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Abstract

This paper describes a fully automated stonefly-larvae

classification system using a local features approach. It

compares the three region detectors employed by the sys-

tem: the Hessian-affine detector, the Kadir entropy detector

and a new detector we have developed called the princi-

pal curvature based region detector (PCBR). It introduces

a concatenated feature histogram (CFH) methodology that

uses histograms of local region descriptors as feature vec-

tors for classification and compares the results using this

methodology to that of Opelt [11] on three stonefly identifi-

cation tasks. Our results indicate that the PCBR detector

outperforms the other two detectors on the most difficult

discrimination task and that the use of all three detectors

outperforms any other configuration. The CFH methodol-

ogy also outperforms the Opelt methodology in these tasks.

1. Introduction

Population counts of stonefly (Plecoptera) larvae and

other aquatic insects inhabiting stream substrates are known

to be a sensitive and robust indicator of stream health and

water quality. Biomonitoring using aquatic insects has been

employed by federal, state, local, tribal, and private re-

source managers to track changes in river and stream health

and to establish baseline criteria for water quality standards.

However, the sorting and identification of insect specimens

can be extremely time consuming and requires substantial

technical expertise. Thus aquatic insect identification is a

major technical bottleneck for large-scale implementation

of biomonitoring. Larval stoneflies are especially important

for biomonitoring, because they are sensitive to reductions

in water quality caused by thermal pollution, eutrophica-

tion, sedimentation, and chemical pollution.

In addition to its practical importance, the automated

recognition of stoneflies raises many fundamental computer

vision challenges. Stonefly larvae are highly-articulated ob-

jects with many sub-parts (legs, antennae, tails, wing pads,

etc.) and many degrees of freedom. Some taxa exhibit in-

teresting patterns on their dorsal sides, but others are not

patterned. Some taxa are distinctive; others are very diffi-

cult to identify. Finally, as the larvae repeatedly molt, their

size and color change. This variation in size, color, and

pose means that simple computer vision methods that rely

on placing all objects in a standard pose cannot be applied.

Methods that can handle significant variation in pose, size,

and coloration are needed.

To address these challenges, we based our method on a

bag-of-features approach [3, 11] to classification, which ex-

tracts a bag of region-based features from the image without

regard to their relative spatial arrangement. The features

are then summarized as a feature vector and classified via

state-of-the-art machine learning methods. Our approach

involves five stages: (a) region detection, (b) region descrip-

tion, (c) region classification into features, (d) combination

of detected features into a feature vector, and (e) final clas-

sification of the feature vector. For region detection, we em-

ploy three different algorithms: the Hessian-affine detector

[9], the Kadir entropy detector [5], and a new detector that

we have developed called the principal curvature-based re-

gion detector (PCBR). All detected regions are described

using Lowe’s SIFT descriptor [7]. At training time, a Gaus-

sian mixture model (GMM) is fit to the set of SIFT vectors,

and each mixture component is taken to be a feature. At

classification time, each SIFT vector is assigned to the most

likely feature and a histogram consisting of the number of

SIFT vectors assigned to each feature is formed. Feature



vectors from each of the separate detectors are concatenated

to produce a larger vector when working with combinations

of detectors. The final labeling of the specimens is based

on these feature vectors and is performed by an ensemble

of logistic model trees [6].

In related work, the ABIS system [1] performs iden-

tification of bees based on features extracted from their

forewings. It uses both geometric features (lengths, angles

and areas) and appearance features. It requires manual po-

sitioning of the insect and prior expert knowledge about

the forewings. DAISY [10] is a general-purpose identi-

fication system that has been applied to several arthropod

identification tasks. It uses appearance features and a ran-

dom n-tuple classifier (NNC) [8]. It requires user interac-

tion for image capture and segmentation. SPIDA-web [4]

is an automated identification system that applies neural

networks for species classification from wavelet encoded

images. SPIDA-web’s feature vector is built from a sub-

set of the components of the wavelet transform using the

Daubechines 4 function. The spider specimen has to be

manipulated by hand, and the image capture, preprocessing

and region selection also require direct user interaction.

