tstep are selecting a step e to concatenate onto the end of the path in
order to extend it� Once both of these are selected� Tappl determines whether the selected extension
e can be applied to the selected path p� If not� a new path and a new extension will be selected�
If so� the extension is applied to the path by Fapply to produce a new path p�� At this point� Tcomp

determines whether p� is a complete path� If so� it is produced as the output of this composite
generator� In any case� it is merged into the remaining paths in Mpath�

�

This path�extending generator can be made more e�cient by modifying Gstep so that it takes
the output of Tpath� the chosen path� as an input and incorporates Tappl 	see Figure ��� In other

�In problem space terminology� a partial path corresponds to a state� and a path extension corresponds to an

operator that can be applied to the state to yield a new state�

�



S

Gpath

Gstep

� Tpath

Tstep
e

p

Fapply

�
�

�
Tappl

p

Mpath Tcomp
��
p�

e

e
p�

�

� p
� �

�

Figure �� A path�extending generator

Mpath
S� �Gpath

p

�

Tpath

Gstep Tstep

�

e �

p

�
�

�

p�

Fapply
�Tcomp

e
p�

Figure �� The path�extending generator after incorporating Tappl

words� Gstep will only generate extensions that can be applied to the chosen path� We will consider
this more e�cient generator as the starting point for developing the heuristic search method�

Now that we have examined the internal structure of this path�extending generator� let us
consider what incorporations can be performed when we use it in place of Gel in Figure �� The
key to deriving the various forms of heuristic search is to incorporate parts of Tsol and Tbetter
as heuristic preferences in Tpath and Tstep� For example� if Tpath always chooses the path most
recently added to Mpath� then we obtain the weak method of depth��rst search� If Tstep prefers
steps that reduce di�erences between the current state and the goal state� then we obtain means�
ends analysis 	MEA�� In this case� part of Tsol 	the knowledge of the goal� has been incorporated
into Tstep� Mostow 	
���a� 
���b� demonstrates a system that takes the overall test� Tsol� and
incorporates all or part of it into Tpath and Tstep� His system also incorporates knowledge from Tsol
into the initial state of Mpath and into an additional test placed on the output line between Fapply

and Mpath�

��� Derivation of Hill�climbing

Another method that exploits the structure of a path�extending generator is the method of simple
hill climbing 	SHC�� At each point in the search space� SHC searches for a path extension that will
improve the evaluation of the current state� As soon as such a path extension is found� it is taken�
If no such path extension can be found� then the search terminates and returns the current state� In
other words� the procedure climbs upward to the top of a hill� but it doesn�t necessarily follow the
steepest path� Simple hill climbing will only succeed in �nding a global optimum if two properties
are satis�ed� First� there must be exactly one hill 	i�e�� the space is unimodal�� and second� mesas
and ledges 	i�e�� regions of adjacent points with equal evaluations� must not exist�

When we attempt to derive SHC from the �nd best procedure of Figure �� we encounter di��
culties� The initial test for SHC contains the three subtests Tsol 	which �lters out illegal points��
Tbest	c� S� � �x � S x �� c � Tbetter	c� x� 	which de�nes global optimum�� and Tdone 	which deter�

�



� �c
Gel Tsol

c �Thill
c

Figure 
�� An initial program for Simple Hill Climbing

mines when all possible points have been generated�� None of these subtests says anything about
unimodality� mesas� or ledges� The unimodality property can be represented as

Puni � �s��op Tappl	op� s� � Tbetter	s� Fapply	op� s���� Tbest	s� S��

This says that local optimality 	in which every operator op applied to s yields an inferior state�
implies global optimality� The absence of mesas and ledges can be represented as