The goal of our work is to provide a rapid-throughput

system for classifying stonefly larvae to the species level.

To achieve this, we have developed a system that combines

a mechanical apparatus for manipulating and photographing

the specimens with a software system for processing and

classifying the resulting images. Section 2 describes the

full stonefly identification system, and Section 3 describes

a large set of experiments and results.

2. Stonefly Identification System

The stonefly identification system consists of a mechan-

ical apparatus for automated mechanical manipulation and

imaging of the specimens and a software system consist-

ing of local feature detection, description, classification and

combination into a feature vector that is used by an ensem-

ble of logistic model trees to identify the specimen.

2.1. Automated Mechanical Manipulation
and Imaging of Stonefly Larvae

Figure 1(a) shows the mechanical apparatus, which con-

sists of two alcohol reservoirs connected by an alcohol-

filled tube. A specimen is manually inserted into the plexi-

glass well shown at the right edge of the figure and pumped

through the tube. Infrared detectors positioned part way

along the tube detect the passage of the specimen and cut

off the pumps. Then a side fluid jet “captures” the speci-

men in the field of view of the microscope. When power

to this jet is cut off, the specimen settles to the bottom of

the tube where it is photographed by a QImaging MicroP-

ublisher 5.0 RTV 5 megapixel color digital camera, which

is attached to a Leica MZ9.5 high-performance stereomi-

croscope at 0.63x magnification (Figure 1b). With this ap-

paratus, we can image a few tens of specimens per hour.

Figure 3 shows some example images obtained using this

stonefly imaging assembly.

(a) (b)

Figure 1. (a) Prototype mirror and transporta-
tion apparatus. (b) Entire stonefly transporta-
tion and imaging setup (with microscope and

attached digital camera, light boxes, and
computer controlled pumps for transporting
and rotating the specimen.

2.2. Feature Detection

We apply three region detectors to each image: (a) the

Hessian-affine detector [9], (b) the Kadir entropy detector

[5], and (c) our new PCBR detector. The PCBR detector

was developed to complement previous detectors which use

the gradient orientation information directly from the im-

age. Our method performs a watershed segmentation of an

eigenimage of the principal curvatures of the insect image

to obtain useful regions. The algorithm, which is illustrated

in Figure 2, can be summarized as follows:

1. Compute the Hessian matrix image describing each

pixel’s local image curvature.

2. Form the principal curvature image by extracting the

largest positive eigenvalue from each pixel’s Hessian

matrix (Figure 2b).

3. Apply a gray scale morphological close on the princi-

pal curvature image to remove noise and threshold the

resulting image to obtain a “clean” binary principal

curvature image (Figure 2c).



(a) (b)

(c) (d)

(e) (f)

Figure 2. Regions defined by principal cur-
vature. (a) the original image, (b) principal
curvature magnitude, (c) binary curvatures,

(d) watershed boundaries, (e) watershed re-
gions, (f) fitted elliptical regions.

4. Segment the clean image into regions using the

watershed transform (Figures 2d and 2e).

5. Fit an ellipse to each watershed region to produce the

detected interest regions (Figure 2f).

Each detected region is represented by a SIFT vector

using Mikolajczyk’s modification to the binary code dis-

tributed by Lowe [7].

2.3. Training and Classification

Our approach to classification of stonefly larvae closely

follows the “bag of features” approach but with several

modifications and extensions. Tables 1, 2, and 3 provide

pseudo-code for our method. The training process requires

two sets of images, one for defining the dictionaries and one

for training the classifier. In addition, to assess the accuracy

of the learned classifier, we need a holdout test data set.

Therefore, we begin by partitioning the data at random into

three subsets: clustering, training, and testing.

Dictionary Construction We construct a separate dictio-

nary for each region detector d and each class k (Table 1).

Let Sd,k be the SIFT descriptors that were found by apply-

ing detector d to images from class k. We fit a Gaussian

Table 1. Dictionary Construction. D is the
number of region detectors (3 in our case),

and K is the number of stonefly taxa to be
recognized (4 in our case).

Dictionary Construction

For each detector d = 1, . . . ,D
For each class k = 1, . . . ,K
Let Sd,k be the set of SIFT vectors that results

from applying detector d to all cluster images from

class k.

Fit a Gaussian mixture model to Sd,k to obtain a

set of mixture components {Cd,k,ℓ}, ℓ = 1, . . . , L.

The GMM estimates the probability of each SIFT

vector s ∈ Sd,k as

P (s) =

L∑

ℓ=1

Cd,k,ℓ(s | µd,k,ℓ,Σd,k,ℓ)P (ℓ).

where Cd,k,ℓ is a multi-variate Gaussian

distribution with mean µd,k,ℓ and diagonal covariance

matrix Σd,k,ℓ.

Define the keyword mapping function

keyd,k(s) = argmaxℓ Cd,k,ℓ(s | µd,k,ℓ,Σd,k,ℓ)

mixture model (GMM) via the Expectation-Maximization

(EM) algorithm to Sd,k. The GMM has the following form:

p(s) =

L∑

ℓ=1

Cd,k,ℓ(s | µd,k,ℓ,Σd,k,ℓ)P (ℓ)

where s denotes a SIFT vector, the component probability

distribution Cd,k,ℓ is a multivariate Gaussian density func-

tion with mean µd,k,ℓ and covariance matrix Σd,k,ℓ, and

Σd,k,ℓ is constrained to be a diagonal matrix. The number

of componentsL is a parameter that must be specified. Each

fitted component defines a keyword. A virtue of employing

a model-based clustering method such as GMM is that it

can be viewed as a classifier. Given a new SIFT vector s,

we compute the corresponding keyword ℓ = keyd,k(s) by
finding the ℓ that maximizes p(s | µd,k,ℓ,Σd,k,ℓ). Note that
we disregard the mixture probabilities P (ℓ). This is equiv-
alent to mapping s to the nearest cluster center µℓ under the

Mahalobis distance defined by Σℓ.

The GMM fitting is initialized with the centers of mass

of the clusters obtained by the k-means algorithm. The k-

means algorithm is initialized by picking random elements.

The EM steps are performed either until the error fitting the

GMM is less than 0.05% from the previous iteration or 100
itrations are performed.



Table 2. Feature Vector Construction. The
histograms are generated by employing the

keyd,k dictionary keys.

Feature Vector Construction

To construct a feature vector for an image:

For each detector d = 1, . . . ,D
For each class k = 1, . . . ,K
Let Hd,k be the keyword histogram for detector d

and class k

Initialize Hd,k[ℓ] = 0 for ℓ = 1, . . . , L
For each SIFT vector s detected by detector d

increment Hd,k[keyd,k(s)]
Let H be the concatenation of the Hd,k histograms

for all d and k.

Feature Vector Construction After constructing the dic-

tionaries from the clustering image set, the next step is to

construct a set of training examples from the training image

set (Table 2). To accomplish this, the three region detectors

are applied to each training image. Each region found by

detector d is represented as a SIFT vector and then mapped

to an appropriate keyword for each class k using keyd,s.

These keywords are accumulated to form a histogramHd,k,

and these histograms are then concatenated to produce the

final feature vector. With D detectors, K classes, and L

mixture components, there are D × K × L elements in the

final feature vector.

Training and Classification Once the training set is con-

structed, the next step is to train the classifier (Table 3). We

employ a state-of-the-art ensemble classification method:

bagged logistic model trees. Logistic model trees (LMT)

were developed by Landwehr, Hall, and Frank [6]. Bag-

ging [2] is a general method for constructing an ensemble of

classifiers. Given a set T of labeled training examples and a

desired ensemble size B, it constructs B bootstrap replicate

training sets Tb, b = 1, . . . , B. Each bootstrap replicate is
a training set of size |T | constructed by sampling uniformly
with replacement from T . The learning algorithm is then

applied to each of these replicate training sets Tb to produce

a classifierLMTb. To predict the class of a new image, each

LMTb is applied to the new image, and the predictions vote

to determine the overall prediction.

3. Experiments and Results

We collected 263 specimens of four stonefly taxa from
freshwater streams in the mid-Willamette Valley and Cas-

Table 3. Training and Classification. B is the
number of bootstrap iterations (i.e., the size

of the classifier ensemble).

Training

Let T = {(Hi, yi)}, i = 1, . . . , N be the set of N training
examples where Hi is the concatenated histogram for

training image i and yi is the corresponding class

label (i.e., stonefly species).

For bootstrap replicate b = 1, . . . , B
Construct training set Tb by sampling N training

examples randomly with replacement from T

Let LMTb be the logistic model tree fitted to Tb

Classification

Given a test image, let H be the concatenated histogram

resulting from feature vector construction.

Let votes[k] = 0 be the number of votes for class k.
For b = 1, . . . , B
Let ŷb be the class predicted by LMTb applied to H .

Increment votes[ŷb].
Let ŷ = argmaxk votes[k] be the class with the most votes.
Predict ŷ.

cade Range of Oregon: the species Calineuria californica

(Banks), the species Doroneuria baumanni Stark & Bau-

mann, the species Hesperoperla pacifica (Banks), and the

genus Yoraperla. Each specimen was placed in its own

vial with an assigned control number and photographed us-

ing the apparatus described in Section 2.1. Approximately

twenty images were obtained of each specimen, which

yields 20 individual images. These were then manually ex-

amined, and all images that gave a dorsal view within 30

degrees of vertical were selected for analysis. It takes about

5 minutes for a specimen to be loaded into our imaging ap-

paratus, transported to the imaging area, reoriented and im-

aged 5 times, transported to the catch basin and reinserted

into its bottle. On average per image, our segmentation step

takes 15.6 seconds, feature extraction takes 43.3 seconds (of

which 42 seconds is for the PCBR detector), and classifica-

tion takes only 6.5 ms. The code for the PCBR detector is

in the process of being optimized. The mechanical speci-

men handling is currently the limiting factor in the system

throughput.

Figure 3 shows some of the images collected for the

study. Note the variety of colors, sizes, and poses. Note

also that Yoraperla is quite distinctive in color and shape.

The other three taxa are quite similar to each other, and the

first two (Calineuria and Doroneuria) are exceedingly dif-



ficult to distinguish. This is emphasized in Figure 4, which

shows closeup dorsal views. To verify the difficulty of dis-

criminating these two taxa, we conducted an experiment

that tested the ability of humans to separate Calineuria and

Doroneuria. A total of 26 students and faculty from Ore-

gon State University were allowed to train on 50 randomly-

selected images of these two species, and were subsequently

tested with another 50 images. Most of the subjects (21) had

some prior entomological experience. The mean score was

78.6% correctly identified (std. dev. = 8.4). There was no
statistical difference between the performance of entomol-

ogists and non-entomologists (Wilcoxon two-sample test,

W = 57.5, p ≤ 0.5365).
Given the characteristics of the taxa, we defined three

discrimination tasks, which we term CDHY, JtHY, and CD

as follows:

CDHY: Discriminate among all four taxa

JtHY: Merge Calineuria and Doroneuria to define a single

class, and then discriminate among the resulting three

classes

CD: Focus on discriminating only between Calineuria and

Doroneuria

(a)

(b)

(c)

(d)

Figure 3. Example images of different stone-

fly larvae species. (a) Calineuria, (b)
Doroneuria, (c) Hesperoperla and (d) Yoraperla.

Performance on all three tasks was evaluated via three-

fold cross-validation. The images were randomly parti-

tioned into three sets of approximately equal size under the

constraint that all images of any given specimen were re-

quired to be placed in the same partition. In addition, to

the extent possible, the partitions were stratified so that the

class frequencies were the same across the three partitions.

In each “fold” of the cross-validation, one partition served

as the clustering data set for defining the dictionaries, a sec-

ond partition served as the training data set, and the third

partition served as the test set.

Figure 4. Comparison images: Calineuria de-
tails (left) and Doroneuria details.

3.1. Overall Results

Our experiments were designed to achieve two goals.

First, we wanted to determine how well our combined

method (with three region detectors) could perform on the

three recognition tasks. To establish a basis for evaluation,

we also applied the method of Opelt, et al., [11], which is

one of the best current object recognition systems, and com-

pared our results to theirs. Second, we wished to evaluate

the contribution of each of the three region detectors to the

performance of the system. To achieve this second goal, we

trained our system in 7 different configurations correspond-

ing to training with all three detectors, all pairs of detectors,

and all individual detectors.

Table 4. Percentage of images correctly clas-
sified for our system with all three region de-
tectors along with 95% confidence intervals.

Task Accuracy[%]

CDHY 82.42 ± 2.12
JtHY 95.40 ± 1.16
CD 79.37 ± 2.70

Table 4 shows the classification rates achieved by our

combined method on the three discrimination tasks. Ta-

ble 5 shows the confusion matrices for the three tasks. On

the CDHY task, our system achieves 82% correct classifi-

cations. As expected, the main difficulty is to discriminate

Calineuria and Doroneuria. On this binary classification



task, our method attains 79% correct classification, which

is approximately equal to the mean for human subjects with

some prior experience. When these two classes are pooled

in the JtHY task, performance reaches 95% correct, which

is excellent.

Table 5. Confusion matrices of the combined
Kadir, Hessian-Affine and PCBR detectors for
the three tasks. (a) CDHY (b) JtHY and (c) CD.

predicted as⇒ Cal. Dor. Hes. Yor.

Calineuria 315 79 6 0

Doroneuria 80 381 2 0

Hesperoperla 24 22 203 4

Yoraperla 1 0 0 123

(a)
predicted as⇒ Joint CD Hes. Yor.

Joint CD 857 5 1

Hesperoperla 46 203 4

Yoraperla 0 1 123

(b)
predicted as⇒ Calineuria Doroneuria

Calineuria 304 96

Doroneuria 82 381

(c)

In order to test the performance of the CFH methodol-

ogy combined with LMTs, we also applied a competing

method [11] to the difficult CD task using the same image

features. Opelt’s method is similar to ours in that it is also

based on ensemble learning principles (AdaBoost) and also

able to combine multiple feature types for classification. We

adapted Opelt’s Matlab implementation to our features and

followed the default setting of the parameters given in the

paper. Euclidean distance is used as the distance metric for

the SIFT features, and number of iterations T = 100. The

classification rates are summarized in Table 6. As we can

see, for all four combinations of detectors, our method out-

performs Opelt’s method by 8–12 percentage points.

3.2. Results for Multiple Region Detectors

Table 7 summarizes the results of applying all combina-

tions of one, two, and three detectors to the CDHY, JtHY,

and CD tasks. The first three lines show that each detec-

tor has unique strengths when applied alone. The Hessian-

affine detector works best on the 4-class CDHY task; the

Kadir detector is best on the 3-class JtHY task, and the

PCBR detector gives the best 2-class CD results. On the

pairwise experiments it appears that the Hessian-affine and

Table 6. CD classification rates comparison
of Opelt’s method and CFH when applied with

different combinations of detectors. A
√
in-

dicates that the corresponding detector was
used.

Hessian Kadir Accuracy[%]

affine entropy PCBR Opelt [11] CHF & LMT√
60.59 70.10√
62.63 70.34√
67.86 79.03√ √ √
70.10 79.37

PCBR complement each other well. The best pairwise re-

sults for the JtHY task is obtained by the Kadir-Hessian

pair; which appears to be better for tasks that require an

overall assessment of the shape. Finally, the combination of

all three detectors gives the best results on each task.

The PCBR detector is very stable, although it does not

always identify all of the relevant regions. The Kadir de-

tector is also stable, but it finds a very large number of re-

gions, most of which are not relevant. The Hessian-affine

detector finds very good small-scale regions, but its larger-

scale detections are not useful for classification. The PCBR

detector focuses on the interior of the specimens, whereas

the other detectors (especially Kadir) tend to find points on

the edges between the specimens and the background. In

addition to concentrating on the interior, the regions found

by the PCBR detector are more “meaningful” in that they

correspond better to body parts. This may explain why the

PCBR detector did a better job on the CD task.

Table 7. Classification rates of the CFH

method when applied with different combina-
tions of detectors. A

√
indicates that the cor-

responding detector was used.

Hessian Kadir Accuracy[%]

affine entropy PCBR CDHY JtHY CD√
73.14 90.32 70.10√
70.64 90.56 70.34√
71.69 86.21 79.03√ √
78.14 94.19 74.16√ √
80.48 93.79 78.68√ √
78.31 92.09 68.83√ √ √
82.42 95.40 79.37



4. Summary

This paper has presented a combined hardware-software

system for rapid-throughput classification of stonefly lar-

vae. The goal of the system is to perform cost-effective

biomonitoring of freshwater streams. To this end, the appa-

ratus is capable of nearly unassisted manipulation and pho-

tographing of stonefly specimens, and it obtains images of

consistently high quality. The generic object recognition

algorithms attain classification accuracy that is sufficiently

good (82% for 4-classes; 95% for 3-classes) to support the

application. By rejecting for manual classification the spec-

imens in which the confidence level is not high enough; only

a reasonable 30% of the samples would require further pro-

cessing while the remaining identified specimens can reach

an accuracy above 90% on all the defined tasks. The PCBR

detector is particularly useful for discriminating between

the most similar species and works well in combination with

the Hessian-affine and Kadir detectors in all tasks. Finally,

our CHF methodology was found to outperform Opelt’s in

all tasks.

Acknowledgments

We wish to thank Andreas Opelt for providing the Mat-

lab code of his PAMI’06 method for the comparison exper-

iment. We also wish to thank Asako Yamamuro and Justin

Miles for their assistance with the dataset stonefly identifi-

cation.

References

[1] T. Arbuckle, S. Schroder, V. Steinhage, and D. Wittmann.

Biodiversity informatics in action: identification and moni-

toring of bee species using ABIS. In Proc. 15th Int. Symp.

Informatics for Environmental Protection, volume 1, pages

425–430, Zurich, 2001.

[2] L. Breiman. Bagging predictors. Machine Learning,

24(2):123–140, 1996.

[3] G. Csurka, C. Bray, and C. D. L. Fan. Visual categorization

with bags of keypoints. ECCV workshop, 2004.

[4] M. DO, J. Harp, and K. Norris. A test of a pattern recogni-

tion system for identification of spiders. Bulletin of Entomo-

logical Research, 89(3):217–224, 1999.

[5] T. Kadir, A. Zisserman, and M. Brady. An affine invariant

salient region detector. In European Conference on Com-

puter Vision (ECCV04), pages 228–241, 2004.

[6] N. Landwehr, M. Hall, and E. Frank. Logistic model trees.

Mach. Learn., 59(1-2):161–205, 2005.

[7] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. Int. J. Comput. Vision, 60(2):91–110, 2004.

[8] S. Lucas. Face recognition with continuous n-tuple clas-

sifier. In Proc. British Machine Vision Conference, pages

222–231, Essex, 1997.

[9] K. Mikolajczyk and C. Schmid. Scale and affine invariant

interest point detectors. IJCV, 60(1):63–86, 2004.

[10] M. A. O’Neill, I. D. Gauld, K. J. Gaston, and P. Weeks.

Daisy: an automated invertebrate identification system us-

ing holistic vision techniques. In Proc. Inaugural Meeting

BioNET-INTERNATIONAL Group for Computer-Aided Tax-

onomy (BIGCAT), pages 13–22, Egham, 2000.

[11] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic

object recognition with boosting. IEEE Trans. Pattern Anal.

Mach. Intell., 28(3):416–431, 2006.

[12] C. Steger. An unbiased detector of curvilinear structures.

PAMI, 20(2):113–125, 1998.