Pmesa � �s� s�� op Fapply	op� s� � s� � �Tbetter	s� s
�� � Tbetter	s

�� s���

This says that if two states s and s� are adjacent� then one is better than the other�
In previous sections� we have seen that test incorporation can require decomposing and reformu�

lating the generator and the test� However� in the case of SHC� no reformulation of the generator or
of the test alone can produce the Puni and Pmesa properties� This is because these properties arise
from the interaction between the structure of the generator and the structure of the test� Puni and
Pmesa each refer to parts of the generator 	i�e�� Tappl and Fapply� and parts of the test 	i�e�� Tbetter��
Hence� simple hill climbing provides a counterexample to the test incorporation hypothesis�

Further improvement of the �nd best procedure from Figure � requires making explicit Puni

and Pmesa� If these properties are made explicit� then the naive problem solver can be reformu�
lated to have a di�erent test containing two subtests� Tsol	c� and Thill	c�� Thill	c� is de�ned as
�op Tappl	op� c� � Tbetter	c� Fapply	op� c��� Notice that neither test requires S in order to determine
whether c is optimal� Hence� we can improve the search procedure as shown in Figure 
�� This
procedure simply generates elements from the space and checks each one to see if it is a local
maximum�

Now suppose that Gel is a path�extending generator of the kind shown in Figure �� There are
two incorporations that can usually be done� First� Tsol can be incorporated into Gstep so that
every path 	state� generated by the incremental generator is a legal point in the space� Second�
as mentioned above� Tappl can be incorporated into Gstep so that only operators applicable to the
path selected by Tpath are generated� These two incorporations produce a more e�cient generator
of all possible points in the space�

Now we arrive at the incorporations crucial to hill climbing� The �rst incorporation changes
Mpath from a cumulative memory to a memory for a single path� It also inserts Tbetter after Fapply

to check if the newly derived state is better than the previous one� The new state is only stored in
Mpath if it is better than the previous state� These changes do not incorporate all of Thill� They
only incorporate the necessary condition that if two states s and s� are adjacent and s is known to
be better than s�� then s� cannot be the optimum� Figure 

 shows the resulting data��ow graph�

The second important incorporation completely eliminates the need to test Thill� This incorpo�
ration can only be performed if Gstep is capable of producing a stop signal when it has generated
all possible applicable steps� In such cases� this means that none of the steps generated by Gstep

were acceptable to Tstep or Tbetter� hence� all steps applicable to p lead to states that are worse than
p� and hence� p is the optimum� To carry out the incorporation� we connect the stop signal from

�



�

Mpath
�S Gpath

�

�

p

Gstep
�e

Tpath

�e
Tstep

� ��

p

�
Fapply p�

p�

Tbetter

� Thill �p
�

Figure 

� Improved hill climbing

Mpath

�

p

Tstep

p

�
�

Gstep

e e� � �
Fapply

Tbetter
p�

p

�

�

� p�

�
Fgate

p
p

done

Figure 
�� Final version of Simple Hill Climbing

Gstep in such a way that it gates p to the output� Figure 
� shows the traditional procedure for
simple hill climbing�

From this analysis of SHC� we can see that the test incorporation hypothesis is not correct�
In order to derive all of the weak methods� test incorporation needs to be augmented by other
transformations that are able to reformulate the generate�and�test problem solver so that further
test incorporations can be applied� We discuss this problem in more detail below�

��� Generate�and�Test Avoiding Duplicates

The �nal weak method that we wish to derive is the simple method of avoiding the generation of
duplicate candidates� As mentioned above� we do not assume that our generators are irredundant

they may produce duplicates� For any problem in which the test is expensive to apply� it is
worthwhile to modify the generator so that it does not produce duplicates� This can be done� for
example� by recording in a memory 	Tfail� all items that have failed the test and passing new items
out to the test only if they have not been previously rejected 	see Figure 
���

At �rst glance� the decision to avoid duplicates appears to be another example of a program
improvement that does not involve test incorporation� No additional test is being satis�ed as a result

�G c

Mfail

� Tnew

�

�c T

c

failure

�success c

Figure 
�� Generate�and�test avoiding duplicates


�



of this improvement to the program� However� if we consider what happens when the procedure is
executed� we see that information is �owing from the test back to the generator
information about
what items have failed to pass the test� This information is incorporated into the generator so that
it doesn�t make the same mistake in the future� We call this run�time test incorporation
that is�
incorporation of test information revealed during the execution of the problem solver�

	 Discussion

The preceding derivations demonstrate that test incorporation provides a unifying framework for
many kinds of program optimizations� The general procedure for performing an incorporation
involves 	a� analyzing the internal structure of the test to �nd a subtest Tsub to incorporate� 	b�
analyzing the internal structure of the generator to �nd a place in which Tsub can be incorporated�
and 	c� carrying out the incorporation� Steps 	a� and 	b� may involve sophisticated reasoning� In
order to carry out this analysis� the programmer must have access to the internal structure of the
generator and the test� Indeed� in the combination safe example� the safe cracker does not have
access to the internal structure of the test 	i�e�� the safe�� An exhaustive generate�and�test method
must be used� and no test incorporations are possible 	except avoiding duplicate combinations��
The converse case� in which the generator is inaccessible� arises as well� Consider an in�exible
program for displaying bulletin�board messages 	i�e�� the generator�� The reader of these messages
can recognize which messages are relevant 	i�e�� the reader is the test�� However� the reader can�t
communicate this information to the bulletin�board program� because its internal structure isn�t
available for modi�cation� The reader must step through the messages one�by�one until the relevant
message appears�

While test incorporation provides a fruitful tool for analyzing the weak methods� it is also clear
that test incorporation cannot� by itself� provide a general theory of AI methods� There are two
major problems�

First� the SHC example shows that the test incorporation hypothesis is false� Not all of the
weak methods can be derived via test incorporation� The di�culty is that the generator and the
test in the naive generate�and�test procedure are very decoupled� All that the test knows about
the generator is that it produces candidate data items in a certain format� The generator knows
nothing about the test� This decoupling is deliberate
we wanted the test to be the repository
for virtually all knowledge about the problem so that the naive generate�and�test procedure would
be very general and �exible� However� we can see in the SHC case that sometimes the successful
incorporation of test knowledge requires that the test �rst be reformulated to take into account the
internal structure of the generator� This reformulation is not� itself� a test incorporation�

The second failing of test incorporation as a general theory of methods is that it does not provide
a complete account of the tradeo� between between generality and power� It is certainly true that
test incorporations reduce the generality of programs� However� there are other determinants of
program generality
namely� the degree to which the generator and the test can each be factored
into weakly interacting subcomponents� This ability to be factored is critical to e�ective test
incorporation� The incremental path�extension generator� for example� is much more �exible than
a random generator that samples with replacement from some set� Many di�erent kinds of test
information can be incorporated into the path�extension generator� Indeed� all of the basic search
methods 	depth��rst search� breadth��rst search� A � beam search� etc�� can be obtained via
simple incorporations to the path�extension generator� To develop a general theory of methods�
we need to acquire some understanding of the kinds of generators that can serve as the targets of
incorporations� Similarly� we need to study the kinds of test information that can be incorporated�







Despite these di�culties� test incorporation transformations provide an important foundation
for building a theory of methods� There are several directions that we are pursuing in our attempts
to construct such a theory�

We have conducted preliminary test incorporation analyses of some expert systems 	e�g�� DEN�
DRAL� MYCIN� and EL�� The naive generate�and�test versions of these systems include large
amounts of knowledge in their tests� The problem�solving strength of these systems
in compar�
ison to the weak methods
derives from the fact that this knowledge has been incorporated into
their 	often implicit� generators 	see Amarel� 
����� These incorporations are made during system
development by the knowledge engineer and the expert�

We are also pursuing the design of an automated �incorporation problem solver� 	IPS� that
performs test incorporations along the lines already investigated by Tappel and Mostow� The IPS
is itself a �nd best procedure that attempts to �nd the most e�cient version of a given generate�
and�test program 	c�f� Kant� 
����� This perspective raises the possibility of applying the IPS to
itself 	Kahn� 
�����

The �nal direction we are pursuing concerns run�time incorporation� Most of the incorporations
discussed in this paper have required that all the knowledge in the test is available for incorporation
before problem�solving begins� Often� however� the knowledge required to apply incorporations does
not become available until problem solving is under way� The derivation of avoid duplicates points
out the importance of incorporations that occur at run�time� The avoid duplicates procedure can
be viewed as a combination of a simple generate�and�test procedure and a very simple IPS that
performs the run�time incorporations�

If we consider intelligence to be the ability to apply knowledge e�ectively� then a system is more
intelligent to the extent that it is able to perform test incorporation� Test incorporation converts
knowledge from an ine�ective� static form to a more e�ective� generative form� Our preliminary
analyses indicate that intelligent problem�solving is characterized both by the procedures employed
to solve problems directly and by the techniques applied to incorporate knowledge into those
procedures�


 Acknowledgments

The authors wish to thank Bruce Porter� Nicholas Flann� and Dan Corpron for critical readings
of the text� This research was supported in part by the National Science Foundation under grant
numbers IST���
���� and DMC���
�����

� References

Amarel� S� 
���� On the representation of problems of reasoning about actions� In Michie 	ed��
Machine Intelligence �� U� of Edinburgh Press�

Amarel� S� 
���� Expert behavior and problem representations� Rep� No� CBM�TR�
��� Depart�
ment of Computer Science� Rutgers University�

Amarel� S� 
���� Program synthesis as a theory formation task
problem representations and
solution methods� Rep� No� CBM�TR�
��� Department of Computer Science� Rutgers
University�

Kahn� K� M� 
���� A partial evaluator of Lisp written in Prolog� UPMAIL memo� Department of
Computing Science� Uppsala University�


�



Kant� E� 
���� E�ciency considerations in program synthesis� A knowledge�based approach� Doc�
toral dissertation� Rep� No� STAN�CS�������� Department of Computer Science� Stanford
University�

Laird� J� E� 
���� Universal subgoaling� Rep� No� CMU�CS����
��� Doctoral Dissertation�
Department of Computer Science� Carnegie�Mellon University�

Laird� J� E�� and Newell� A� 
���a� A universal weak method� Rep� No� CMU�CS����
�
�
Department of Computer Science� Carnegie�Mellon University�

Laird� J� E�� and Newell� A� 
���b� A universal weak method� summary of results� Proceedings of
IJCAI���� Los Altos� Morgan�Kaufman� ��
!����

Laird� J� E�� Rosenbloom� P� S�� and Newell� A� In press� Chunking in Soar� The anatomy of a
general learning mechanism� To appear in Machine Learning�

Mostow� D� J� 
���a� Machine transformation of advice into a heuristic search procedure� In
Machine Learning� Michalski� R� S�� Carbonell� J� G�� and Mitchell� T� M�� 	eds��� Palo Alto�
Tioga� ���!����

Mostow� D� J� 
���b� A problem�solver for making advice operational� In Proceedings of AAAI����
Los Altos� Morgan�Kaufmann� ���!���

Newell� A� 
���� Heuristic programming� ill�structured problems� in Progress in Operations Re�

search� Arnofsky� J�� 	ed��� New York� Wiley� ���!�
��

Newell� A� 
��
� The Knowledge Level� AI Magazine � 	�� 
!���

Paige� R�� and Koenig� S� 
���� Finite di�erencing of computable expressions� ACM Transactions

on Programming Languages and Systems� � 	�� ���!����

Simon� H� A�� and Kadane� J� B� 
���� Optimal problem�solving search� all�or�none solutions�
Arti�cial Intelligence� � 	�� ���!����

Smith� David E�� and Genesereth� M� R� 
���� Ordering conjunctive queries� Arti�cial Intelligence�
�� 	�� 
�
!�
��

Smith� Douglas R� In press� On the design of generate�and�test algorithms� subspace generators�

Tappel� S� 
���� Some algorithm design methods� In Proceedings of AAAI���� Stanford� California�
��!���


�


